Меню

Найдите измерения прямоугольных параллелепипедов 5 класс



§22. Прямоугольный параллелепипед. Пирамида — Ответы (ГДЗ) рабочая тетрадь (Мерзляк Полонский Якир) 5 класс часть 1

ПОВТОРЯЕМ ТЕОРИЮ

260. Заполните теорию.

1) Каждая грань прямоугольного параллелепипеда является прямоугольником .
2) Сторона граней прямоугольного параллелепипеда называют ребрами , вершины граней — вершинами прямоугольного параллелепипеда .
3) У параллелепипеда 6 граней, 12 ребер, 8 вершин.
4) Грани прямоугольного параллелепипеда, не имеющие общих вершин, называют противолежащими .
5) Противолежащие грани прямоугольного параллелепипеда равны .
6) Площадью поверхности параллелепипеда называют сумму площадей его граней .
7) Длины трех ребер прямоугольного параллелепипеда, имеющих общую вершину, называют измерениями прямоугольного параллелепипеда.
8) Чтобы различать измерения прямоугольного параллелепипеда, пользуюятся названиями: длина, ширина и высота.
9) Кубом называют прямоугольный параллелепипед, у которого все измерения равны .
10) Поверхность куба состоит из шести равных квадратов .

РЕШАЕМ ЗАДАЧИ

261. На рисунке изображен прямоугольный параллелепипед ABCDMKEF. Заполните пропуски.

1) Вершина В принадлежит граням АМКВ, АВСD, КВСЕ .
2) Ребру ЕF равны ребра КМ, АВ, СD .
3) Верхняя грань параллелепипеда — прямоугольник МКЕF .
4) Ребро DF является общим ребром граней АМFD и FЕСD .
5) Грани АМКВ равна грань FЕСD .

262. Вычислите площадь поверхности куба и ребром 6 см.

Решение:
Площадь одной грани равна
6 2 -6*6 = 36 (см 2 )
Площадь повехности равна
6*36 = 216 (см 2 )

Ответ: Площадь поверхности равна 216 см 2 .

263. На рисунке изображен прямоугольный параллелепипед MNKPEFCD, измерения которого равны 8 см, 5 см и 3 см. Вычислите сумму длин всех его ребер и площадь поверхности.

Решение:
Сумма ребер
4*(8+5+3) = 64 (см)
Площадь поверхности равна:
2*(8*3+8*5+5*3) = 158 (см 2 )

Ответ: сумма длин всех его ребер равна 64 см, площадь поверхности — 158 см 2 .

264. Заполните пропуски.

1) Поверхность пирамиды состоит из боковых граней — треугольников, имеющих общую вершину и основание .
2) Общую вершину боковых граней называют вершиной пирамиды .
3) Стороны основания пирамиды называют ребрами основания , а стороны боковых граней, не принадлежащие основанию, — боковыми ребрами .

265. На рисунке изображена пирамида SABCDE. Заполните пропуски.

1) На рисунке изображена 5 угольная пирамида.
2) Боковыми гранями пирамиды являются треугольники SAB, SBC, SCD, SDE, SEA , а основанием — 5 угольник, ABCDE .
3) Вершиной пирамиды является точка S .
4) Ребрами основания пирамиды являются отрезки AB, BC, CD, DE, EA , боковыми ребрами — отрезки SA, SB, SC, SD, SE .

266. На рисунке изображена пирамида DАВС.ю все грани которой — равносторонние треугольники со сторонами по 4 см. Чему равна сумма длин всех ребер пирамиды?

Решение:
Сумма длин ребер равна
6*4 = 24 (см)

267. На рисунке изображена пирамида МАВСD, боковые грани которой — равнобедренные треугольники с боковыми сторонами по 7 см, а основание — квадрат со стороной 8 см. Чему равна сумма длин всех ребер пирамиды?

Решение:
Сумма длин боковых ребер равна
4*7 = 28 (см)
Сумма длин ребер основания равна
4*8 = 32 (см)
Сумма длин всех ребер
28+32 = 60 (см)

Ответ: сумма длин всех ребер пирамиды равна 60 см.

268. Может ли иметь (да, нет) форму прямоугольного параллелепипеда:
1) яблоко; 2) коробка; 3) торт; 4) дерево; 5) кусок сыра; 6) кусок мыла?

Ответ: 1) нет; 2) да; 3) да; 4) нет; 5) да; 6) да.

269. На рисунке показана последовательность шагов изображения прямоугольного параллелепипеда. Начертите так же параллелепипед.

270. На рисунке показана последовательность шагов изображения пирамиды. Начертите так же пирамиду.

271. Чему равно ребро куба, если площадь его поверхности равна 96 см 2 .

Решение:
1) 96:6 = 16 (см 2 ) — площадь одной грани куба.
2) 4*4 = 16, значит ребро куба равна 4 см.

272. Запишите формулу для вычисления площади S поверхности:

1) куба, ребро которого равно а;
2) прямоугольного параллелепипеда, измерения которого равны а, b, c.

Читайте также:  Информация свойства информации единицы измерения количества информации информационные процессы

Ответ: 1) S = 6а 2 ; 2) S = 2( аb+ас+bс)

273. Для покраски куба, изображенного на рисунке слева, требуется 270 г краски. Часть куба вырезали. Сколько потребуется граммов краски, чтобы покрасить часть поверхности полученного тела, выделенную голубым цветом.

Решение:
1) 270:6:9 = 45:9 = 5 (г) — на покраску единичной грани
2) 5*12 = 60 (г) — на покраску голубой поверхности

Ответ: потребуется 60 г раски

274. Какая из фигур А, Б, В, Г, Д дополняет фигуру Е до параллелепипеда?

275. Прямоугольный параллелепипед и куб имеют равные площади поверхности. Высота параллелепипеда равна 4 см, что в 3 раза меньше его длины и на 5 см меньше его ширины. Найдите ребро куба.

Решение:
1) 4*3 = 12 (см) длина переллелепипеда
2) 4+5 = 9 (см) ширина параллелепипеда
3) 2*(4*12+4*9+12*9) = 384 (см 2 ) площадь поверхности параллелепипеда
4) 384:6 = 64 (см 2 ) площадь грани куба
5) 64 = 8*8 = 8 2 , значит ребро куба 8 см.

Ответ: ребро куба 8 см.

276. Обведите на изображении куба цветным карандашом видимые ребра так, чтобы куб был виден: 1) сверху и справа; 2) снизу и слева.

277. Грани куба пронумерованы числами от 1 до 6. На рисунке изображены два варианта развертки отдного и того же куба, полученные при равном разрезании. Какое число должно стоять вместо знака вопроса?

Источник

Объем параллелепипеда

О чем эта статья:

Понятие объема

Чтобы без труда вычислить объём любой фигуры, нужно разобраться с определениями.

Объём — это количественная характеристика пространства, занимаемого телом или веществом.

Другими словами, это то, сколько места занимает предмет.

Объём измеряется в единицах измерения объема (единицах измерения размера пространства, занимаемого телом), то есть в кубических метрах, сантиметрах, миллиметрах.

За единицу измерения объёма можно принять куб с ребром 1 см, то есть, кубический сантиметр (см3), кубический миллиметр (1 мм3), кубический метр (1 м3).

Объём всегда выражается в положительных числах. Это число показывает, какое именно количество единиц измерения есть в теле. Например, сколько воды в бассейне, вина в бочке, земли в клумбе.

Два свойства объёма

  1. У равных тел равные объёмы. Если два тела одинаковы, и имеют равное количество единиц измерения — их объёмы равны. Например, у двух одинаковых пакетов сока равные объемы.
  2. Если геометрическое тело состоит из нескольких геометрических тел, то его объём равен сумме объёмов этих тел.

Любое объемное тело имеет объем. Получается, при желании мы можем вычислить объем кружки, смартфона, вазы, кота — чего угодно.

Объем прямоугольного параллелепипеда

Давайте вспомним, какие виды параллелепипедов бывают.

Параллелепипедом называется призма, основаниями которой являются параллелограммы. Другими словами, параллелепипед — это многогранник с шестью гранями. Каждая грань которой называется параллелограмм.

Призма — это многогранник, в основаниях которого лежат равные многоугольники, а его боковые грани — это параллелограммы.

Какие бывают призмы:

Прямой параллелепипед — это параллелепипед, у которого боковые ребра перпендикулярны основанию.

Прямоугольным параллелепипедом называют параллелепипед, у которого основание — прямоугольник, а боковые ребра перпендикулярны основанию.

Формула объема прямоугольного параллелепипеда

Чтобы вычислить объем прямоугольного параллелепипеда, найдите произведение его длины, ширины и высоты:

V = a * b * h

Чтобы не запутаться в формулах, запоминайте табличку с условными обозначениями.

Источник

Прямоугольный параллелепипед. Что это такое?

О чем эта статья:

Определение параллелепипеда

Начнем с того, что узнаем, что такое параллелепипед.

Параллелепипедом называется призма, основаниями которой являются параллелограммы. Другими словами, параллелепипед — это многогранник с шестью гранями. Каждая грань — параллелограмм.

На рисунке два параллелограмма АВСD и A1B1C1D1. Основания параллелепипеда, расположены параллельно друг другу в плоскостях. А боковые ребра АA1, ВB1, CC1, DD1 параллельны друг другу. Образовавшаяся фигура — параллелепипед.

Внимательно рассмотрите, как выглядит параллелепипед и каковы его составляющие.

Когда пересекаются три пары параллельных плоскостей, образовывается параллелепипед.

Основанием параллелепипеда является, в зависимости от его типа: параллелограмм, прямоугольник, квадрат.

Параллелепипед — это:

Правильный параллелепипед на то и правильный, что два его измерения равны. Две грани такого правильного параллелепипеда — квадраты.

Чтобы запомнить все правила и определения, приходите заниматься математикой в онлайн-школу Skysmart. Ваш ребенок будет решать задачки в интерактивном формате и с заботливыми учителями, отслеживать прогресс в личном кабинете и гордиться своими успехами.

Свойства параллелепипеда

Быть параллелепипедом ー значит неотступно следовать законам геометрии. Иначе можно скатиться до простого параллелограмма.

Вот 4 свойства параллелепипеда, которые необходимо запомнить:

  1. Противолежащие грани параллелепипеда равны и параллельны друг другу.
  2. Все 4 диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.
  3. Параллелепипед симметричен относительно середины его диагонали.
  4. Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.

Прямой параллелепипед

Прямой параллелепипед — это параллелепипед, у которого боковые ребра перпендикулярны основанию.

Основание прямого параллелепипеда — параллелограмм. В прямом параллелепипеде боковые грани — прямоугольники.

Свойства прямого параллелепипеда:

  1. Основания прямого параллелепипеда — одинаковые параллелограммы, лежащие в параллельных плоскостях.
  2. Боковые ребра прямого параллелепипеда равны, параллельны и перпендикулярны плоскостям оснований.
  3. Высота прямого параллелепипеда равна длине бокового ребра.
  4. Противолежащие боковые грани прямого параллелепипеда — равные прямоугольники.
  5. Диагонали прямого параллелепипеда точкой пересечения делятся пополам.

На слух все достаточно занудно и сложно, но на деле все свойства просто описывают фигуру. Внимательно прочтите вслух каждое свойство, разглядывая рисунок параллелепипеда после каждого пункта. Все сразу встанет на места.

Формулы прямого параллелепипеда:

  • Площадь боковой поверхности прямого параллелепипеда
    Sб = Ро*h
    Ро — периметр основания
    h — высота
  • Площадь полной поверхности прямого параллелепипеда
    Sп = Sб+2Sо
    Sо — площадь основания
  • Объем прямого параллелепипеда
    V = Sо*h

Прямоугольный параллелепипед

Определение прямоугольного параллелепипеда:

Прямоугольным параллелепипедом называется параллелепипед, у которого основание — прямоугольник, а боковые ребра перпендикулярны основанию.

Внимательно рассмотрите, как выглядит прямоугольный параллелепипед. Отметьте разницу с прямым параллелепипедом.

Свойства прямоугольного параллелепипеда

Прямоугольный параллелепипед обладает всеми свойствами произвольного параллелепипеда.

  1. Прямоугольный параллелепипед содержит 6 граней. Все грани прямоугольного параллелепипеда — прямоугольники.
  2. Противолежащие грани параллелепипеда попарно параллельны и равны.
  3. Все углы прямоугольного параллелепипеда, состоящие из двух граней — 90°.
  4. Диагонали прямоугольного параллелепипеда равны.
  5. В прямоугольный параллелепипеде четыре диагонали, которые пересекаются в одной точке и делятся этой точкой пополам.
  6. Любая грань прямоугольного параллелепипеда может быть принята за основание.
  7. Если все ребра прямоугольного параллелепипеда равны, то такой параллелепипед является кубом.
  8. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений (длины, ширины, высоты).

Формулы прямоугольного параллелепипеда:

  • Объем прямоугольного параллелепипеда
    V = a · b · h
    a — длина, b — ширина, h — высота
  • Площадь боковой поверхности
    Sбок = Pосн·c=2(a+b)·c
    Pосн — периметр основания, с — боковое ребро
  • Площадь поверхности
    Sп.п = 2(ab+bc+ac)

Диагонали прямоугольного параллелепипеда: теорема

Не достаточно просто знать свойства прямоугольного параллелепипеда, нужно уметь их доказывать.

Если есть теорема, нужно ее доказать. (с) Пифагор

Теорема: Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.

В данном случае, три измерения — это длина, ширина, высота. Длина, ширина и высота — это длины трех ребер, исходящих из одной вершины прямоугольного параллелепипеда.

Дан прямоугольный параллелепипед ABCDA1B1C1D1. Доказать теорему.

Доказательство теоремы:

Чтобы найти диагональ прямоугольного параллелепипеда, помните, что диагональ — это отрезок, соединяющий противоположные вершины.

Все грани прямоугольного параллелепипеда — прямоугольники.

ΔABD: ∠BAD = 90°, по теореме Пифагора

ΔB₁BD: ∠B₁BD = 90°, по теореме Пифагора

d² = d₁² + c² = a² + b² + c²

d² = a² + b² + c²

Доказанная теорема — пространственная теорема Пифагора.

У нас есть отличные дополнительные онлайн занятия по математике для учеников с 1 по 11 классы, записывайся!

Куб: определение, свойства и формулы

Кубом называется прямоугольный параллелепипед, все три измерения которого равны.

Каждая грань куба — это квадрат.

Свойства куба:

  1. В кубе 6 граней, каждая грань куба — квадрат.
  2. Противолежащие грани параллельны друг другу.
  3. Все углы куба, образованные двумя гранями, равны 90°.
  4. У куба четыре диагонали, которые пересекаются в центре куба и делятся пополам.
  5. Диагонали куба равны.
  6. Диагональ куба в √3 раз больше его ребра.
  7. Диагональ грани куба в √2 раза больше длины ребра.

Помимо основных свойств, куб характеризуется умением вписывать в себя тетраэдр и правильный шестиугольник.

Формулы куба:

  • Объем куба через длину ребра a
    V = a3
  • Площадь поверхности куба
    S = 6a2
  • Периметр куба
    P = 12a

Решение задач

Чтобы считать тему прямоугольного параллелепипеда раскрытой, стоит потренироваться в решении задач. 10 класс — время настоящей геометрии для взрослых. Поэтому, чем больше практики, тем лучше. Разберем несколько примеров.

Задачка 1. Дан прямоугольный параллелепипед. Нужно найти сумму длин всех ребер параллелепипеда и площадь его поверхности.

Для наглядного решения обозначим измерения прямоугольного параллелепипеда: a — длина, b — ширина, c — высота. Тогда a = 10, b = 5, c = 8.

Так как в прямоугольном параллелепипеде всего по 4 — высота, ширина и длина, и все измерения равны между собой, то:
1) 4 * 10 = 40 (см) — сумма длин параллелепипеда;
2) 4 * 5 = 20 (см) — суммарное значение ширины параллелепипеда;
3) 4 * 8 = 32 (см) — сумма высот параллелепипеда;
4) 40 + 20 + 32 = 92 (см) — сумма длин всех ребер прямоугольного параллелепипеда.

Отсюда можно вывести формулу по нахождению суммы длин всех сторон ПП:
X = 4a + 4b + 4c (где X — сумма длин ребер).

Формула нахождения площади поверхности параллелепипеда Sп.п = 2(ab+bc+ac).
Тогда: S = (5*8 + 8*10 + 5*10) * 2 = 340 см2.

Задачка 2. Дан прямоугольный параллелепипед АВСDA1B1C1D1.

Нужно найти длину ребра A1B1.

В фокусе внимания треугольник BDD1.
Угол D = 90°. Против равных сторон лежат равные углы.

По теореме Пифагора:
BD1 2 = DD1 2 + BD 2
BD 2 = BD1 2 – DD1 2
BD 2 = 26 – 9 = 17
BD = √17
В треугольнике ADB угол А = 90°.
BD 2 = AD 2 + AB 2
AB 2 = BD 2 — AD 2 = (√17)2 — 4 2 = 1
A1B1 = AB.

Задачка 3. Дан прямоугольный параллелепипед АВСDA1B1C1D1.

AB = 4
AD = 6
AA1= 5
Нужно найти отрезок BD1.

В треугольнике ADB угол A = 90°.

По теореме Пифагора:
BD 2 = AB 2 +AD 2
BD 2 = 4 2 + 6 2 = 16 + 36 = 52
В треугольнике BDD1 угол D = 90°.
BD1 2 = 52 + 25 = 77.

Самопроверка

Теперь потренируйтесь самостоятельно — мы верим, что все получится!

Задачка 1. Дан прямоугольный параллелепипед. Измерения (длина, ширина, высота) = 8, 10, 20. Найдите диагональ параллелепипеда.

Подсказка: если нужно выяснить, чему равна диагональ прямоугольного параллелепипеда, вспоминайте теорему.

Задачка 2. Дан прямоугольный параллелепипед АВСDA1B1C1D1.

Вычислите длину ребра AA1.

Как видите, самое страшное в параллелепипеде — 14 букв в названии. Чтобы не перепутать прямой параллелепипед с прямоугольным, а ребро параллелепипеда с длиной диагонали параллелепипеда, вот список основных понятий:

  • прямой параллелепипед — это параллелепипед, у которого боковые ребра перпендикулярны основанию;
  • параллелепипед называется прямоугольным, когда его боковые ребра перпендикулярны к основанию;
  • основание прямоугольного параллелепипеда — прямоугольник;
  • три измерения прямоугольного параллелепипеда: длина, ширина, высота;
  • диагональ параллелепипеда равна сумме квадратов его измерений.

Решить задачку по геометрии — дело нехитрое, а вот почувствовать момент, когда уже не параллелограмм, но еще не параллелепипед, надо уметь. Всем тонкостям, премудростям и фишкам вашего ребенка обучат на уроках математики в онлайн-школе Skysmart.

Записывайтесь на бесплатный вводный урок и занимайтесь в удовольствие уже завтра.

Источник

Сравнить или измерить © 2021
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.