Меню

Офтальмология измерения полей зрения



ПЕРИМЕТРИЯ

Периметрия (греч. peri вокруг, около + metreo мерить, измерять) — метод исследования поля зрения (пространства, одновременно воспринимаемого глазом при неподвижном взоре и фиксированном положении головы) с помощью специальных приборов — периметров. Сущность метода заключается в том, что поле зрения (см.) исследуемого глаза определяется в проекции на вогнутую сферическую поверхность (дугу или полусферу), концентричную поверхности сетчатки, путем предъявления пациенту тест-объекта заданного размера, яркости и цвета в различных точках дуги (полусферы) и определения его положения относительно зрительной оси глаза. При Периметрии устраняется грубое искажение границ поля зрения, неизбежное при проекции его на плоскость (см. Кампиметрия).

Периметрия известна со времен Гиппократа (4 в. до н. э.). Основателем клинической Периметрии считают Я. Пуркинье (1825). Он впервые применил дугу для исследования поля зрения и показал клин, ценность П. при глазных и неврологических заболеваниях. Ауберт и Ферстер (H. Aubert, R. Forster, 1857) усовершенствовали методику Пуркинье и разработали основные принципы клинической Периметрии. Особенное развитие Периметрия и аппаратура для ее проведения получили с начала 19 в. Современные методы Периметрии имеют большое значение для диагностики и прогнозирования ряда заболеваний зрительного анализатора и головного мозга.

Периметрию применяют при заболеваниях, сопровождающихся изменением границ поля зрения или очаговыми выпадениями внутри этих границ — скотомами (см. Скотома). К таким заболеваниям относятся глаукома, пигментная дистрофия сетчатки, неврит и атрофия зрительного нерва, тромбоз центральной вены сетчатки, а также различные поражения головного мозга: опухоль, арахноидит, нарушение кровообращения.

Существует два основных способа П.: кинетическая П. с применением подвижного тест-объекта и статическая П., при которой тест-объект неподвижен .

Кинетическая периметрия

Различают следующие виды кинетической периметрии: Периметрия с использованием белого тест-объекта, цветовая, топографическая, объективная, офтальмоскопическая Периметрия.

Периметрия с использованием белого тест-объекта наиболее распространена в клин, практике в СССР и за рубежом. Исследование проводят поочередно для каждого глаза (второй глаз закрывают легкой повязкой). Исследуемый должен удобно расположиться у периметра, установив подбородок на специальной подставке прибора так, чтобы исследуемый глаз находился против фиксационной точки, расположенной в середине дуги периметра. Глядя на фиксационную точку, исследуемый должен отметить момент, когда он заметит появление в поле зрения движущегося тест-объекта. Это положение тест-объекта на дуге соответствует точке сетчатки, где чувствительность ее является пороговой по отношению к тест-объекту, оно отмечается на схеме поля зрения. Движение тест-объекта необходимо продолжать до точки фиксации, чтобы убедиться в сохранности поля зрения на протяжении всего меридиана. Поворачивая дугу периметра, проводят исследование по меридианам через 15°, 30° или 45°. При исследовании лиц с достаточно высокой остротой зрения применяют тест-объект диам. 3 мм. Для выявления мелких дефектов и незначительных сужений поля зрения П. проводят с помощью тест-объекта диам. 1 мм.

Цветовая периметрия проводится аналогично П. с помощью белого тест-объекта, но в отличие от нее применяют тест-объекты синего, красного и зеленого цветов диам. 5 или 10 мм; при этом отмечается момент правильного различия исследуемым цвета предъявляемого объекта. Для исключения врожденной аномалии цветоощущения перед проведением цветовой П. необходимо исследовать пациентов с помощью полихроматических таблиц Е. Б. Рабкина (см. Цветовое зрение).

Топографическая периметрия (изоптопериметрия) проводится с помощью нескольких тест-объектов различной величины и яркости. В результате исследования получают соответственно несколько изоптер — линий, соединяющих на схеме поля зрения точки, к-рые соответствуют точкам сетчатки с одинаковой световой чувствительностью. Этот вид П. позволяет детально исследовать поле зрения и применяется для точной диагностики заболеваний зрительного анализатора. Для исследования пространственной суммации в поле зрения используют два разновеликих объекта, к-рые так подравниваются светофильтрами, что количество отраженного ими света становится одинаковым. В норме изоптеры, полученные при исследовании с помощью этих двух объектов, совпадают, при патологии — расходятся.

Объективная периметрия основана на определении границ поля зрения с помощью пупиллографии (см. Пупиллография), регистрирующей зрачковые реакции исследуемого, или энцефалографии (см.) путем оценки альфа-ритмов ЭЭГ.

Офтальмоскопическая периметрия проводится с помощью офтальмоскопа (см. Офтальмоскопия), регистрирует грубую проекцию света на сетчатку исследуемого и применяется с целью определения степени сохранности поля зрения и целесообразности оперативного лечения при помутнении оптических сред глаза (напр., бельмо, катаракта и др.).

Статическая (квантитативная, количественная) периметрия

Статическая (квантитативная, количественная) периметрия проводится с использованием неподвижного тест-объекта, который предъявляется исследуемому в заранее заданных точках дуги или полусферы периметра. Яркость тест-объекта постепенно увеличивается от субпороговой до пороговой, при которой он становится различим пациентом. Метод высоко информативен.

Условия для проведения периметрии. Кинетическая и статическая П. проводятся в условиях адаптации к различным уровням освещенности дуги (адаптопериметрия): к фотопическому («дневному»), скотопическому («ночному») и мезопическому (промежуточному) уровням. Уровень освещенности влияет на световую чувствительность фоторецепторов сетчатки (колбочек и палочек). Так, при фотопической освещенности наиболее чувствительны к свету колбочки, расположенные гл. обр. в центральной зоне сетчатки. П. при этом уровне освещенности позволяет выявить дефекты в центральных отделах поля зрения. При скотопической освещенности наиболее выгодно исследовать периферические отделы сетчатки, где в этих условиях наиболее высока чувствительность палочек. Практически П. предпочтительнее проводить при мезопической освещенности, т. е. в условиях одновременного функционирования палочек и колбочек. Цветовую П. необходимо проводить при фотопической освещенности, т. к. в этих условиях наиболее активен колбочковый аппарат, обеспечивающий цветовое зрение.

Читайте также:  Приложение для измерения цветовой температуры

При проведении Периметрии большое значение имеет психол, подготовка исследуемого. Перед П. пациенту необходимо объяснить задачи и условия исследования. Побочные раздражители (свет, шум) должны быть устранены. Для сравнения данных П., полученных разными исследователями или в динамике заболевания, важно, чтобы П. проводилась в строго идентичных условиях. На регистрационном периметрическом бланке (рис. 1) должны отмечаться фамилия, имя, отчество пациента, дата исследования, размер, яркость и цвет тест-объекта, освещенность дуги (полусферы) периметра, ширина зрачка исследуемого.

Периметры

Периметры — приборы для исследования поля зрения, основной частью которых является дуга, вращающаяся вокруг горизонтальной оси, или полусфера. Дуга окрашена в серый матовый цвет, имеет радиус 333 мм (в периметре-локализаторе — 150 мм), на наружной поверхности ее нанесены деления от 0° до 90° в обе стороны от середины. В середине дуги имеется фиксационная точка. Исследование проводят с помощью тест-объектов: отражающих и самосветящихся. Отражающие тест-объекты представляют собой световое пятно, получаемое с помощью специального проектора, или кружки из бумаги, эмали (белые и цветные) диам. 1, 3, 5, 10 мм, укрепленные на тонких стержнях-держателях, к-рые перемещают вручную вдоль дуги. Самосветящиеся тест-объекты выполнены в виде источников света, закрытых цветными или нейтральными светофильтрами или диафрагмами.

Один из первых периметров был разработан Ферстером (R. Forster). В СССР применяются следующие модели периметров: периметр-локализатор ЛВ (по Водовозову), настольный периметр (ПНР-2-01), проекционный периметр (ПРП-60), а также сферические периметры, выпускаемые за рубежом.

Периметр-локализатор ЛВ — портативный ручной прибор, имеющий дугу и набор пигментных тест-объектов. С помощью этого периметра исследуют поле зрения у больных, находящихся на постельном режиме, определяют локализацию внутриглазных инородных тел или изменений на глазном дне (напр., разрывов сетчатки).

Настольный периметр состоит из основания, дуги с регистрирующим устройством, опоры для подбородка. Границы поля зрения исследуют с помощью тест-объектов и отмечают их на схеме поля зрения, закрепленной в регистрирующем устройстве (рис. 2).

Достоинством описанных периметров является простота в обращении; недостатком — непостоянство освещения дуги и тест-объектов, невозможность контроля за фиксацией исследуемого глаза. Исследования с помощью этих периметров носят ориентировочный характер.

Значительно больший объем информации о поле зрения получают с помощью проекционных периметров, в которых световой тест-объект проецируется на внутреннюю поверхность дуги или полусферы. Набор диафрагм и светофильтров, вмонтированных на пути светового потока, позволяет дозированно изменять величину, яркость и цвет объектов, что дает возможность проводить не только качественную, но и количественную (квантитативную) П.

Проекционный периметр был впервые предложен в 1924 г. Маджоре (Maggiore). В СССР применяется проекционный периметр — ПРП-60 (рис. 3). В середине дуги расположена самосветящаяся фиксационная точка красного цвета диаметром 1 мм. Тест-объекты в виде светового пятна проецируются на дугу с помощью проектора. Перемещение тест-объектов по дуге периметра осуществляется поворотом зеркала, укрепленного в подвижной головке проектора, приводимой во вращение специальным барабаном посредством гибкого троса. Границы поля зрения наносятся на схему, укрепленную в регистрирующем устройстве. Этот периметр удобен, но неоднородность освещения видимого фона не гарантирует достаточной точности исследования.

Указанный недостаток устранен в конструкции сферических периметров. Один из видов сферических периметров — периметр Гольдманна (рис. 4) представляет собой вогнутую полусферу радиусом 333 мм, в центре которой расположена подставка, позволяющая установить голову исследуемого так, чтобы глаз его находился в центре полусферы. Внутренняя поверхность полусферы окрашена белой матовой краской и равномерно освещается лампой. Тест-объекты в виде светового пятна получают с помощью проектора и набора сменных светофильтров и диафрагм. Перемещение тест-объектов осуществляется поворотом зеркала проекционной системы и всего проектора вокруг вертикальных осей. Наблюдение за положением исследуемого глаза производится через отверстие фиксационной точки, расположенной в вершине полусферы, с помощью специальной оптической трубки.

За рубежом применяют анализатор поля зрения Фридмана, позволяющий выявлять наиболее типичные дефекты в центральной части поля зрения. Исследование проводят путем предъявления исследуемому на короткое время (сотые доли сек.) световых тест-объектов определенной яркости в различных участках поля зрения. Количество и местоположение увиденных тест-объектов позволяет судить о поле зрения пациента.

В наиболее совершенных моделях современных периметров используются достижения автоматики и электроники: ЭВМ, программные и телевизионные устройства, что позволяет задавать различные программы исследования и автоматически регистрировать результаты.

Библиография: Маринчев В. Н. и Тарутта Е. П. Влияние ширины зрачка, рефракции и аккомодации на результаты периметрии, в кн.: Актуальн. вопр, диагн., клин, и леч. глауком, под ред. A. М. Сазонова и др., с. 43, М., 1979; Миткох Д. И. и Носкова А. Д. Методы и приборы исследования поля зрения, М., 1975; Многотомное руководство по глазным болезням, под ред. В. Н. Архангельского, т. 1, кн. 2, с. 118 и др., М., 1962; Новохатский А. С. Клиническая периметрия, М., 1973; Der Augenarzt, hrsg. v. K. Velhagen, Bd 2, S. 361 u. a., Lpz., 1972; Harrington D. O. The visual fields, St Louis, 1976; Miles P. W. Testing visual fields by flicker fusion, Arch. Neurol. Psychiat., v. 65, p. 39, 1951; Purkinje J. E. Beobachtungen und Versuche zur Physiologie der Sinne, B., 1825; Traquair H. M. Clinical perimetry, St Louis, 1949.

Читайте также:  Реактивная мощность единица измерения гост

B. H. Маринчев; А. Д. Носкова (техн.).

Источник

Определение полей зрения

Успешность человека напрямую зависит от того, насколько быстро он ориентируется в пространстве и времени. Залогом этого является, в том числе, и острота зрения. Технический прогресс и стремительный современный темп жизни может стать причиной ухудшения зрения в достаточно молодом возрасте. На страже этого стоит мировая офтальмология. Профилактическая диагностика включает огромный спектр процедур, позволяющий следить за здоровьем глаз.

Одной из таких процедур является периметрия — исследование границ поля зрения (периферического зрения), показатели которого помогают офтальмологам диагностировать болезни глаз, в частности, глаукому или атрофию зрительного нерва. Для измерения необходимых параметров в арсенале медиков имеется современное диагностическое оборудование, обследование на котором проходит безболезненно и без соприкосновения с поверхностью глаз, что снижает риски воспаления.

В случае возникновения каких-либо проблем рекомендуется, не откладывая проконсультироваться с врачом, а также не пренебрегать ежегодными профилактическими обследованиями.

Понятие границ поля зрения

Периферическое зрение наделяет человека способностью увидеть и распознать определенный объем окружающих его объектов. Для проверки его качества офтальмологи используют методику исследования границ поля зрения, которая носит название периметрия. Под границами полей зрения в медицине подразумевается видимое пространство, которое способен распознать неподвижный глаз. Иными словами, это обзор, который доступен при условии, что взгляд пациента устремлен в одну точку.

Качество подобной зрительной способности находится в прямой зависимости от объема присутствующих в пространстве точек, которые охватывает находящийся в неподвижном состоянии глаз. Наличие определенных отклонений в показателе, полученном во время периметрии, дает основание врачу заподозрить то или иное заболевание глаз.

В частности, определение границ поля зрения необходимо для того, чтобы выяснить, в каком состоянии находятся сетчатка или зрительный нерв. Также подобная процедура незаменима для выявления патологий и диагностики офтальмологических заболеваний, таких как глаукома, и назначения эффективного лечения.

Показания к проведению процедуры

В медицинской практике существует ряд показаний, при которых необходимо назначать периметрию. Так, например, нарушение полей зрения может быть вызвано следующими причинами:

  1. Дистрофией сетчатки, в частности ее отслоением.
  2. Кровоизлияниями в сетчатку.
  3. Онкологическими образованиями на сетчатке.
  4. Травмами зрительного нерва.
  5. Ожогами или травмами глаз.
  6. Наличием определенных офтальмологических заболеваний.

В частности, периметрия позволяет диагностировать глаукому с последующим исследованием и уточнением этого диагноза или установить заболевания, связанные с повреждением макулы.

В некоторых случаях информация о данных периметрии требуется при устройстве на работу. С ее помощью проверяется наличие повышенной внимательности у сотрудника. Кроме этого, используя данный метод исследования, можно диагностировать черепно-мозговые травмы, хроническую гипертонию, а также инсульты, ишемическую болезнь и невриты.

Наконец, определение поля зрения помогает выявлению симуляционных настроений у пациентов.

Противопоказания к периметрии

В некоторых случаях применение периметрической диагностики противопоказано. В частности, эту методику не применяют в случае агрессивного поведения пациентов или наличия у них психического расстройства. К искажению результатов приводит не только пребывания пациентов в состоянии алкогольного или наркотического опьянения, но употребление даже минимальных доз спиртосодержащих напитков. Противопоказаниями к определению остроты периферического зрения является также умственная отсталость пациентов, которая не позволяет выполнять указания врача.

При необходимости подобной диагностики в этих случаях медики рекомендуют прибегнуть к альтернативным способам обследования.

Методы диагностики

Для проведения периметрии в офтальмологической практике используется несколько типов приборов, которые носят название периметр. С их помощью медики отслеживают границы поля зрения по специально разработанным методикам.

Ниже приведены следующие основные типы процедуры. Все они являются безболезненными и неинвазивными, а также не требуют от пациента никакой предварительной подготовки.

Кинетическая периметрия

Это процедура, позволяющая оценить зависимость поля зрения от величины и цветовой насыщенности объекта, который перемещается. Этот тест подразумевает обязательное наличие в перемещающемся по заранее заданным траекториям объекте яркого светового стимула. В процессе обследования фиксируются точки, которые вызывают определенную реакцию глаз. Они заносятся в бланк периметрического исследования. Их соединение по итогам мероприятия дает возможность выявить траекторию границ поля зрения. При проведении кинетической периметрии применяются современные проекционные периметры с высокой точностью измерения. С их помощью осуществляется диагностика ряда офтальмологических патологий. Кроме офтальмологических отклонений подобный метод исследования дает возможность обнаружить и некоторые патологии в работе ЦНС.

Статическая периметрия

В ходе статической периметрии осуществляется наблюдение за неким неподвижным объектом с фиксированием его в ряде участков поля зрения. Этот метод диагностики позволяет установить чувствительность зрения к изменениям интенсивности отображения картинки, а также пригоден для скрининговых исследований. Кроме того, с его помощью можно определить начальные изменения в сетчатке. В качестве основного оборудования применяется автоматический компьютерный периметр, дающий возможность проводить исследование всего поля зрения или отдельных его участков. С помощью подобного оборудования проводится пороговое или надпороговое периметрическое исследование. Первое из них позволяет получить качественную оценку чувствительности сетчатки к свету, а второе — зафиксировать качественные изменения поля зрения. Эти показатели нацелены на диагностику целого ряда офтальмологических заболеваний.

Читайте также:  Как называется медицинский прибор для измерения давления

Кампиметрия

Под кампиметрией подразумевается оценка центрального поля зрения. Это исследование проводится путем фиксации глаз на объектах белого цвета, которые двигаются по черному матовому экрану — кампиметру — от центра к периферии. Врач отмечает точки, где объекты временно выпадают из поля зрения пациента.

Тест Амспера

Еще один достаточно простой метод оценки центрального поля зрения — тест Амспера. Также он известен под названием «тест для выявления макулярной дистрофии сетчатки». Во время диагностики врач изучает реакцию глаз в случае, когда взгляд устремлен на объект, размещенный в центре решетки. В норма все линии решетки должны казаться пациенту абсолютно ровными, а образующиеся пересечением линий углы — прямыми. В том случае, если пациент видит изображение искаженным, а некоторые участки искривленными или затуманенными, это свидетельствует о присутствии патологии.

Тест Дондерса

Тест Дондерса позволяет очень просто, без применения каких-либо приборов, определить ориентировочные границы поля зрения. При его проведении взгляд фиксируется на объекте, который начинают перемещать с периферии к центру меридиана. В этом тесте наряду с пациентом задействован и офтальмолог, поле зрения которого считается нормой.

Находящиеся на расстоянии метра друг от друга врач и пациент должны одновременно сфокусироваться на определенном объекте, при условии, что их глаза находятся на одном уровне. Офтальмолог прикрывает свой правый глаз ладонью правой, а пациент — свой левый глаз ладонью левой руки. Далее врач заносит свою левую руку с височной стороны (за границей видимости) в полуметре от пациента, и начинает, двигая пальцами, перемещать кисть к центру. Фиксируются моменты, когда глаз исследуемого улавливает начало появления контуров объекта, который перемещается (кисти врача) и его конец. Они являются определяющими для установления границ поля зрения для правого глаза пациента.

Подобная технология применяется для фиксации наружных границ поля зрения и в других меридианах. При этом для исследования в горизонтальном меридиане кисть офтальмолога располагается вертикально, а в вертикальном — горизонтально. Подобным образом, только в зеркальном отражении, исследуются показатели поля зрения левого глаза пациента. За эталон в обоих случаях берется поле зрения офтальмолога. Тест помогает установить, находятся ли границы поля зрения пациента в норме или наблюдается их сужение концентрично или секторообразно. Его применяют лишь в тех случаях, когда нет возможности осуществить инструментальную диагностику.

Компьютерная периметрия

Наибольшую точность при оценке дает компьютерная периметрия, для проведения которой используют специальный компьютерный периметр. Эта современная высокоэффективная диагностика использует программы для проведения скринингового (порогового) исследования. В памяти прибора остаются промежуточные параметры ряда обследований, что дает возможность проведения статического анализа всей серии.

Компьютерная диагностика позволяет получить широкий спектр данных о состоянии зрения пациентов с обеспечением их наибольшей точности. При этом она не представляет собой ничего сложного и выглядит следующим образом.

  1. Пациент располагается перед компьютерным периметром.
  2. Специалист предлагает исследуемому зафиксировать взгляд на объекте, который представлен на экране компьютера.
  3. Взгляду пациента доступен ряд меток, хаотически двигающихся по монитору.
  4. Зафиксировав взгляд на объекте, пациент нажимает кнопку.
  5. Данные о результатах проверки заносятся в специальный бланк.
  6. По окончании процедуры врач распечатывает бланк и, проанализировав результаты исследования, получает представление о состоянии зрения обследуемого.

В ходе процедуры по этой схеме предусмотрено изменение скорости, направления движения и цветовой гаммы представленных на мониторе объектов. Ввиду абсолютной безвредности и безболезненности, подобную процедуру можно повторять многократно, до тех пор, пока специалист не убедиться в получении объективных результатов исследования периферического зрения. После проведения диагностики не требуется никакой реабилитации.

Расшифровка результатов

Как отмечалось выше, полученные в ходе периметрического обследования данные подлежат расшифровке. Изучив занесенные на специальный бланк показатели обследования, офтальмолог сравнивает их с нормативными показателями статистической периметрии и дает оценку состояния периферического зрения пациента.

О наличии каких-либо патологий могут свидетельствовать следующие факты.

  1. Случаи выявления выпадения зрительной функции из определенных сегментов поля зрения. Заключение о патологии делается в том случае, если количество подобных нарушений превышает определенную норму.
  2. Выявление скотом — пятен, которые препятствуют полноценному восприятию объектов, — может свидетельствовать о заболеваниях зрительного нерва или сетчатки, в том числе и глаукоме.
  3. Причиной сужения зрения (спектрального, центрического, двухстороннего) могут являться серьезной изменения зрительной функции глаза.

При прохождении компьютерной диагностики следует принимать во внимание ряд факторов, которые могут исказить результаты обследования и стать причиной отклонения от нормативных показателей периметрии. К их числу относится как особенности физиологического строения внешности (опущенные брови и верхнее веко, высокая переносица, глубоко посаженные глазные яблоки), так и значительно сниженное зрение, раздражение или воспаление сосудов вблизи зрительного нерва, а также некачественная коррекция зрения и даже некоторые виды оправ.

Источник