Меню

Методы измерения состава газов



ООО «НПЦ «АНАЛИТЕХ»

Газовый анализ, принципы и методы измерений

Это качественное обнаружение и количественное определение компонентов газовых смесей. Газовый анализ может проводиться, так по лабораторным методикам, так как с помощью специальных газоанализаторов. Как правило, методы газового анализа основаны на измерении физических параметров и свойств среды (например, электрической проводимости, магнитной восприимчивости, теплопроводности, оптической плотности, коэффициента рассеяния и так далее) значения которых зависят от концентраций определяемых компонентов. Существуют избирательные и неизбирательные методы измерения. В неизбирательных методах проводится измерение свойств пробы (например, плотности или теплопроводности), которые зависят от относительного содержания всех ее компонентов пробы. Поэтому такие методы могут применяться для анализа бинарных и псевдобинарных газовых смесей, в которых варьируется содержание только определяемого компонента, а соотношение концентраций остальных компонентов не изменяется. В избирательных методах измеряемое свойство пробы зависит преимущественного от содержания определяемого компонента.

По характеру измеряемого физического параметра методы газового анализа можно разделить на механические, акустические, тепловые, магнитные, оптические, ионизационные, масс-спектрометрические, электрохимические, полупроводниковые.

К механическим методам относится волюмоманометрический метод, основанный на измерении объема или давления газовой пробы после химического воздействия на нее, которое может заключаться, например, в последовательном поглощении компонентов анализируемого газа подходящими реактивами в поглотительных сосудах. Минимально определяемые концентрации (МОК) от 0,001 до 0,01 %.
К механическим методам также относят пневматический метод (аэростатический и аэродинамический). В первом случае измеряют плотность газовой смеси, во втором — зависящие от плотности и вязкости параметры таких процессов, как дросселирование газовых потоков, взаимодействие струй, вихреобразование и т.д. Эти методы применяют для анализа бинарных и псевдобинарных смесей, напр. для определения Н2 в воздухе, Н2 в этилене, СО2 в инертных газах, С12 в Н2 и т.д. МОК метода от 0,01 до 0,1 %.

Акустические методы основаны на измерении поглощения или скорости распространения звуковых и ультразвуковых волн в газовой смеси. Методы не избирательны и применяются, в частности, для определения СН4, О2, Н2 в бинарных и псевдобинарных смесях. МОК метода от 0,001 до 0,1 %.

Тепловые методы основаны на измерении теплопроводности газовой смеси (термокондуктометрический метод) или теплового эффекта радиации с участием определяемого компонента — (термохимический метод). Термокондуктометрическим методом находят содержание, напр., Не, СО2, Н2, СН4 в бинарных и псевдобинарных смесях (МОК от 0,01 до 0,1 %. Термохимический метод используют для избирательного определения СО, СН4, О2, Н2, контроля в воздухе взрывоопасных и пожароопасных примесей (смесей газообразных углеводородов, паров бензина и т.д.). Например, при определении метана его сжигают в присутствии катализатора (Pt и Pd на активном Аl2О3). Количество выделившегося тепла, пропорциональное концентрации СН4, с помощью терморезисторов преобразуют в электрический сигнал, который регистрируют. МОК метода от 0,001 до 0,01 %.

В магнитных методах измеряют физические характеристики газа, обусловленные магнитными свойствами определяемого компонента в магнитном поле. С их помощью контролируют содержание О2, отличающегося аномально большой парамагнитной восприимчивостью. Наиболее распространен термомагнитный метод, основанный на зависимости парамагнитной восприимчивости О2 от его концентрации при действии магнитного поля в условиях температурного градиента. МОК метода от 0,01 до 0,1 %.

В оптических методах измеряют оптическую плотность (абсорбционные методы), интенсивность излучения (эмиссионные методы), коэффициент преломления (рефрактометрический). Абсорбционные методы, основанные на измерении селективного поглощения ИК, УФ или видимого излучения контролируемым компонентом, применяют, например, для избирательного определения NO2, О3, H2S, SO2, CS2, формальдегида, фосгена, Сl2, паров Hg, Na, Pb и других. МОК метода от 0,00001 до 0,01 %. Широко используется оптикоакустический метод, основанный на пульсации давления газа в приемнике излучения при поглощении прерывистого потока излучения, прошедшего через анализируемый газ. Метод позволяет определять СО, СО2, СН4, NH3, SO2, ряд органических соединений. МОК метода от 0,001 до 0,01 %. Источники излучения в абсорбционных методах — лампы накаливания, ртутные, водородные, ртутно-кадмиевые, кадмиевые, нихромовые спирали.

По фотоколориметрическому оптическому методу предварительно проводят цветную реакцию контролируемого компонента с подходящим реагентом в газовой фазе, в индикаторном реакторе или на поверхности твердого носителя (в виде ленты, таблетки, порошка) и измеряют интенсивность окраски продуктов реакции. Метод применяют также для избирательного определения оксидов азота, СО, CS2, NH3, ацетилена, фосгена, формальдегида и др. МОК метода от 0,000001 до 0,001 %.

Читайте также:  Что определяет точность измерения приборов

В эмиссионных оптических методах измеряют интенсивность излучения определяемых компонентов. Излучение можно возбудить электрическим разрядом (МОК метода от 0,0001 до 0,1 %), пламенем, светом и другими источниками (при использовании лазера МОК достигает 0,0000001 до 0,000001 %). Эти методы применяют для количественного определения множества элементов и соединений.

В хемилюминесцентном методе измеряют интенсивность люминесценции, сопровождающей некоторые хим. реакции в газах. Метод применяют, в частности, для определения О3 и оксидов азота. Например, определение NO основано на его окислении озоном. МОК метода от 0,000001 до 0,0001 %.

Оптические методы, основанные на рассеянии света, получили развитие благодаря лазерной технике. Они применяются, в частности, при дистанционном контроле чистоты атмосферы для определения главным образом вредных примесей – органических соединений, оксидов азота, серы, углерода и т.д. МОК метода от 0,000001 до 0,1 %.

Рефрактометрический метод используется для определения СО2, СН4, ацетилена, SO2 и др. в бинарных и псевдобинарных смесях. МОК метода около 0,01 %. Интерферометрический оптический метод основан на измерении смещения интерференционных полос в результате изменения оптической плотности газовой смеси при изменении концентрации определяемого компонента. Применяется, напр., для определения СО2 и СН4 в воздухе. МОК метода около 0,01 %.

Ионизационные методы основаны на измерении электрической проводимости ионизованных газовых смесей. Ионизацию осуществляют радиоактивным излучением, электрическим разрядом, пламенем, УФ — излучением, на нагретой каталитически активной поверхности. Например, метод, основанный на измерении разницы сечений ионизации газов радиоактивным излучением, используют для анализа таких бинарных смесей, как Н2 — N2, N2 — CO2, а также некоторых углеводородов (МОК метода около 0,01%). Метод, основанный на ионизации органических соединений в водородном пламени, применяют для определения органических примесей в бинарных газовых смесях и воздухе (МОК метода около 0,00001 %).

Масс-спектрометрические методы, основанные на измерении масс ионизованных компонентов анализируемого газа (см. Mace-спектрометрия), применяют для определения инертных газов, О2, Н2, оксидов углерода, азота и серы, а также неорганических., органических и металлоорганических летучих соединений. МОК метода от 0,00001 до 0,001 %.

В электрохимических методах измеряют параметры системы, состоящей из жидкого или твердого электролита, электродов и определяемого компонента газовой смеси или продуктов его реакции с электролитом. Так, потенциометрический метод основан на зависимости потенциала индикаторного электрода от концентрации иона, полученного при растворении определяемого компонента в растворе; амперометрический — на зависимости между током и количеством определяемого компонента, прореагировавшего на индикаторном электроде; кондуктометрический — на измерении электропроводности растворов при поглощении ими определяемого компонента газовой смеси. Электрохимическими методами измеряют содержание примесей O2, CO, NO, NO2, SO2, H2S, H2, C12, NH3, O3 и др. МОК метода от 0,000001 до 0,0001 %.

В полупроводниковых методах измеряют сопротивление полупроводника (пленки или монокристалла), взаимодействующего с определяемым компонентом газовой смеси. Методы применяют для измерения содержания Н2, метана, пропана, О2, оксидов углерода и азота, галогенсодержащих соединений и др. МОК метода от 0,00001 до 0,001 %. .

Среди методов газового анализа иногда выделяют так называемые комбинированные. К ним относятся методы, отличающиеся способами предварительного преобразования пробы (хроматография, изотопное разбавление), которые могут сочетаться с измерением различных физический параметров, а также многопараметрический вычислительный метод.

В хроматографических методах газового анализа разделение анализируемой смеси происходит при ее движении вдоль слоя сорбента. Наиболее часто применяют проявительный вариант, в котором исследуемый газ переносится через слой сорбента потоком газа — носителя, сорбирующегося хуже любого из компонентов анализируемой газовой смеси. Для измерения концентрации разделенных компонентов в газе — носителей применяют различные детекторы. Хроматографические методы обеспечивают анализ широкого круга органических и неорганических компонентов с МОК метода от 0,0001 до 0,01 %. Сочетание хроматографического разделения с предварит. концентрированием (криогенной адсорбцией, диффузией и др.) определяемых компонентов позволяет снизить значения МОК до метода от 0,0000001 до 0,000001 %.

Читайте также:  Измерения уровня шума параметры

В методе изотопного разбавления в анализируемую пробу вводят радиоактивные или, чаще, стабильные изотопы определяемого компонента и затем выделяют его из пробы вместе с добавкой. В случае радиоактивного изотопа концентрацию компонента рассчитывают по удельной радиоактивности выделенного компонента, в случае стабильных изотопов — по результатам масс-спектрометрического или спектрального анализа его изотопного состава. Применяется также метод, основанный на реакции между определяемым компонентом и радиоактивным реагентом. Образовавшееся соединение выделяют, измеряют его удельную активность, по значению которой находят концентрацию определяемого компонента. Методами изотопного разбавления измеряют содержание примесей О2, N2, H2, оксидов углерода и азота, СН4, С12 и др. МОК от метода от 0,0000001 до 0,1 %.

Многопараметрический вычислительный метод основан на совместном измерении ряда физических параметров смеси известного качестве состава и на решении с помощью ЭВМ системы уравнений, описывающих взаимосвязь измеряемых параметров с концентрациями определяемых компонентов. Одновременно можно измерять, например, оптическую плотность среды при различных длинах волн, эффективность ионизации газов и паров на каталитически активных поверхностях с разными температурами нагрева и т.д.

Достоверность газоаналитических измерений гарантируется комплексом методов и средств метрологического обеспечения. Неполнота сведений о зависимостях между значением физического параметра среды и концентрацией определяемого компонента, влияние остальных компонентов среды и условий измерения приводят к погрешности анализа. Поэтому, в каждом конкретном случае, необходимо предварительное метрологические исследование с целью аттестации методик или нормирования метрологических характеристик газоанализаторов. Одна из задач метрологического исследования — выявление погрешности, возникающей вследствие неполного соответствия между реальной анализируемой смесью и ее моделью, используемой при разработке методик и создании газоанализаторов. В ходе метрологических исследований используют аттестованные газовые смеси и образцовые средства измерения. Выбор метода аттестации зависит от концентрации и свойств определяемого и сопутствующих компонентов. Аттестацию газовых смесей выполняют, напр., по методикам, предусматривающим измерение расхода, давления и объема смешиваемых чистых газов, определение отношения масс компонентов смеси (с помощью аналитических газовых весов), установления их точек замерзания и т.д. Используют также предварительно аттестованные с большей точностью методики химического анализа. В тех случаях, когда аттестовать смеси с высокой точностью по результатам косвенных измерений их свойств практически невозможно, применяют стандартные образцы газовых смесей. При этом для аттестации синтезированных газовых смесей в качестве стандартных образцов на высшем уровне точности пользуются результатами экспериментов, проведенных в нескольких лабораториях.

Использованная литература:
Тхоржсвский В. П., Автоматический анализ химического состава газов, М., 1969;
Коллеров Д.К., Метрологические основы газоаналитических измерений, М., 1967;
Грибов Л.А. [и др.], «Ж. Аналитическая химия», 1982, т. 37, в. 6, с. 1104;

Источник

4.Измерение состава газов. Основные методы

Объемные химические газоанализаторы, тепловые, магнитные,

оптические, электрические газоанализаторы.

Метод основан на разделении исследуемой смеси на компоненты за счет различной сорбируемости компонентов при движении смеси через слой сорбента. При этом компоненты смеси газов под действием потока

подвижной фазы перемещаются через сорбент с различными скоростями.

Разделение исследуемой смеси производится в хроматографических колонках, которые заполнены неподвижной фазой с нанесенным сорбентом. Строго определенный объем исследуемой смеси (подвижная фаза) вводится дозатором 1 (см. рис.13 ) вместе с газом-носителем

(обычно это N 2) в начало колонки. Под действием давления подвижная фаза продвигается через слой сорбента и постепенно разделяется на отдельные компоненты, движующиеся с различными скоростями, в зависимости от степени сорбируемости каждого компонента. Компоненты с большой степенью сорбируемости задерживаются и двигаются с меньшей скоростью. Длина колонки может достигать несколько метров, в

конце колонки подвижная фаза представляет собой последовательность отдельных компонентов, разделенных слоями газа-носителя. После колонки разделенная подвижная фаза поступает в детектор 2, в котором

производится анализ и преобразование каждого разделенного компонента в электрический сигнал, который регистрируется на приборе 3 в виде последовательности кривых — пиков, при этом расположение этих пиков по оси времени определяется типом каждого компонента, а высота пика зависит от количества данного компонента в пробе.

Читайте также:  Штангенциркуль для измерения уступов

На блок-схеме хроматографа (рис.14):1 –дозатор с газом-носителем, 2 –вентиль, 3 –место ввода пробы в колонку, 4- разделительная (хроматографическая) колонка, 5- детектор, 6 –регистрирующий прибор, 7 –ротаметр, 8 – трехходовой вентиль, 9 – приспособление для улавливания компонентов пробы, 10 – манометр, 11 – термостаты.

5.Измерение вязкости жидкостей. Основные методы.

Размерности вязкости жидкостей.

Динамическая вязкость: μ, Па*с; кинематическая вязкость ν, м 2 /с.

1 Па*с=10 пз(пуаз), 1ст (стокс)=1*10 -4 м 2 /с

(57)

Вязкость воды (при Θ=20ºС) 1спз, глицерин: 14 пз.

Зависимость от температуры:

, 1.3 1

, (61)

Основные методы измерения.

Капиллярные (метод истечения) вискозиметры.

Закон Пуазейля –см. рис.15.а:

Па*с (62)

где r, L -[м], ΔР -[Па], V —[м³/с]; L >>r

Поправка на длину капилляра:

, (63)

где l -[м], ρ -[кг/м³], 0.74 ≤ k ≤1.76

Автоматический вискозиметр –см.рис.15,б. Измерение μ до 10 Па*с.

Шариковые вискозиметры (метод падающего тела).

Закон Стокса – см.ри. 16,а:

, Па*с (64)

34 –

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Источник

Измерение состава газов

Для этого применяются газоанализаторы. С их помощью осуществляют управление технологическими процессами, контроль за процессами горения и содержания водорода в системах охлаждения турбогенераторов, вредных примесей в выбросах промышленных предприятий.

Промышленные автоматические газоанализаторы применяются для измерения концентрации только одной компоненты в смеси. Многообразие контролируемых компонент в смеси газов предполагает и наличие многочисленных методов измерения, поскольку для каждого газа используется определенное свойство, то есть изменение определенного физического или химического свойства в зависимости от концентрации компоненты в смеси газа. Газоанализаторы градуируются в процентах на метр кубический или в граммах на кубический метр или на литр.

Наибольшее распространение получили объемные химические газоанализаторы, принцип действия которых основан на оценке изменения объема газовой смеси. Применительно для измерения концентрации диоксида углерода, сероводорода, кислорода, окиси углерода, азота и других газов. Суть работы химического газоанализатора основан на избирательном удалении определенных компонент из смеси с помощью химических реакций. Например, для поглощения водорода и оксида углерода используется щелочной раствор полухлористой меди. Точность метода во многом зависит от постоянства термодинамических параметров, при которых протекает процесс. К таким газоанализаторам относятся газоанализаторы типа ГХП-2. Недостатком данных приборов является низкая точность анализа, которая не превышает 0,1¸0,2 % от общего объема пробы.

Существуют тепловые газоанализаторы, в принципе действия которых заложено измерение тепловых параметров газовой смеси, например, теплопроводности, которые зависят от содержания той или иной компоненты. В табл. 5.5 приведены относительные значения теплопроводности различных газов. Концентрация определяемой компоненты газа находится по формуле

, (5.11)

где l, l, lн – теплопроводность смеси, определенной и неопределенной компоненты соответственно.

В качестве электрической схемы тепловых газоанализаторов применяются мостовые схемы или точнее схемы неуравновешенного моста с питанием от стабилизированного источника. Газоанализаторы данного типа применяются для определения концентрации водорода, двуокиси углерода, кислорода, хлора, аргона и других
газов.

Также существуют термохимические газоанализаторы, магнитные, оптические, фотокалориметрические, электрические и хроматографические.

Относительные теплопроводности газов

Газ Воздух Азот Водород Диоксид углерода Оксид углерода Метан Диокид серы Кислород Аргон Гелий Пары воды
100 °С 0,98 6,84 0,71 0,94 1,45 0,38 1,02 0,66 5,56 0,78
500 °С 0,97 6,77 0,96 0,93 2,13 0,53 1,07 0,66 5,32 1,16

Наиболее универсальны последние из них, так как их можно применять для анализа состава газовых смесей, жидкостей и твердых тел. Хроматографический газоанализатор работает за счет разделения различных газов по скорости при движении вдоль слоя сорбента. Он обладает высокой точностью, которая составляет порядка 10 –11 г/см 3 . На выходе хроматографа имеется самопишущий прибор, который «пишет» для каждой компоненты пик, по площади которого определяют концентрацию компоненты.

Методы определения состава жидкостей. Определить состав сточных вод предприятия очень важно с экологических позиций. Для этого применяются методы по измерению: электропроводности, окислительно-восстановительных потенциалов, заряда. Это так называемые электрохимические методы. Кроме того существуют оптические и тепловые методы.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник