Меню

Определение термометр это прибор для измерения температуры является логика



Термометр

Термо́метр (греч. θέρμη — тепло; μετρέω — измеряю) — прибор для измерения температуры воздуха, почвы, воды и так далее. Существует несколько видов термометров:

  • жидкостные
  • механические
  • электрические
  • оптические
  • газовые
  • инфракрасные

Содержание

История изобретения

Изобретателем термометра принято считать Галилея: в его собственных сочинениях нет описания этого прибора, но его ученики, Нелли и Вивиани, засвидетельствовали, что уже в 1597 году он устроил нечто вроде термобароскопа (термоскоп). Галилей изучал в это время Герона Александрийского, у которого уже описано подобное приспособление, но не для измерения степеней тепла, а для поднятия воды при помощи нагревания. Термоскоп представлял собой небольшой стеклянный шарик с припаянной к нему стеклянной трубкой. Шарик слегка нагревали и конец трубки опускали в сосуд с водой. Через некоторое время воздух в шарике охлаждался, его давление уменьшалось и вода под действием атмосферного давления поднималась в трубке вверх на некоторую высоту. В дальнейшем при потеплении давление воздуха в шарике увеличивалось и уровень воды в трубке понижался при охлаждении же вода в ней поднималась. При помощи термоскопа можно было судить только об изменении степени нагретости тела: числовых значений температуры он не показывал, так как не имел шкалы. Кроме того, уровень воды в трубке зависел не только от температуры, но и от атмосферного давления. В 1657 г. термоскоп Галилея был усовершенствован флорентийскими учеными. Они снабдили прибор шкалой из бусин и откачали воздух из резервуара (шарика) и трубки. Это позволило не только качественно, но и количественно сравнивать температуры тел. Впоследствии термоскоп был изменен: его перевернули шариком вниз, а в трубку вместо воды налили спирт и удалили сосуд. Действие этого прибора основывалось на расширении мер, в качестве «постоянных» точек брали температуры наиболее жаркого летнего и наиболее холодного зимнего дня. Изобретение термометра также приписывают лорду Бэкону, Роберт Фладду, Санкториусу, Скарпи, Корнелию Дреббелю (Cornelius Drebbel), Порте и Саломону де Каус, писавшим позднее и частью имевшим личные отношения с Галилеем. Все эти термометры были воздушные и состояли из сосуда с трубкой, содержащего воздух, отделённый от атмосферы столбиком воды, они изменяли свои показания и от изменения температуры, и от изменения атмосферного давления.

Термометры с жидкостью описаны в первый раз в 1667 г. «Saggi di naturale esperienze fatte nell’Accademia del Cimento», где о них говорится как о предметах, давно изготовляемых искусными ремесленниками, которых называют «Confia», разогревающими стекло на раздуваемом огне лампы и выделывающими из него удивительные и очень нежные изделия. Сначала эти термометры наполняли водой, и они лопались, когда она замерзала; употреблять для этого винный спирт начали в 1654 году по мысли великого герцога тосканского Фердинанда II. Флорентийские термометры не только изображены в «Saggi», но сохранились в нескольких экземплярах до нашего времени в Галилеевском музее, во Флоренции; их приготовление описывается подробно.

Сначала мастер должен был сделать деления на трубке, соображаясь с её относительными размерами и размерами шарика: деления наносились расплавленной эмалью на разогретую на лампе трубку, каждое десятое обозначалось белой точкою, а другие чёрными. Обыкновенно делали 50 делений таким образом, чтобы при таянии снега спирт не опускался ниже 10, а на солнце не поднимался выше 40. Хорошие мастера делали такие термометры настолько удачно, что все они показывали одно и то же значение температуры при одинаковых условиях, однако такого не удавалось достигнуть, если трубку разделяли на 100 или 300 частей, чтобы получить большую точностью. Наполняли термометры посредством подогревания шарика и опускания конца трубки в спирт, заканчивали наполнение при помощи стеклянной воронки с тонко оттянутым концом, свободно входившим в довольно широкую трубку. После регулирования количества жидкости, отверстие трубки запечатывали сургучом, называемым «герметическим». Из этого ясно, что эти термометры были большими и могли служить для определения температуры воздуха, но были ещё неудобны для других, более разнообразных опытов, и градусы разных термометров были не сравнимы между собою.

В 1703 г. Амонтон (Guillaume Amontons) в Париже усовершенствовал воздушный термометр, измеряя не расширение, а увеличение упругости воздуха, приведённого к одному и тому же объёму при разных температурах подливанием ртути в открытое колено; барометрическое давление и его изменения при этом принимались во внимание. Нулём такой шкалы должна была служить «та значительная степень холода», при которой воздух теряет всю свою упругость (то есть современный абсолютный нуль), а второй постоянной точкой — температура кипения воды. Влияние атмосферного давления на температуру кипения ещё не было известно Амонтону, а воздух в его термометре не был освобождён от водяных газов; поэтому из его данных абсолютный нуль получается при −239,5° по шкале Цельсия. Другой воздушный термометр Амонтона, выполненный очень несовершенно, был независим от изменений атмосферного давления: он представлял сифонный барометр, открытое колено которого было продолжено кверху, снизу наполнено крепким раствором поташа, сверху нефтью и оканчивалось запаянным резервуаром с воздухом.

Современную форму термометру придал Фаренгейт и описал свой способ приготовления в 1723 г. Первоначально он тоже наполнял свои трубки спиртом и лишь под конец перешёл к ртути. Нуль своей шкалы он поставил при температуре смеси снега с нашатырём или поваренной солью, при температуре «начала замерзания воды» он показывал 32°, а температура тела здорового человека во рту или под мышкой была эквивалентна 96°. Впоследствии он нашёл, что вода кипит при 212° и эта температура была всегда одна и та же при том же стоянии барометра.

Окончательно установил обе постоянные точки, тающего льда и кипящей воды, шведский физик Цельсий в 1742 г., но первоначально он ставил 0° при точке кипения, а 100° при точке замерзания, и принял обратное обозначение лишь по совету М. Штёрмера. Сохранившиеся экземпляры термометров Фаренгейта отличаются тщательностью исполнения. Однако более удобной оказалась «перевернутая» шкала, на которой температуры таяния льда обозначили 0 С, а температуру кипения 100 С. Таким термометром впервые пользовались шведские ученые ботаник К. Линней и астроном М. Штремер. Этот термометр получил широкое распространение.

Работы Реомюра в 1736 г. хотя и повели к установлению 80° шкалы, но были скорее шагом назад против того, что сделал уже Фаренгейт: термометр Реомюра был громадный, неудобный в употреблении, а его способ разделения на градусы был неточным и неудобным.

После Фаренгейта и Реомюра дело изготовления термометров попало в руки ремесленников, так как термометры стали предметом торговли.

В 1848 г. английский физик Вильям Томсон (лорд Кельвин) доказал возможность создания абсолютной шкалы температур, нуль которой не зависит от свойств воды или вещества, заполняющего термометр. Точкой отсчета в «шкале Кельвина» послужило значение абсолютного нуля: −273,15° С. При этой температуре прекращается тепловое движение молекул. Следовательно, становится невозможным дальнейшее охлаждение тел.

Жидкостные термометры

Жидкостные термометры основаны на принципе изменения объёма жидкости, которая залита в термометр (обычно это спирт или ртуть), при изменении температуры окружающей среды.

В связи с запретом применения ртути во многих областях деятельности ведется поиск альтернативных наполнений для бытовых термометров. Например, такой заменой может стать сплав галинстан.

Об удалении разлившейся ртути из разбитого термометра см. статью Демеркуризация

Механические термометры

Термометры этого типа действуют по тому же принципу, что и жидкостные, но в качестве датчика обычно используется металлическая спираль или лента из биметалла.

Электрические термометры

Принцип работы электрических термометров основан на изменении сопротивления проводника при изменении температуры окружающей среды.

Электрические термометры более широкого диапазона основаны на термопарах (контакт между металлами с разной электроотрицательностью создаёт контактную разность потенциалов, зависящую от температуры).

Наиболее точными и стабильными во времени являются термометры сопротивления на основе платиновой проволоки или платинового напыления на керамику. Наибольшее распространение получили PT100 (сопротивление при 0 °C — 100Ω) PT1000 (сопротивление при 0 °C — 1000Ω) (IEC751). Зависимость от температуры почти линейна и подчиняется квадратичному закону при положительной температуре и уравнению 4 степени при отрицательных (соответствующие константы весьма малы, и в первом приближении эту зависимость можно считать линейной). Температурный диапазон −200 — +850 °C.

Отсюда, сопротивление при T °C, сопротивление при 0 °C, и константы (для платинового сопротивления) —

  • см. Эффект Пельтье

Оптические термометры

Оптические термометры позволяют регистрировать температуру благодаря изменению уровня светимости, спектра и иных параметров (см. Волоконно-оптическое измерение температуры) при изменении температуры. Например, инфракрасные измерители температуры тела.

Инфракрасные термометры

Инфракрасный термометр позволяет измерять температуру без непосредственного контакта с человеком. В некоторых странах уже давно имеется тенденция отказа от ртутных градусников в пользу инфракрасных не только в медицинских учреждениях, но и на бытовом уровне.

Инфракрасный термометр обладает рядом неоспоримых преимуществ, а именно:

  • безопасность использования (даже при серьёзных механических повреждениях ничто не угрожает здоровью)
  • более высокая точность измерения
  • минимальное время проведения процедуры (измерение проводится в течение 0,5 секунды)
  • возможность группового сбора данных

Технические термометры

Термометры технические жидкостные используется на предприятиях в сельском хозяйстве, нефтехимической, химической, горно-металлургической промышленностях, в машиностроении, жилищно- коммунальном хозяйстве, транспорте, строительстве, медицине, словом во всех жизненных сферах.

Выделяют такие виды технических термометров:

  • термометры технические жидкостные ТТЖ-М;
  • термометры биметаллические ТБ, ТБТ, ТБИ;
  • термометры сельскохозяйственные ТС-7-М1;
  • термометры максимальные СП-83 М;
  • термометры для спецкамер низкоградусные СП-100;
  • термометры специальные вибростойкие СП-В;
  • термометры ртутные электроконтактные ТПК;
  • термометры лабораторные ТЛС;
  • термометры для нефтепродуктов ТН;
  • термометры для испытаний нефтепродуктов ТИН1, ТИН2, ТИН3, ТИН4.

Источник

Значение слова «термометр»

ТЕРМО́МЕТР, -а, м. Прибор для измерения температуры. Ртутный термометр. Медицинский термометр.Ночью было холодно. — На рассвете термометр показывал +7°С. Арсеньев, Дерсу Узала.

[От греч. θέρμη — тепло и μετρέω — мерю]

Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека

  • Термо́метр (греч. θέρμη — тепло; μετρέω — измеряю) — прибор для измерения температуры воздуха, почвы, воды и так далее. Существует несколько видов термометров:

ТЕРМО’МЕТР, а, м. [от греч. thermē —

теплота и metron — мера]. Прибор для измерения температуры. Ртутный т. Уличный т. Медицинский т. Поставить т. больному.

Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека

термо́метр

1. прибор для измерения температуры ◆ Время, уже настало холодное, и Делилев термометр опускался на 209° (Реомюр 3°). Ф. П. Врангель, «Путешествие по северным берегам Сибири и по Ледовитому морю», 1841 г. (цитата из НКРЯ) ◆ На всю больницу было только два скальпеля и ни одного термометра, в ваннах держали картофель. А. П. Чехов, «Палата 6», 1892 г. ◆ Хотя термометр изобрёл Галилей ещё в 1592 году, современный вид медицинский градусник приобрёл именно в 1910-м. Владислав Быков, Ольга Деркач, «Книга века», 2000 г. (цитата из НКРЯ)

Фразеологизмы и устойчивые сочетания

Делаем Карту слов лучше вместе

Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!

Спасибо! Я стал чуточку лучше понимать мир эмоций.

Вопрос: недавний — это что-то нейтральное, положительное или отрицательное?

Источник

Определение термометр это прибор для измерения температуры является логика

© Издательство «Прометей», 2015

Введение, Или что такое логика и зачем она нужна?

Начиная знакомиться с какой-либо наукой, мы прежде всего отвечаем на вопрос о том, что она изучает, чему посвящена, чем занимается. Логика – это наука о мышлении. Но ведь мышлением занимаются и психология, и педагогика, и многие другие науки. Значит, логика занимается не всеми вопросами и проблемами, связанными с мышлением, не всеми его областями или сторонами, а только какими-то из них. Что же интересует логику в мышлении?

Каждый из нас хорошо знает, что по содержанию человеческое мышление бесконечно многообразно, ведь мыслить (думать) можно о чем угодно, например, – об устройстве мира и происхождении жизни на Земле, о прошлом человечества и его будущем, о прочитанных книгах и просмотренных фильмах, о сегодняшних занятиях и завтрашнем отдыхе и т. д. и т. п.

Но самое главное заключается в том, что наши мысли возникают и строятся по одним и тем же законам, подчиняются одним и тем же принципам, укладываются в одни и те же схемы или формы. Причем, если содержание нашего мышления, как уже было сказано, бесконечно разнообразно, то форм, в которых выражается это разнообразие совсем немного.

Для пояснения этой мысли приведем простой пример. Рассмотрим три совершенно различных по содержанию высказывания:

1. Все караси – это рыбы;

2. Все треугольники – это геометрические фигуры;

3. Все стулья – это предметы мебели.

Несмотря на различное содержание, у этих трех высказываний есть нечто общее, что-то их объединяет. Что? Их объединяет не содержание, а форма. Отличаясь по содержанию, они сходны по форме: ведь каждое из этих трех высказываний строится по схеме или по форме – «Все А – это В», где А и В – это какие-либо предметы. Понятно, что само высказывание «Все А – это В» лишено всякого содержания (О чем конкретно оно говорит? Ни о чем!). Это высказывание представляет собой чистую форму, которую, как вы догадываетесь, можно наполнить любым содержанием, например: Все сосны – это деревья; Все города – это населенные пункты; Все школы – это учебные заведения; Все тигры – это хищники и т. д. и т. п.

Приведем другой пример. Возьмем три различных по содержанию высказывания:

1. Если наступает осень, то опадают листья;

2. Если завтра будет дождь, то на улице будут стоять лужи;

3. Если вещество – металл, то оно электропроводно.

Будучи непохожими друг на друга по содержанию, эти три высказывания сходны между собой тем, что строятся по одной и той же форме: «Если А, то В». Понятно, что к этой форме можно подобрать огромное количество различных содержательных высказываний, например: Если не подготовиться к контрольной работе, то можно получить двойку; Если взлетная полоса покрыта льдом, то самолеты не могут взлетать; Если слово стоит в начале предложения, то его надо писать с большой буквы и т. д. и т. п.

Итак, мы заметили, что по содержанию наше мышление бесконечно разнообразно, но все это разнообразие укладывается всего в несколько форм. Так вот логика не интересуется содержанием мышления (им занимаются другие науки), она изучает только формы мышления, ее интересует не то, что мы мыслим, а то, как мы мыслим, поэтому она также часто называется формальной логикой. Так, например, если по содержанию высказывание Все комары – это насекомые является нормальным, понятным, осмысленным, а высказывание Все Чебурашки – это инопланетяне является бессмысленным, нелепым, абсурдным, то для логики эти два высказывания равноценны: ведь она занимается формами мышления, а форма у этих двух высказываний была одной и той же – «Все А – это В».

Таким образом, форма мышления – это способ, которым мы выражаем наши мысли, или схема, по которой они строятся. Существует три формы мышления.

1. Понятие – это форма мышления, которая обозначает какой-либо объект или признак объекта (примеры понятий: карандаш, растение, небесное тело, химический элемент, мужество, глупость, нерадивость и т. п.).

2. Суждение – это форма мышления, которая состоит из понятий, связанных между собой и что-либо утверждает или отрицает (примеры суждений: Все планеты являются небесными телами; Некоторые школьники – это двоечники; Все треугольники не являются квадратами и т. п.).

3. Умозаключение – это форма мышления, в которой из двух или нескольких исходных суждений вытекает новое суждение или вывод. Примеры умозаключений:

Все планеты движутся.

Юпитер – это планета.

Железо, медь, ртуть – это металлы.

Все металлы электропроводны.

Весь бесконечный мир наших мыслей выражается в понятиях, суждениях и умозаключениях. Об этих трех формах мышления мы будем подробно говорить на других страницах книги.

Помимо форм мышления логика также занимается законами мышления, то есть – такими правилами, соблюдение которых всегда приводит рассуждение, независимо от его содержания, к истинным выводам и предохраняет от ложных (при условии истинности исходных суждений). Основных законов мышления (или законов логики) четыре. Здесь только перечислим (назовем) их, а подробно рассмотрим каждый из них после того, как рассмотрим все формы мышления.

1. Закон тождества.

2. Закон противоречия.

3. Закон исключенного третьего.

4. Закон достаточного основания.

Нарушение этих законов приводит к различным логическим ошибкам, как правило, – к ложным выводам. Иногда эти законы нарушают непроизвольно, не нарочно, по незнанию. Возникающие при этом ошибки называются паралогизмами. Однако иногда это делают преднамеренно, с целью запутать собеседника, сбить его с толка и доказать ему какую-нибудь ложную мысль. Такие преднамеренные нарушения логических законов для внешне правильного доказательства ложных мыслей называются софизмами, о которых речь впереди.

Итак, логика – это наука о формах и законах правильного мышления.

Логика появилась приблизительно в V в. до н. э. в Древней Греции. Ее создателем считается знаменитый древнегреческий философ и ученый Аристотель (384–322 гг. до н. э.). Как видим, логике 2,5 тысячи лет, однако она до сих пор сохраняет свое практическое значение. Многие науки и искусства Древнего мира навсегда ушли в прошлое и представляют для нас только «музейное» значение, интересны нам исключительно как памятники старины. Но некоторые немногие создания древних пережили века, и в настоящее время мы продолжаем ими пользоваться. К их числу относится геометрия Евклида (в школе мы изучаем именно ее) и логика Аристотеля, которая также часто называется традиционной логикой.

В XIX веке появилась и стала быстро развиваться символическая или математическая, или современная логика, в основе которой лежат идеи, выдвинутые задолго до Х1Х в. немецким математиком и философом Готфридом Лейбницем (1646–1716 гг.), об осуществлении полного перехода к идеальной (т. е. совершенно освобожденной от содержания) логической форме при помощи универсального символического языка, аналогичного языку алгебры. Лейбниц говорил о возможности представить доказательство как математическое вычисление. Ирландский логик и математик Джордж Буль (1815–1864 гг.) истолковал умозаключение как результат решения логических равенств, в результате чего теория умозаключений приняла вид своеобразной алгебры, отличающейся от обычной алгебры лишь отсутствием численных коэффициентов и степеней. Таким образом, одно из основных отличий символической логики от традиционной заключается в том, что в последней при описании правильного мышления используется обычный, или естественный язык; а символическая логика исследует тот же предмет (правильное мышление) с помощью построения искусственных, специальных, формализованных языков, или, как их еще называют, исчислений.

Источник

Читайте также:  Тепловизионная система измерения температуры тела

Сравнить или измерить © 2021
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.