Меню

Назовите виды погрешностей возникающих при измерениях



Виды погрешностей и причины их возникновения

Качество измерений характеризуется: точностью, достоверностью, правильностью, сходимостью и воспроизводимостью измерений. Точность измерительного прибора это — метрологическая характеристика прибора, определяемая погрешностью измерения, в пределах которой можно обеспечить использование данного измерительного прибора.

Класс точности характеризует свойства средства измерения, но не является показателем точности выполненных измерений, поскольку при определении погрешности измерения необходимо учитывать погрешности метода, настройки и др.

В зависимости от точности приборы разделяются на классы: первый, второй и т.д. Допускаемые погрешности для разных типов приборов регламентируются государственными стандартами. Точность — это качество измерений, отражающее близость их результатов к истинному значению измеряемой величины. Количественная оценка точности — обратная величина модуля относительной погрешности. Например, если погрешность измерений равна 10 в степени минус 6, то точность равна 10 в степени плюс 6.

Точность измерения зависит от погрешностей возникающих в процессе их проведения.

Абсолютная погрешность измерения — разность между значением величины, полученным при измерении, и ее истинным значением, выражаемая в единицах измеряемой величины.

Относительная погрешность измерения — отношение абсолютной погрешности, измерения к истинному значению измеряемой величины.

Систематическая погрешность измерения — составляющая погрешности измерения, остающаяся постоянной или изменяющаяся по определенному закону при повторных измерениях одной и той же величины. Систематическая погрешность может быть исключена с помощью поправки.

Случайная погрешность — составляющая погрешности измерения, изменяющаяся при повторных измерениях одной и той же величины случайным образом.

Грубая погрешность измерения — погрешность, значение которой существенно выше ожидаемой.

В зависимости от последовательности причины возникновения различают следующие виды погрешностей.

Инструментальная погрешность — составляющая погрешности измерения, зависящая от погрешностей применяемых средств. Эти погрешности определяются качеством изготовлении самих измерительных приборов.

Погрешность метода измерения — составляющая погрешности измерения, вызванная несовершенством метода измерений.

Погрешность настройки — составляющая погрешности измерения, возникающая из-за несовер-шенства осуществления процесса настройки.

Погрешность отсчёта — составляющая погрешности измерения, вызванная недостаточно точным считыванием показаний средств измерений. Погрешность возникает из-за видимого изменения относительных положений отметок шкалы вследствие перемещения глаза наблюдателя — погрешность параллакса.

Погрешность поверки — составляющая погрешности измерений, являющаяся следствием несовер-шенства поверки средств измерений. Погрешности от измерительного усилия действуют в случае контактных измерительных приборов. При оценке влияния измерительного усилия на погрешность измерения, необходимо выделить упругие деформации установочного узла и деформации в зоне контакта измерительного наконечника с деталью.

4. Основные ветви ГСП. Нормирование характеристик средств измерения и автоматизации.

По виду энергии носителя сигналов в канале связи, применяемых для приема, выдачи и обмена информации, предусматриваются три основные ветви устройств ГСП: электрическая, пневматическая и гидравлическая. В некоторых случаях оказывается эффективным применение комбинированных устройств, использующих различные виды энергии. При этом, например, для получения, передачи и обработки информации могут применяться электрические приборы, а для воздействия на процесс — пневматические и гидравлические устройства.
Наиболее универсальной является электрическая ветвь, приборы и устройства которой обладают высокой чувствительностью, точностью, быстродействием, обеспечивают дальность связей, большую емкость каналов передачи информации и т. п. Кроме того, применение устройств электрической ветви обеспечивает возможность их непосредственной связи с управляющими вычислительными машинами в АСУТП. Электрическая ветвь, в свою очередь, подразделяется на электрическую аналоговую ветвь, в которой вырабатывается, передается и используется информация о непрерывных значениях контролируемых величин, и электрическую дискретную ветвь, в которой источником информации служат дискретные значения контролируемых величин.
Пневматическая ветвь характеризуется безопасностью в легковоспламеняющихся и взрывоопасных средах, высокой надежностью в тяжелых условиях работы и в агрессивных средах. Однако устройства пневматической ветви уступают электрическим в случаях, когда требуется значительное быстродействие и передача сигналов на большие расстояния.
Гидравлические устройства позволяют развивать значительные усилия.
Электрическая аналоговая ветвь ГСП. В электрических приборах и устройствах ГСП в качестве энергии питания используется электрическая энергия, а входные и выходные сигналы являются непрерывными электрическими сигналами.
В электрической аналоговой ветви ГСП пределы изменения токовых сигналов постоянного тока выбираются из следующих значений: 0—5, 0—20, 0—100 мА; пределы изменения сигналов напряжения постоянного тока: 0—10, 0—20, 0—50, 0—100 мВ; 0—1, 0—10 В.
Входное сопротивление приборов и устройств с входными сигналами постоянного тока не должно превышать 500 Ом для сигналов 0—5 мА, 200 Ом для сигналов 0—20 мА и 150 Ом для сигналов 0—100 мА; для сигналов 0—10 В —больше или равно 10 кОм.
В то же время приборы и устройства этой ветви должны обеспечить возможность подключения нагрузки (сопротивления приборов и линии связи) в следующих пределах: для сигналов 0_5 мА —до 2,5 кОм; 0—20 мА —до 1000 Ом; 0—100 мА — 250 Ом; 0—10 В —от 2 кОм и выше.

Читайте также:  Токовое зеркало для измерения тока

Под нормированием понимается установление границ на допустимые отклонения реальных метрологических характеристик средств измерений от их номинальных значений. Только посредством нормирования метрологических характеристик можно добиться их взаимозаменяемости и обеспечить единство измерений в государстве. Реальные значения метрологических характеристик определяют при изготовлении средств измерений и затем проверяют периодически во время эксплуатации. Если при этом хотя бы одна из метрологических характеристик выходит за установленные границы, то такое средство измерений либо подвергают регулировке, либо изымают из обращения [11].

Нормы на значения метрологических характеристик устанавливаются стандартами на отдельные виды средств измерения. При этом делается различие между нормальными и рабочими условиями применения средств измерения.

Нормальными считаются такие условия применения средств измерений, при которых влияющие на процесс измерения величины (температура, влажность, частота, напряжение питания, внешние магнитные поля и т.д.), а также неинформативные параметры входных и выходных сигналов находятся в нормальной для данных средств измерений области значений, т.е. в такой области, где их влиянием на метрологические характеристики можно пренебречь. Нормальные области значений влияющих величин указываются в стандартах или технических условиях на средства измерений данного вида в форме номиналов с нормированными отклонениями, например, температура должна составлять 20±2°С, напряжение питания – 220 В±10% или в форме интервалов значений (влажность 30 – 80 %).

Рабочая область значений влияющих величин шире нормальной области значений. В ее пределах метрологические характеристики существенно зависят от влияющих величин, однако их изменения нормируются стандартами на средства измерений в форме функций влияния или наибольших допустимых изменений. За пределами рабочей области метрологические характеристики принимают неопределенные значения.

Для нормальных условий эксплуатации средств измерений должны нормироваться характеристики суммарной погрешности и ее систематической и случайной составляющих. Суммарная погрешность средств измерений в нормальных условиях эксплуатации называется основной погрешностью и нормируется заданием предела допускаемого значения , т.е. того наибольшего значения, при котором средство измерений еще может быть признано годным к применению.

Перечисленные выше метрологические характеристики следует нормировать не только для нормальной, но и для всей рабочей области эксплуатации средств измерений, если их колебания, вызванные изменениями внешних влияющих величин и неинформативных параметров входного сигнала в пределах рабочей области, существенно меньше номинальных значений. В противном случае эти характеристики нормируются только для нормальной области, а в рабочей области нормируются дополнительные погрешности путем задания функций влияния или наибольших допустимых изменений раздельно для каждого влияющего фактора; в случае необходимости – и для совместного изменения нескольких факторов. Функции влияния нормируются формулой, числом, таблицей или задаются в виде номинальной функции влияния и предела допускаемых отклонений от нее.

Измерение температур. Основные понятия при измерении температур (шкалы, МПТШ).

Температурой называется степень нагретости вещества. Это представление о температуре основано на теплообмене между двумя телами, находящимися в тепло­вом контакте. Тело, более нагретое, отдающее тепло, имеет и более высокую температуру, чем тело, восприни­мающее тепло. При отсутствии передачи тепла от одного тела к другому, т. е. в состоянии теплового равновесия, температуры тел равны.

Источник

Виды погрешностей измерений

Погрешность классификации обусловлена несоответствием реального (исследуемого) объекта или процесса приписанной ему модели. Например, измеряя диаметр детали, предполагаем, что она представляет собой идеальный цилиндр. Такая идеализация неизбежна при несоответствии между параметром модели (в данном случае диаметр) и реальным свойством объекта (поверхность реальной детали имеет отклонения от цилиндричности как в по­перечном, так и в продольном сечении). Это несоответствие называют порого­вым. Чтобы измерение было возможным, погрешность, обусловленная поро­говым несоответствием, должна быть меньше полной погрешности измерения.

Погрешность метода возникает вследствие недостаточной разра­ботанности теории тех явлений, которые положены в основу измерения, и тех соотношений, которые используются для оценки измеряемой величины.

Читайте также:  Силу архимеда можно измерить для этого

Алгоритмическая погрешность зависит от степени соответ­ствия алгоритма измерения математическому определению измеряемой характеристики (чаще всего это относится к измерению параметров случайных про­цессов).

Аппаратурная погрешность обусловлена несовершенством средств измерений, их схемного решения, недостаточной точностью реализации принятого алгоритма измерений.

Внешние погрешности возникают при действии различных фак­торов, внешних по отношению к средству измерения. К ним часто относят ошибки экспериментатора при настройке средства измерения и при снятии по­казаний.

Различают систематические и случайные погрешности.

Систематическая погрешность — составляющая погрешности измерения, которая остается постоянной или закономерно изменяется при пов­торных измерениях одной и той же величины.

Обнаруженная и оцененная систематическая погрешность исключается из результата измерения путем введения поправки. Однако полностью устранить таким образом систематическую погрешность невозможно.

Случайная погрешность — индивидуально непредсказуемая со­ставляющая погрешности измерения, характеристики и закономерности изме­нения которой проявляются лишь на значительном числе результатов изме­рения.

Качество измерений, отражающее близость к нулю систематической погреш­ности результатов измерений, называют правильностью измерений.

Качество измерений, отражающее близость результатов измерений, выполненных в од­них и тех же условиях, называется сходимостью. Хорошая сходимость изме­рения свидетельствует о малости случайных погрешностей.

Качество измере­ний, отражающее близость результатов измерений, выполняемых в различных условиях (в различное время, в различных местах, различными средствами), называют воспроизводимостью измерений.

Возможны также грубые погрешности и промахи.

Грубая погреш­ность— погрешность, существенно превышающая уровень, оправданный усло­виями измерения, свойствами применяемых средств измерений и квалифика­цией экспериментатора. Такие погрешности могут возникать, например, вслед­ствие резкого кратковременного изменения напряжения в сети питания. Гру­бые погрешности измерения обнаруживают статистическими методами и ис­ключают из рассмотрения.

Промахи — следствие неправильных действий экспериментатора, напри­мер, описка при записи результатов наблюдений» неправильно снятые показа­ния прибора и т. д. Промахи обнаруживаются нестатистическими методами, и их следует всегда исключать из рассмотрения.

Абсолютная погрешность — это разность результата измерения величины X и ее истинного значения Хи, выраженных в одинаковых единицах: ΔХ=Х—Хи

Однако, поскольку истинное значение измеряемой величины оста­ется неизвестным, на практике можно дать лишь приближенную оценку по­грешности измерения.

Относительная погрешность — отношение абсолютной погреш­ности измерения к истинному значению измеряемой величины:

Приведенная погрешность относится не к конкретному значе­нию измеряемой величины, а к максимально возможному в данном исследо­вании или к максимальному значению шкалы прибора:

Относительная и приведенная погрешности обычно выражаются в процентах.

Источник

Виды погрешностей

Выделяют следующие виды погрешностей:

Абсолютная погрешность – это значение, вычисляемое как разность между значением величины, полученным в процессе измерений, и настоящим (действительным) значением данной величины.

Абсолютная погрешность меры – это значение, вычисляемое как разность между числом, являющимся номинальным значением меры, и настоящим (действительным) значением воспроизводимой мерой величины.

Относительная погрешность – это число, отражающее степень точности измерения.

Приведенная погрешность – это значение, вычисляемое как отношение значения абсолютной погрешности к нормирующему значению.

Инструментальная погрешность – это погрешность, возникающая из-за допущенных в процессе изготовления функциональных частей средств измерения ошибок.

Методическая погрешность – это погрешность, возникающая по следующим причинам:

  1. неточность построения модели физического процесса, на котором базируется средство измерения;
  2. неверное применение средств измерений.

Субъективная погрешность – это погрешность возникающая из-за низкой степени квалификации оператора средства измерений, а также из-за погрешности зрительных органов человека, т. е. причиной возникновения субъективной погрешности является человеческий фактор.

Статическая погрешность – это погрешность, которая возникает в процессе измерения постоянной (не изменяющейся во времени) величины.

Динамическая погрешность – это погрешность, численное значение которой вычисляется как разность между погрешностью, возникающей при измерении непостоянной (переменной во времени) величины, и статической погрешностью (погрешностью значения измеряемой величины в определенный момент времени).

Аддитивная погрешность – это погрешность, возникающая по причине суммирования численных значений и не зависящая от значения измеряемой величины, взятого по модулю (абсолютного).

Мультипликативная погрешность – это погрешность, изменяющаяся вместе с изменением значений величины, подвергающейся измерениям.

Систематическая погрешность – это составная часть всей погрешности результата измерения, не изменяющаяся или изменяющаяся закономерно при многократных измерениях одной и той же величины.

Случайная погрешность – это составная часть погрешности результата измерения, изменяющаяся случайно, незакономерно при проведении повторных измерений одной и той же величины.

Читайте также:  Как тестером измерить напряжение сети

Источник

Виды погрешностей. Погрешность измерений. Виды погрешностей

Погрешность измерений. Виды погрешностей.

В практике использования измерений очень важным показателем становится их точность, которая представляет собой ту степень близости итогов измерения к некоторому действительному значению, которая используется для качественного сравнения измерительных операций. А в качестве количественной оценки, как правило, используется погрешность измерений.

Разница между результатом измерения и истинным значением измеряемой величины называется погрешностью измерения.

Причем чем погрешность меньше, тем считается выше точность.

Согласно закону теории погрешностей, если необходимо повысить точность результата (при исключенной систематической погрешности) в 2 раза, то число измерений необходимо увеличить в 4 раза; если требуется увеличить точность в 3 раза, то число измерений увеличивают в 9 раз и т. д.

Процесс оценки погрешности измерений считается одним из важнейших мероприятий в вопросе обеспечения единства измерений. Естественно, что факторов, оказывающих влияние на точность измерения, существует огромное множество. Следовательно, любая классификация погрешностей измерения достаточно условна, поскольку нередко в зависимости от условий измерительного процесса погрешности могут проявляться в различных группах.

Выделяют следующие виды погрешностей:

1) абсолютная погрешность;

2) относительна погрешность;

3) приведенная погрешность;

4) основная погрешность;

5) дополнительная погрешность;

6) систематическая погрешность;

7) случайная погрешность;

8) инструментальная погрешность;

9) методическая погрешность;

10) личная погрешность;

11) статическая погрешность;

12) динамическая погрешность.

Абсолютная погрешность – это значение, вычисляемое как разность между значением величины, полученным в процессе измерений, и настоящим (действительным) значением данной величины.

Абсолютная погрешность вычисляется по следующей формуле:

где AQn – абсолютная погрешность;

Qn – значение некой величины, полученное в процессе измерения;

Q – значение той же самой величины, принятое за базу сравнения (настоящее значение).

Относительная погрешность – это число, отражающее степень точности измерения.

Относительная погрешность вычисляется по следующей формуле:

где ΔQ – абсолютная погрешность;

Q – настоящее (действительное) значение измеряемой величины.

Относительная погрешность выражается в процентах.

Приведенная погрешность – это значение, вычисляемое как отношение значения абсолютной погрешности к нормирующему значению.

Инструментальная погрешность – это погрешность, возникающая из—за допущенных в процессе изготовления функциональных частей средств измерения ошибок.

Методическая погрешность – это погрешность, возникающая по следующим причинам:

1) неточность построения модели физического процесса, на котором базируется средство измерения;

2) неверное применение средств измерений.

Субъективная погрешность – это погрешность возникающая из-за низкой степени квалификации оператора средства измерений, а также из-за погрешности зрительных органов человека, т. е. причиной возникновения субъективной погрешности является человеческий фактор.

Погрешности по взаимодействию изменений во времени и входной величины делятся на статические и динамические погрешности.

Неточность градуировки, конструктивные несовершенства, изменения характеристик прибора в процессе эксплуатации и т. д. являются причинами основных погрешностей инструмента измерения.

Дополнительные погрешности, связанные с отклонением условий, в которых работает прибор, от нормальных, отличают от инструментальных (ГОСТ 8.009-84), т. к. они связаны скорее с внешними условиями, чем с самим прибором.

Систематическая погрешность – это составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же величины. Причинами появления систематической погрешности могут являться неисправности средств измерений, несовершенство метода измерений, неправильная установка измерительных приборов, отступление от нормальных условий их работы, особенности самого оператора.

Статическая погрешность – это погрешность, которая возникает в процессе измерения постоянной (не изменяющейся во времени) величины.

Динамическая погрешность – это погрешность, численное значение которой вычисляется как разность между погрешностью, возникающей при измерении непостоянной (переменной во времени) величины, и статической погрешностью (погрешностью значения измеряемой величины в определенный момент времени).

Случайная погрешность – это составная часть погрешности результата измерения, изменяющаяся случайно, незакономерно при проведении повторных измерений одной и той же величины. Появление случайной погрешности нельзя предвидеть и предугадать. Случайную погрешность невозможно полностью устранить, она всегда в некоторой степени искажает конечные результаты измерений. Но можно сделать результат измерения более точным за счет проведения повторных измерений.

Причиной случайной погрешности может стать, например, случайное изменение внешних факторов, воздействующих на процесс измерения. Случайная погрешность при проведении многократных измерений с достаточно большой степенью точности приводит к рассеянию результатов.

Источник