Меню

Нагрузка электрическая единица измерения



Электрическая нагрузка и её виды

Электрическая нагрузка — это нагрузка создаваемая в электрической сети включенными для работы в сети электроприемниками, она выражается в единицах тока или мощности. Электроприемники присоединяются к электрическим сетям в одиночку или группами. В состав группы могут входить электроприемники как одинакового, так и различного назначения и режима работы. Режим работы системы электроснабжения одинаковых приемников или их групп зависит от режима работы или сочетаний режимов работы одиночных приемников или их групп.

В процессе работы электроприемников характер нагрузки в сети может оставаться неизменным, изменяться в отдельных или всех фазах, сопровождаться появлением высших гармоник тока или напряжения. В связи с этим нагрузку в сети можно разделить на спокойную симметричную (преобладающее большинство трехфазных электроприемников), резкопеременную, несимметричную и нелинейную.

К специфическим нагрузкам относятся резкопеременная, нелинейная и несимметричная нагрузка.

Резкопеременная нагрузка характеризуется резкими набросами и провалами мощности или тока. Несимметричная нагрузка характеризуется неравномерной загрузкой фаз. Она вызывается однофазными и реже трехфазными приемниками с неравномерной загрузкой фаз. При несимметричной нагрузке в сети возникают токи прямой, обратной и нулевой последовательности. Нелинейная нагрузка создается электроприемниками с нелинейной вольт-амперной характеристикой. При нелинейной нагрузке в сети появляются высшие гармоники тока или напряжения, искажается синусоидальная форма тока или напряжения.

Специфические нагрузки обычно создаются электродуговыми печами, сварочными установками, полупроводниковыми преобразовательными установками. Эти установки, в основном, принадлежат промышленным предприятиям. Учитывая связь электрических сетей промышленных предприятий и сетей сельскохозяйственного назначения через трансформаторные подстанции, можно считать, что специфические нагрузки промышленных предприятий оказывают влияние и на электрические сети сельскохозяйственного назначения.

Электроприемники сельскохозяйственного назначения по мощности подразделяются на три группы:

1. Большой мощности (больше 50 кВт)

2. Средней мощности (от 1 до 50 кВт)

3. Малой мощности (до 1 кВт).

Некоторые приемники используют для работы постоянный ток и токи повышенной (до 400 Гц) или высокой частоты (до 10 кГц).

Во время работы одни группы приемников могут допускать перерывы в электроснабжении, в то же время перерыв в электроснабжении других недопустим. По надежности и бесперебойности электроснабжения электроприемники делятся на три категории.

К первой категории относятся электроприемники и комплексы электроприемников, перерыв электроснабжения которых может повлечь за собой опасность для жизни людей, значительный ущерб (повреждение основного оборудования), расстройство технологического процесса. Эти приемники должны иметь возможность обеспечения электроэнергией не менее чем от двух независимых источников питания. Нарушение их электроснабжения допускается только на время автоматического восстановления электроснабжения от второго источника.

Ко второй категории относятся электроприемники и комплексы электроприемников, перерыв электроснабжения которых приводит к массовому недовыпуску продукции, простоям рабочих и механизмов.

Электроснабжение приемников второй категории должно обеспечиваться от двух независимых источников питания. Перерыв в электроснабжении допускается на время, необходимое для автоматического и оперативного переключения на второй источник.

К третьей категории относятся электроприемники и комплексы электроприемников, не попадающие под определения первой и второй категорий. Электроснабжение их может осуществляться от одного источника питания. Перерыв электроснабжения допускается на время проведения восстановительных работ, но не более одних суток.

Потреблением из сети не только активной, но также и реактивной мощности сопровождается работы подавляющего большинства электроприемников. Преобразуется активная мощность в механическую мощность на валу рабочей машины или теплоту, а на создание магнитных полей в электроприемниках расходуется реактивная мощность. Основными ее потребителями являются трансформаторы, асинхронные двигатели, индукционные печи, в которых отстает ток по фазе напряжения. Характеризуется потребление реактивной мощности коэффициентом мощности сosφ, представляющим отношение активной мощности Р к полной мощности S. Является удобным показателем коэффициент реактивной мощности tgφ, который выражает отношение реактивной мощности Q к активной Р (показывает, происходящее потребление реактивной мощности на единицу активной мощности).

Установки с опережающим током являются источниками реактивной мощности. Их применяют для компенсации реактивной нагрузки с индуктивным характером цепи.

Таким образом, нагрузка в электрической сети представляется активными и реактивными нагрузками.

При возникновении электрической нагрузки в распределительной сети, может возникать нагрев токоведущих частей – проводов, кабелей, коммутационных аппаратов, обмоток электродвигателей и трансформаторов. Чрезмерный их нагрев может привести к преждевременному старению изоляции и ее износу. В связи с этим температура токоведущих частей не должна превышать допустимых значений. Сечение проводов и кабелей, коммутационных аппаратов должно выбираться по допустимому току нагрузки. Для определения допустимого (расчетного) тока нагрузки должна быть определена расчетная мощность нагрузки.

За расчетную нагрузку при проектировании и эксплуатации солнечной электростанции принимается такая неизменная во времени нагрузка Iрсч, которая вызывает максимальный нагрев токоведущих и соседних с ними частей, характеризующийся установившейся температурой. Нагрев не должен превышать допустимого значения. Обычно установившееся тепловое состояние для большинства проводов и кабелей наступает за 30 минут (около трех постоянных времени нагрева – 3Т, т. е. постоянная времени нагрева Т = 10 мин). В установках с номинальным током нагрузки более 1000 А установившаяся температура достигается за время не менее 60 мин.

Читайте также:  Виды ваттметров используемых при прямом методе измерения

Виды электрической мощности в электроэнергетике

Активная мощность – это среднее значение мощности за полный период. Активная мощностью называют полезную мощность, которая расходуется на совершение работы – преобразование электрической энергии в другие виды энергии (механическую, световую, тепловую). Измеряется в Ваттах (Вт).

Максимальная мощность – это величина мощности, обусловленная составом энергопринимающего оборудования и технологическим процессом потребителя, исчисляемая в

Мгновенная мощность – мощность в данный момент времени. В общем случае это скорость потребления энергии. Различают среднюю мощность за определенный промежуток времени и мгновенную мощность в данный момент времени. В электроэнергетике под понятием мощность понимается средняя мощность.

Полная мощность – это геометрическая сумма активной и реактивной мощности (см. Треугольник мощностей). Измеряется в Вольт-Амперах (ВА).

Присоединенная мощность – это совокупная величина номинальной мощности присоединенных к электрической сети (в том числе и опосредованно) трансформаторов и энергопринимающих устройств потребителя электрической энергии, исчисляемая в МВт.

Расчетная мощность – величина ожидаемой мощности на данном уровне электроснабжения. Данная мощность является важнейшим показателем, поскольку исходя из неё выбирается электрооборудование. Расчетная мощность показывает фактическую величину потребления энергопринимающими устройствами и зависит от конкретного потребителя (многоквартирные дома, различные отрасли производства). Получение величины расчетной мощности представляет собой сложную задачу, в которой должны учитываться различные факторы, такие как сезонность нагрузки, особенности технологии. На основании статистических данных разработаны таблицы коэффициентов использования, по которым величина расчетной мощности находится как произведение установленной мощности на коэффициент использования.

Реактивная мощность – это мощность, которая обусловлена наличием в электрической сети устройств, которые создают магнитное поле (емкости и индуктивности). Интерес представляет не само магнитное поле, а характер прохождения по таким элементам переменного тока, а именно появление фазового сдвига между приложенным напряжением и током в элементах сети, таких как (электродвигатели, трансформаторы, конденсаторы).

Реактивная мощность в сети может быть, как избыточная, так и дефицитная это обусловлено характером установленного оборудования. Избыточная реактивная мощность (преобладает емкостной характер сети) приводит к повышению напряжения сети, в то время как дефицитная (преобладание индуктивного характера сети) к снижению напряжения. Поскольку в распределительных сетях в большинстве случаев индуктивность преобладает над емкостью, т.е. имеется дефицит реактивной мощности, то в сеть искусственно вносятся емкостные элементы, призванные скомпенсировать индуктивный характер сети, как следствие уменьшить фазовый сдвиг между напряжением сети и током, а это значит передать потребителю в большей степени только активную мощность, а реактивную «сгенерировать» на месте. Этот принцип широко используют сетевые компании, обязывающие потребителей устанавливать компенсационные устройства, однако же установка данных устройств нужна в большей степени сетевой компании, а не каждому потребителю в отдельности. Измеряется в Вольт-Амперах реактивных (ВАр).

Трансформаторная мощность – это суммарная мощность трансформаторов энергопринимающих устройств потребителя электрической энергии исчисляемая в МВт.

Установленная мощность – алгебраическая сумма номинальных мощностей электроустановок потребителя. Наибольшая активная электрическая мощность, с которой электроустановка может длительно работать без перегрузки в соответствии с техническими условиями или паспортом на оборудование.

Заявленная мощность – это предельная величина потребляемой в текущий период регулирования мощности, определенная соглашением между сетевой организацией и потребителем услуг по передаче электрической энергии, исчисляемая в мегаваттах.

Источник

Мощность электрического тока

Прежде чем рассматривать электрическую мощность, следует определиться, что же представляет собой мощность вообще, как физическое понятие. Обычно, говоря об этой величине, подразумевается определенная внутренняя энергия или сила, которой обладает какой-либо объект. Это может быть мощность устройства, например, двигателя или действия (взрыв). Ее не следует путать с силой, поскольку это разные понятия.

Что такое мощность электрического тока

Любые физические действия совершаются под влиянием силы. С ее помощью проделывается определенный путь, то есть выполняется работа. В свою очередь, работа А, проделанная в течение определенного времени t, составит значение мощности, выраженное формулой: N = A/t (Вт = Дж/с). Другое понятие мощности связано со скоростью преобразования энергии той или иной системы. Одним из таких преобразований является мощность электрического тока, с помощью которой также выполняется множество различных работ. В первую очередь она связана с электродвигателями и другими устройствами, выполняющими полезные действия.

Мощность тока связана сразу с несколькими физическими величинами. Напряжение (U) представляет собой работу, затрачиваемую на перемещение 1 кулона. Сила тока (I) соответствует количеству кулонов, проходящих за 1 секунду. Таким образом, ток, умноженный на напряжение (I x U), соответствует полной работе, выполненной за 1 секунду. Полученное значение и будет мощностью электрического тока.

Приведенная формула мощности тока показывает, что мощность находится в одинаковой зависимости от силы тока и напряжения. Отсюда следует, что одно и то же значение этого параметра можно получить за счет большого тока и малого напряжения и, наоборот, при высоком напряжении и малом токе. Это свойство позволяет передавать электроэнергию на дальние расстояния от источника к потребителям. В процессе передачи ток преобразуется с помощью трансформаторов, установленных на повышающих и понижающих подстанциях.

Существует два основных вида электрической мощности – активная и реактивная. В первом случае происходит безвозвратное превращение мощности электрического тока в механическую, световую, тепловую и другие виды энергии. Для нее применяется единица измерения – ватт. 1Вт = 1В х 1А. На производстве и в быту используются более крупные значения – киловатты и мегаватты.

Читайте также:  Государственная система обеспечения единства измерений внедрение

К реактивной мощности относится такая электрическая нагрузка, которая создается в устройствах за счет индуктивных и емкостных колебаний энергии электромагнитного поля. В переменном токе эта величина представляет собой произведение, выраженное следующей формулой: Q = U х I х sin(угла). Синус угла означает сдвиг фаз между рабочим током и падением напряжения. Q является реактивной мощностью, измеряемой в Вар – вольт-ампер реактивный. Данные расчеты помогают эффективно решить вопрос, как найти мощность электрического тока, а формула, существующая для этого, позволяет быстро выполнить вычисления.

Обе мощности можно наглядно рассмотреть на простом примере. Какое-либо электротехническое устройство оборудовано нагревательными элементами – ТЭНами и электродвигателем. Для изготовления ТЭНов используется материал, обладающий высоким сопротивлением, поэтому при прохождении по нему тока, вся электрическая энергия преобразуется в тепловую. Данный пример очень точно характеризует активную электрическую мощность.

Что касается электродвигателя, то внутри него расположена медная обмотка, обладающая индуктивностью, которая, в свою очередь, обладает эффектом самоиндукции. Благодаря этому эффекту, происходит частичный возврат электричества обратно в сеть. Возвращаемая энергия характеризуется небольшим смещением в параметрах напряжения и тока, оказывая негативное влияние на электрическую сеть в виде дополнительных перегрузок.

Такие же свойства имеют и конденсаторы из-за своей электрической емкости, когда накопленный заряд отдается обратно. Здесь также смещаются значения тока и напряжения, только в противоположном направлении. Данная энергия индуктивности и емкости, со смещением по фазе относительно значений действующей электросети, как раз и есть реактивная электрическая мощность. Благодаря противоположному эффекту индуктивности и емкости в отношении сдвига фазы, становится возможным выполнить компенсацию реактивной мощности, повышая, тем самым, эффективность и качество электроснабжения.

По какой формуле вычисляется мощность электрического тока

Правильное и точное решение вопроса чему равна мощность электрического тока, играет решающую роль в деле обеспечения безопасной эксплуатации электропроводки, предупреждения возгораний из-за неправильно выбранного сечения проводов и кабелей. Мощность тока в активной цепи зависит от силы тока и напряжения. Для измерения силы тока существует прибор – амперметр. Однако не всегда возможно воспользоваться этим прибором, особенно когда проект здания еще только составляется, а электрической цепи просто не существует. Для таких случаев предусмотрена специальная методика проведения расчетов. Силу тока можно определить по формуле при наличии значений мощности, напряжения сети и характера нагрузки.

Существует формула мощности тока, применительно к постоянным значениям силы тока и напряжения: P = U x I. При наличии сдвига фаз между силой тока и напряжением, для расчетов используется уже другая формула: P = U x I х cos φ. Кроме того, мощность можно определить заранее путем суммирования мощности всех приборов, которые запланированы к вводу в эксплуатацию и подключению к сети. Эти данные имеются в технических паспортах и руководствах по эксплуатации устройств и оборудования.

Таким образом, формула определения мощности электрического тока позволяет вычислить силу тока для однофазной сети: I = P/(U x cos φ), где cos φ представляет собой коэффициент мощности. При наличии трехфазной электрической сети сила тока вычисляется по такой же формуле, только к ней добавляется фазный коэффициент 1,73: I = P/(1,73 х U x cos φ). Коэффициент мощности полностью зависит от характера планируемой нагрузки. Если предполагается использовать лишь лампы освещения или нагревательные приборы, то он будет составлять единицу.

При наличии реактивных составляющих в активных нагрузках, коэффициент мощности уже считается как 0,95. Данный фактор обязательно учитывается в зависимости от того, какой тип электропроводки используется. Если приборы и оборудование обладают достаточно высокой мощностью, то коэффициент составит 0,8. Это касается сварочных аппаратов, электродвигателей и других аналогичных устройств.

Для расчетов при наличии однофазного тока значение напряжения принимается 220 вольт. Если присутствует трехфазный ток, расчетное напряжение составит 380 вольт. Однако с целью получения максимально точных результатов, необходимо использовать в расчетах фактическое значение напряжения, измеренное специальными приборами.

От чего зависит мощность тока

Мощность тока, различных приборов и оборудования зависит сразу от двух основных величин – силы тока и напряжения. Чем выше ток, тем больше значение мощности, соответственно, при повышении напряжения, мощность также возрастает. Если напряжение и сила тока увеличиваются одновременно, то мощность электрического тока будет возрастать как произведение той и другой величины: N = I x U.

Очень часто возникает вопрос, в чем измеряется мощность тока? Основной единицей измерения этой величины является 1 ватт (Вт). Таким образом, 1 ватт является мощностью устройства, потребляющего ток силой в 1 ампер, при напряжении 1 вольт. Подобной мощностью обладает, например, лампочка от обычного карманного фонарика.

Расчетное значение мощности позволяет точно определить расход электрической энергии. Для этого необходимо взять произведение мощности и времени. Сама формула выглядит так: W = IUt где W является расходом электроэнергии, произведение IU – мощностью, а t – количеством отработанного времени. Например, чем больше продолжается работа электрического двигателя, тем большая работа им совершается. Соответственно возрастает и потребление электроэнергии.

Читайте также:  Гост по ремонту средств измерений

Формула электрической мощности

В чем измеряется мощность электрического тока

Источник

Измерение электрической мощности

Время на чтение:

Электрическая мощность любого прибора — важный показатель, который позволяет определить возможность его работы в сетях абонента. Этот показатель применяется для расчета электрических схем и режима работы электроустановки, для обеспечения надежной работы электросетей. Чем мощность приемников будет большей, тем быстрее они выполнят нужную работу.

Что называется мощностью электрического тока

Мощность электрического тока (EP -electric power), потребляемая электрооборудованием, равна напряжению на нем, умноженному на ток, протекающий через него.

Данная формула показывает, в каких единицах измеряется электрическая мощность — это В⋅А.

Изменение тока

Формулировка верна для сетей постоянного тока (DC — Direct Current), а в сетях переменного тока (AC -Alternating Current) ситуация более сложна для нагрузок, которые являются реактивными. Чтобы рассчитать истинную EP, потребляемую приемником, необходимо учитывать несинусоидальные формы величин, а также углы сдвига тока опережение/запаздывание, вызванных реактивными нагрузками от присутствия в сети индуктивности (L) и конденсаторов ©. В таком случае истинная EP, будет меньше, чем простое произведение: U*I.

Треугольник мощности

Важно! Определение такого показателя потребуется при выборе источников питания AC, проектировании проводки и защите электрических цепей. Это вызвано тем, что, хотя кажущаяся энергия больше, чем истинная потребляемая EP, протекающий через нагрузку ток становится большим. Под него необходимо будет выбрать размеры проводов и устройства защиты оборудования электросети.

Виды электрических мощностей

Существует энергия, генерируемая некоторыми механизмами для создания электромагнитного и электрического поля, которая им необходима для функционирования, — это реактивная составляющая нагрузки. С другой стороны, активная составляющая показывает способность агрегата преобразовать полученную энергию в механическую работу или тепло.

Этот полезный эффект называется активной мощностью и измеряется в кВтч.

Приемники, образованные чистыми резисторами: нагревательные приборы, лампы накаливания и другие, обладают исключительно этим типом нагрузки.

Обратите внимание! Коэффициент мощности относится к активному и кажущемуся энергопотреблению установки. Кажущаяся энергия в свою очередь зависит от активной и реактивной энергии. При одинаковом потреблении активной нагрузки, чем выше потребление реактивной составляющей, тем ниже коэффициент.

Активная мощность

Активная — реальная или истинная мощность (Pa) выполняет фактическую работу в нагрузке и выражается в Вт.

Для однофазной цепи:

Pa = I*U* cosφ = UI PF

  • φ= фазовый угол;
  • PF = cosφ -коэффициент нагрузки.

Pa = 3* U* I* cosφ = 1,732 *U*I* PF

Реактивная мощность

Реактивная мощность (Pr) присутствует у электродвигателей, трансформаторов и устройств с реактивными сопротивлениями и индуктивностью. Эти устройства, как правило, индуктивные, поглощают энергию из сети, создавая магнитные поля, и возвращают ее, при смене направления синусоиды. При таком обмене энергией возникает дополнительное потребление, которое не способно быть использовано некоторыми приемниками. Этот вид называется реактивной энергией и измеряется в кВАр. Она вызывает перегрузку в линиях, трансформаторах и генераторах.

Для однофазной цепи:

Реактивная мощность

Во многих отношениях реактивную мощность можно рассматривать, как пену на бокале пива. Покупатель платит бармену за полный стакан пива, но выпивает только само пиво, которое всегда меньше.

Основным преимуществом использования распределения электроэнергии переменного тока является то, что уровень напряжения питания можно изменять с помощью трансформаторов, но не все электрооборудование потребляет реактивную мощность, которая занимает часть нагрузки на линиях электропередач.

В то время, как реальная или активная мощность — это энергия, подаваемая для работы двигателя, обогрева дома или освещения электрической лампочки, реактивная мощность обеспечивает важную функцию регулирования напряжения, помогая тем самым эффективно перемещать энергию через энергосистему по линиям электропередач.

Оборудование энергосистемы рассчитано на работу в пределах ± 5% от номинального напряжения. Колебания уровней напряжения приводят к неисправности различных приборов. Высокое напряжение повреждает изоляцию обмоток, в то время как низкое напряжение вызывает плохую работу различного оборудования, например, низкую освещенность шин или перегрев асинхронных двигателей.

Если потребляемая мощность больше, чем потребляемая с помощью передающих линий, ток, потребляемый от линий питания, увеличивается до такого высокого уровня, что вызывает резкое падение напряжения на стороне приемника. Если низкое напряжение будет продолжать падать — это приведет к отключению генераторирующих блоков, перегреву двигателей и выходу из строя другого оборудования.

Чтобы преодолеть это, реактивная мощность должна подаваться на нагрузку путем помещения реактивных катушек индуктивности или реакторов в линии электропередачи. Мощность этих реакторов зависит от количества видимой мощности, которая должна быть подана.

Полная мощность

Полная мощность — это энергия, подаваемая от поставщика в электросеть, для покрытия активной и реактивной составляющих.

Полная мощность

Она рассчитывается по формуле:

Где: S — подача питания в цепь, В⋅А.

Кажущаяся EP будет измеряться в вольт-амперах (В⋅А) — напряжение системы, умноженное на текущий ток. Это комплексное значение, равное векторной сумме активной и реактивной энергии.

Источник