Меню

Определение погрешности измерения шарик



Определение погрешностей при прямых измерениях

Измерение физических величин и классификация погрешностей

В физическом практикуме каждая из лабораторных работ посвящается воспроизведению опытов для наблюдения физических явлений или законов, изучению различных свойств веществ. Свойства тел или физических явлений, которые количественно могут отличаться у разных тел или изменяться у одного и того же тела, называются физическими величинами. К таким величинам относятся масса, объем, длина, температура, давление, скорость, ускорение, плотность и т.д.

Как правило, при выполнении лабораторных работ необходимо производить измерения той или иной физической величины, характеризующей рассматриваемое явление, закон или свойство изучаемого вещества. Измерить какую-либо физическую величину — это значит узнать, сколько раз заключается в ней однородная величина, принятая за единицу измерения. Измерения разделяют на прямые и косвенные.

При прямых измерениях определяемая величина сравнивается с единицей измерения непосредственно или при помощи измерительного прибора проградуированного в соответствующих единицах. Примерами прямых измерений является измерение длины линейкой или штангенциркулем, измерение времени секундомером, величины электрического тока амперметром, напряжения вольтметром, сопротивления омметром, температуры термометром и т.д.

При косвенных измерениях определяемая величина находится из результатов прямых измерений тех величин, которые связаны с определяемой величиной функциональной зависимостью. Например, чувствительность осциллографа определяется выражением:

,

где l — длина светящейся линии на экране осциллографа, расположенная вдоль оси X или Y; Uэф — эффективное напряжение, подаваемое на соответствующий вход (X или Y) прибора. Параметры l и Uэф можно определить прямыми измерениями, используя линейку и вольтметр, а величину S — из указанной выше функциональной зависимости.

Физическую величину невозможно измерить абсолютно точно, поскольку любое измерение сопровождается той или иной ошибкой(погрешностью).Погрешности измерений бывают систематические и случайные.

Погрешность, сохраняющая величину и знак от опыта к опыту, называется систематической. Систематическая погрешность может оставаться постоянной и закономерно изменяться как при изменении одной и той же величины, так и при изменении в некотором диапазоне, например, в диапазоне измерения прибора. По происхождению систематические погрешности можно классифицировать на следующие:

1. Методические (теоретические) погрешности, связанные с недостаточно точным обоснованием самого метода измерения, с допущениями при выводе формул, с зависимостью измеряемой величины от параметров приборов и т.д.

2.Инструментальные погрешности, связанные с конструктивными недостатками прибора, неисправностью или неправильной градуировкой прибора и т.д.

3. Погрешности установки, возникающие из-за неправильной установки прибора и неточной установки стрелки на ноль.

4. Личные погрешности(субъективные), проявляющиеся из-за индивидуальных особенностей экспериментатора при отсчете измеряемой величины (из-за неправильного расположения экспериментатора относительно прибора, неточность интерполяции показания в пределах одного деления и т.д.).

5. Погрешности, вызываемые изменением внешних условий (изменение температурных, магнитных и электрических полей, частоты, напряжения, давления, влажности, ускорения и т.д.).

Погрешность, которая непредсказуемым образом изменяет свою величину и знак от опыта к опыту, называется случайной. Случайная погрешность является результатом действия большого числа случайных причин на каждое измерение, величина и природа которой остается неопределенной. Случайный характер этих погрешностей проявляется в том, что при многократном повторении опыта в одинаковых условиях и с одинаковой тщательностью получаются различные результаты. Погрешности, возникающие в результате неправильного отсчета по шкале прибора, неверной записи отсчетов, грубых нарушений условий измерения и т.д., называются промахами.Измерения, содержащие промахи, не учитываются. В подобных случаях делается повторное (контрольное) измерение.

В основе теории определения погрешностей лежат два положения, подтвержденные опытом.

1. При большом числе измерений физической величины случайные погрешности одинаковой величины, но разного знака встречаются одинаково часто.

Читайте также:  Измерить себя для верхней одежды

2. Погрешности большие по абсолютной величине встречаются реже, чем малые, т.е. вероятность появления погрешности уменьшается с ростом величины погрешности.

Допустим, что мы произвели n прямых измерений некоторой физической величины А, истинное значение которой нам неизвестно. Обозначим через А1, А2, А3, . . . Аn результаты отдельных измерений. Абсолютнуюпогрешность DАn n-го измерения, представляющую собой разность между истинным значением А и измеряемой величиной Аn, можно записать следующим образом: DАn=А-Аn, тогда результаты отдельных измерений можно представить в виде:

, , …, (1)

Абсолютные погрешности DА1, DА2, . . . DАn могут принимать как положительные, так и отрицательные значения. Суммируя левую и почленно правую стороны равенства (1), получаем:

(2)

Разделив обе стороны равенства (2) на число n и учитывая,что среднеарифметическая величина:

(3)

(4)

после перестановки членов получим:

(4)

Так как в серии большого числа измерений всякой положительной погрешности можно сопоставить равную ей по абсолютной величине отрицательную погрешность, то на основании положения 1, указанного выше,

(5)

(5)

Тогда из уравнения (4) следует:

при (6)

(6a)

При ограниченном числе измерений (n¹¥) среднеарифметическое значение будет отличаться от истинного значения А, т.е. равенство (6) будет приближенным:

(6а)

(7)

В этом случае необходимо оценить величину этого расхождения. Как показывают соответствующие расчеты, вместо приближенного равенства (6а), можно записать:

(7)

(7a)

или

(7а)

где определяется выражением (3), а для определения используется формула:

(8)

Отношения называются относительными ошибками отдельных измерений.

Отношение средней абсолютной ошибки результата к среднему значению дает среднюю относительную ошибку измерений

(9)

Так как относительную ошибку принято выражать в процентах, то

(9а)

(9a)

Из уравнения (7) и (7а) видно, что знаки “+” и ”-” показывают не наличие двух истинных значений измеряемой величины, а интервал, в котором находится единственное значение этой величины.

Более точную формулу для вычисления абсолютной ошибки результата дает теория вероятностей:

(10)

Абсолютная ошибка, определяемая уравнением (10), называется наиболее вероятной ошибкой.

Окончательное значение измеряемой физической величины в этом случае записывается следующим образом:

(11)

Окончательный результат (11) можно записать с учетом среднеквадратичной ошибки, которая определяется уравнением:

(12)

Пример.Определить абсолютную и относительную погрешность диаметра свинцового шарика по пяти измерениям, результаты которых указаны ниже.

d,мм 1,47 1,46 1,43 1,45 1,44

Среднее из пяти найденных значений:

Абсолютные ошибки отдельных измерений:

Средняя абсолютная ошибка результатов:

Результат измерений:

Аналогично можно произвести обработку результата измерений с наиболее вероятной ошибкой или с учетом средней квадратичной ошибки, используя формулу (10) или (12).

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Погрешности измерений, представление результатов эксперимента

п.1. Шкала измерительного прибора

Примеры шкал различных приборов:


Манометр – прибор для измерения давления, круговая шкала

Вольтметр – прибор для измерения напряжения, дуговая шкала

Индикатор громкости звука, линейная шкала

п.2. Цена деления

Пример определения цены деления:

Определим цену деления основной шкалы секундомера.
Два ближайших пронумерованных деления на основной шкале: a = 5 c
b = 10 c Между ними находится 4 средних деления, а между каждыми средними делениями еще 4 мелких. Итого: 4+4·5=24 деления.

Цена деления: \begin \triangle=\frac\\ \triangle=\frac<10-5><24+1>=\frac15=0,2\ c \end

п.3. Виды измерений

Физическую величину измеряют с помощью прибора

Измерение длины бруска линейкой

Физическую величину рассчитывают по формуле, куда подставляют значения величин, полученных с помощью прямых измерений

Определение площади столешницы при измеренной длине и ширине

п.4. Погрешность измерений, абсолютная и относительная погрешность

Определяется погрешностью инструментов и приборов, используемых для измерений (принципом действия, точностью шкалы и т.п.)

Определяется несовершенством методов и допущениями в методике.

Погрешность теории (модели)

Определяется теоретическими упрощениями, степенью соответствия теоретической модели и реальности.

Определяется субъективным фактором, ошибками экспериментатора.

Примеры значащих цифр:
0,403 – три значащих цифры, величина определена с точностью до тысячных.
40,3 – три значащих цифры, величина определена с точностью до десятых.
40,300 – пять значащих цифр, величина определена с точностью до тысячных.

В простейших измерениях инструментальная погрешность прибора является основной.
В таких случаях физическую величину измеряют один раз, полученное значение берут в качестве истинного, а абсолютную погрешность считают равной инструментальной погрешности прибора.
Примеры измерений с абсолютной погрешностью равной инструментальной:

  • определение длины с помощью линейки или мерной ленты;
  • определение объема с помощью мензурки.

Пример получения результатов прямых измерений с помощью линейки:

Измерим длину бруска линейкой, у которой пронумерованы сантиметры и есть только одно деление между пронумерованными делениями.
Цена деления такой линейки: \begin \triangle=\frac= \frac<1\ \text<см>><1+1>=0,5\ \text <см>\end Инструментальная погрешность: \begin d=\frac<\triangle><2>=\frac<0,5><2>=0,25\ \text <см>\end Истинное значение: \(L_0=4\ \text<см>\)
Результат измерений: $$ L=L_0\pm d=(4,00\pm 0,25)\ \text <см>$$ Относительная погрешность: $$ \delta=\frac<0,25><4,00>\cdot 100\text<%>=6,25\text<%>\approx 6,3\text <%>$$
Теперь возьмем линейку с n=9 мелкими делениями между пронумерованными делениями.
Цена деления такой линейки: \begin \triangle=\frac= \frac<1\ \text<см>><9+1>=0,1\ \text <см>\end Инструментальная погрешность: \begin d=\frac<\triangle><2>=\frac<0,1><2>=0,05\ \text <см>\end Истинное значение: \(L_0=4,15\ \text<см>\)
Результат измерений: $$ L=L_0\pm d=(4,15\pm 0,05)\ \text <см>$$ Относительная погрешность: $$ \delta=\frac<0,05><4,15>\cdot 100\text<%>\approx 1,2\text <%>$$

Второе измерение точнее, т.к. его относительная погрешность меньше.

п.5. Абсолютная погрешность серии измерений

Измерение длины с помощью линейки (или объема с помощью мензурки) являются теми редкими случаями, когда для определения истинного значения достаточно одного измерения, а абсолютная погрешность сразу берется равной инструментальной погрешности, т.е. половине цены деления линейки (или мензурки).

Гораздо чаще погрешность метода или погрешность оператора оказываются заметно больше инструментальной погрешности. В таких случаях значение измеренной физической величины каждый раз немного меняется, и для оценки истинного значения и абсолютной погрешности нужна серия измерений и вычисление средних значений.

Пример расчета истинного значения и погрешности для серии прямых измерений:
Пусть при измерении массы шарика с помощью рычажных весов мы получили в трех опытах следующие значения: 99,8 г; 101,2 г; 100,3 г.
Инструментальная погрешность весов d = 0,05 г.
Найдем истинное значение массы и абсолютную погрешность.

Составим расчетную таблицу:

№ опыта 1 2 3 Сумма
Масса, г 99,8 101,2 100,3 301,3
Абсолютное отклонение, г 0,6 0,8 0,1 1,5

Сначала находим среднее значение всех измерений: \begin m_0=\frac<99,8+101,2+100,3><3>=\frac<301,3><3>\approx 100,4\ \text <г>\end Это среднее значение принимаем за истинное значение массы.
Затем считаем абсолютное отклонение каждого опыта как модуль разности \(m_0\) и измерения. \begin \triangle_1=|100,4-99,8|=0,6\\ \triangle_2=|100,4-101,2|=0,8\\ \triangle_3=|100,4-100,3|=0,1 \end Находим среднее абсолютное отклонение: \begin \triangle_=\frac<0,6+0,8+0,1><3>=\frac<1,5><3>=0,5\ \text <(г)>\end Мы видим, что полученное значение \(\triangle_\) больше инструментальной погрешности d.
Поэтому абсолютная погрешность измерения массы: \begin \triangle m=max\left\<\triangle_; d\right\>=max\left\<0,5; 0,05\right\>\ \text <(г)>\end Записываем результат: \begin m=m_0\pm\triangle m\\ m=(100,4\pm 0,5)\ \text <(г)>\end Относительная погрешность (с двумя значащими цифрами): \begin \delta_m=\frac<0,5><100,4>\cdot 100\text<%>\approx 0,050\text <%>\end

п.6. Представление результатов эксперимента

Как найти результат прямого измерения, мы рассмотрели выше.
Результат косвенного измерения зависит от действий, которые производятся при подстановке в формулу величин, полученных с помощью прямых измерений.

Вывод этих формул достаточно сложен, но если интересно, его можно найти в Главе 7 справочника по алгебре для 8 класса.

п.7. Задачи

Задача 1. Определите цену деления и объем налитой жидкости для каждой из мензурок. В каком случае измерение наиболее точно; наименее точно?

Составим таблицу для расчета цены деления:

№ мензурки a, мл b, мл n \(\triangle=\frac\), мл
1 20 40 4 \(\frac<40-20><4+1>=4\)
2 100 200 4 \(\frac<200-100><4+1>=20\)
3 15 30 4 \(\frac<30-15><4+1>=3\)
4 200 400 4 \(\frac<400-200><4+1>=40\)

Инструментальная точность мензурки равна половине цены деления.
Принимаем инструментальную точность за абсолютную погрешность и измеренное значение объема за истинное.
Составим таблицу для расчета относительной погрешности (оставляем две значащих цифры и округляем с избытком):

№ мензурки Объем \(V_0\), мл Абсолютная погрешность
\(\triangle V=\frac<\triangle><2>\), мл
Относительная погрешность
\(\delta_V=\frac<\triangle V>\cdot 100\text<%>\)
1 68 2 3,0%
2 280 10 3,6%
3 27 1,5 5,6%
4 480 20 4,2%

Наиболее точное измерение в 1-й мензурке, наименее точное – в 3-й мензурке.

Ответ:
Цена деления 4; 20; 3; 40 мл
Объем 68; 280; 27; 480 мл
Самое точное – 1-я мензурка; самое неточное – 3-я мензурка

Задача 2. В двух научных работах указаны два значения измерений одной и той же величины: $$ x_1=(4,0\pm 0,1)\ \text<м>,\ \ x_2=(4,0\pm 0,03)\ \text <м>$$ Какое из этих измерений точней и почему?

Мерой точности является относительная погрешность измерений. Получаем: \begin \delta_1=\frac<0,1><4,0>\cdot 100\text<%>=2,5\text<%>\\ \delta_2=\frac<0,03><4,0>\cdot 100\text<%>=0,75\text <%>\end Относительная погрешность второго измерения меньше. Значит, второе измерение точней.
Ответ: \(\delta_2\lt \delta_1\), второе измерение точней.

Задача 3. Две машины движутся навстречу друг другу со скоростями 54 км/ч и 72 км/ч.
Цена деления спидометра первой машины 10 км/ч, второй машины – 1 км/ч.
Найдите скорость их сближения, абсолютную и относительную погрешность этой величины.

Абсолютная погрешность скорости каждой машины равна инструментальной, т.е. половине деления спидометра: $$ \triangle v_1=\frac<10><2>=5\ (\text<км/ч>),\ \ \triangle v_2=\frac<1><2>=0,5\ (\text<км/ч>) $$ Показания каждого из спидометров: $$ v_1=(54\pm 5)\ \text<км/ч>,\ \ v_2=(72\pm 0,5)\ \text <км/ч>$$ Скорость сближения равна сумме скоростей: $$ v_0=v_<10>+v_<20>,\ \ v_0=54+72=125\ \text <км/ч>$$ Для суммы абсолютная погрешность равна сумме абсолютных погрешностей слагаемых. $$ \triangle v=\triangle v_1+\triangle v_2,\ \ \triangle v=5+0,5=5,5\ \text <км/ч>$$ Скорость сближения с учетом погрешности равна: $$ v=(126,0\pm 5,5)\ \text <км/ч>$$ Относительная погрешность: $$ \delta_v=\frac<5,5><126,0>\cdot 100\text<%>\approx 4,4\text <%>$$ Ответ: \(v=(126,0\pm 5,5)\ \text<км/ч>,\ \ \delta_v\approx 4,4\text<%>\)

Задача 4. Измеренная длина столешницы равна 90,2 см, ширина 60,1 см. Измерения проводились с помощью линейки с ценой деления 0,1 см. Найдите площадь столешницы, абсолютную и относительную погрешность этой величины.

Инструментальная погрешность линейки \(d=\frac<0,1><2>=0,05\ \text<см>\)
Результаты прямых измерений длины и ширины: $$ a=(90,20\pm 0,05)\ \text<см>,\ \ b=(60,10\pm 0,05)\ \text <см>$$ Относительные погрешности (не забываем про правила округления): \begin \delta_1=\frac<0,05><90,20>\cdot 100\text<%>\approx 0,0554\text<%>\approx \uparrow 0,056\text<%>\\ \delta_2=\frac<0,05><60,10>\cdot 100\text<%>\approx 0,0832\text<%>\approx \uparrow 0,084\text <%>\end Площадь столешницы: $$ S=ab,\ \ S=90,2\cdot 60,1 = 5421,01\ \text<см>^2 $$ Для произведения относительная погрешность равна сумме относительных погрешностей слагаемых: $$ \delta_S=\delta_a+\delta_b=0,056\text<%>+0,084\text<%>=0,140\text<%>=0,14\text <%>$$ Абсолютная погрешность: \begin \triangle S=S\cdot \delta_S=5421,01\cdot 0,0014=7,59\approx 7,6\ \text<см>^2\\ S=(5421,0\pm 7,6)\ \text<см>^2 \end Ответ: \(S=(5421,0\pm 7,6)\ \text<см>^2,\ \ \delta_S\approx 0,14\text<%>\)

Источник