Меню

Определить шкалу измерений по которой получены данные



Шкалы измерений

Шкала измерений – это совокупность значений, позволяющих количественно или качественно отобразить свойства объекта измерений. Разнообразные проявления (количественные или качественные) любого свойства образуют множества, отображения элементов которых на упорядоченное множество чисел или в более общем случае условных знаков образуют шкалы измерения этих свойств. Шкала измерений количественного свойства является шкалой физической величины. Шкала физической величины — это упорядоченная последовательность значений ФВ, принятая по соглашению на основании результатов точных измерений.

Виды шкал измерений

В практической деятельности необходимо проводить измерения различных величин, характеризующих свойства тел, веществ, явлений и процессов. Некоторые свойства измерительных шкал в метрологии проявляются только качественно, другие — количественно.

Шкала – упорядоченный числовой или символьный ряд значений, отражающий допустимые вариации значений измеряемой величины.

В соответствии с логической структурой проявления свойств различают пять основных видов шкал измерений: шкалы наименований, шкалы порядка, шкалы интервалов, шкалы отношений, абсолютные шкалы.

Номинальная шкала (шкала наименований)

Рисунок – Пример номинальной шкалы (атлас цветов)

Такие шкалы измерений в метрологии используются для классификации эмпирических объектов, свойства которых проявляются только в отношении эквивалентности эти свойства нельзя считать физическими величинами, поэтому шкалы такого вида но являются шкалами ФВ. Номинальные шкалы, или, как их еще называют шкалы наименований так же называют шкалами измерений, или шкалами классификаций. Это самый простой тип шкал, основанный на приписывании качественным свойствам объектов чисел, играющих роль имен.

В номинальных шкалах, в которых отнесение отражаемого свойства к тому или иному классу эквивалентности осуществляется с использованием органов чувств человека, наиболее адекватен результат, выбранный большинством экспертов. При этом большое значение имеет правильный выбор классов эквивалентной шкалы — они должны надежно различаться наблюдателями, экспертами, оценивающими данное свойство. Нумерация объектов по шкале наименований осуществляется по принципу: «не приписывай одну и ту же цифру разным объектам». Числа, приписанные объектам, могут быть использованы для определения вероятности или частоты появления данного объекта, но их нельзя использовать для суммирования и других математических операций.

Поскольку данные шкалы характеризуются только отношениями эквивалентности, то в них отсутствует понятия нуля, «больше» или «меньше» и единицы измерения. Примером номинальных шкал являются широко распространенные атласы цветов, предназначенные для идентификации цвета.

Шкала порядка (рангов)

Если свойство данного эмпирического объекта проявляет себя в отношении эквивалентности и порядка по возрастанию или убыванию количественного проявления свойства, то для него может быть построена шкала порядка. Она является монотонно возрастающей или убывающей и позволяет установить отношение больше/меньше между величинами, характеризующими указанное свойство. В шкалах порядка существует или не существует нуль, но принципиально нельзя ввести единицы измерения, так как для них не установлено отношение пропорциональности и соответственно нет возможности судить во сколько раз больше или меньше конкретные проявления свойства.

В случаях, когда уровень познания явления не позволяет точно установить отношения, существующие между величинами данной характеристики, либо применение удобно и достаточно для практики, используют условные (эмпирические) шкалы порядка. Условная шкала — это шкала ФВ, исходные значения которой выражены в условных единицах. Пример шкалы порядка — шкала вязкости Энглера, 12-бальная шкала Бофорта для силы морского ветра.

Рисунок — Пример шкалы порядка (шкала Бофорта)

Широкое распространение получили шкалы измерений порядка с нанесенными на них реперными точками. К таким шкалам, например, относится шкала Мооса для определения твердости минералов, которая содержит 10 опорных (реперных) минералов с различными условными числами твердости: тальк – 1; гипс – 2; кальций – 3; флюорит – 4; апатит – 5; ортоклаз – 6; кварц – 7; топаз – 8; корунд – 9; алмаз – 10. Отнесение минерала к той или иной градации твердости осуществляется на основании эксперимента, который состоит в том, что испытуемый материал царапается опорным. Если после царапанья испытуемого минерала кварцем (7) на нем остается след, а после ортоклаза (6) — не остается, то твердость испытуемого материала составляет более 6, но менее 7. Более точного ответа в этом случае дать невозможно,

В условных шкалах одинаковым интервалам между размерами данной величины не соответствуют одинаковые размерности чисел, отображающих размеры. С помощью этих чисел можно найти вероятности, моды, медианы, квантили, однако их нельзя использовать для суммирования, умножения и других математических операция. Определение значения величин при помощи шкал порядка нельзя считать измерением, так как на этих шкалах не могут быть введены единицы измерения. Операцию по приписыванию числа требуемой величине следует считать оцениванием. Оценивание по шкалам порядка является неоднозначным и весьма условным, о чем свидетельствует рассмотренный пример.

Шкала интервалов (разностей)

Эти шкалы измерений в метрологии являются дальнейшим развитием шкал порядка и применяются для объектов, свойства которых удовлетворяют отношениям эквивалентности, порядка и аддитивности. Шкала интервалов состоит из одинаковых интервалов, имеет единицу измерения и произвольно выбранное начало – нулевую точку. Пример шкалы интервалов — летоисчисление по различным календарям, в которых за начало отсчета принято либо сотворение мира, либо рождество Христово и т.д. Температурные шкалы Цельсия, Фаренгейта и Реомюра также являются шкалами интервалов.

Рисунок – Пример шкалы интервалов (Температурные шкалы Цельсия и Фаренгейта)

На шкале интервалов определены действия сложения и вычитания интервалов. Действительно, по шкале времени интервалы можно суммировать или вычитать и сравнивать, во сколько раз один интервал больше другого, но складывать даты каких-либо событий просто бессмысленно.

Читайте также:  Расчет жесткости единицы измерения

Шкала интервалов величины Q описывается уравнением Q = Qо + q[Q], где q — числовое значение величины; Qо — начало отсчета шкалы; [Q] единица рассматриваемой величины. Такая шкала полностью определяется заданием начала отсчета Qо шкалы и единицы данной величины [Q].

Задать шкалу практически можно двумя путями. При первом из них выбираются два значения Qо и Q1, величины, которые относительно просто реализованы физически. Эти значения называются опорными точками, или основными реперами, а интервал (Q1

Qо) — основным интервалом. Точка Qо принимается за начало отсчета, а величина (Q1 -Qо)/n=[Qо] за единицу Q. При этом n выбирается таким, чтобы [Q] было целой величиной.

Рисунок – Пример шкалы отношений

При втором пути задания шкалы единица воспроизводится непосредственно как интервал, его некоторая доля или некоторое число интервалов размеров данной величины, а начало отсчета выбирают каждый раз по-разному в зависимости от конкретных условий изучаемого явления. Пример такого подхода — шкала времени, в которой 1с = 9192631770 периодов излучения, соответствующих переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133. За начало отсчета принимается начало изучаемого явления.

Шкала отношений

Шкала отношений описывает свойства эмпирических объектов, которые удовлетворяют отношениям эквивалентности, порядка и аддитивности (шкалы второго рода — аддитивные), а в ряде случаев и пропорциональности (шкалы первого рода — пропорциональные). Пример шкалы отношений — шкала массы (второго рода), термодинамической температуры (первого рода).

В шкалах отношений существует однозначный естественный критерий нулевого количественного проявления свойства и единица измерений, установленная по соглашению. С формальной точки зрения этот вид шкал измерений является шкалой интервалов с естественным началом отсчета. К значениям, полученным по этой шкале, применимы все арифметические действия, что имеет важное значение при измерений физических величин.

Рисунок – Пример абсолютной шкалы (шкала температур Кельвина)

Шкалы отношений — самые совершенные. Они описываются уравнением Q = q[Q], где Q — ФВ, для которой строится шкала, [Q] — ее единица измерения, q — числовое значение ФВ. Переход от одной шкалы отношений к другой происходит в соответствии с уравнением q2 = q1[Q1]/[Q2].

Абсолютные шкалы

Абсолютные шкалы — это шкалы, обладающие всеми признаками шкал отношений, но дополнительно имеющие естественное однозначное определение единицы измерения и не зависящие от принятой системы единиц измерения. Примером абсолютной шкалы могут стать шкалы с относительным величинам: коэффициенту усиления, ослабления и др. Для образования многих производных единиц в системе СИ используются безразмерные и счетные единицы абсолютных шкал.

Отметим, что шкалы наименований и порядка называют неметрическими (концептуальными), а шкалы интервалов и отношений — метрическими (материальными). Метрические и абсолютные шкалы относятся к разряду линейных. Практическая реализация шкал измерений в метрологии осуществляется путем стандартизации как самих шкал и единиц измерений, так и, в необходимых случаях, способов и условий их однозначного воспроизведения.

Изготовление измерительной шкалы своими руками

Видео о том, как самостоятельно сделать шкалу стрелочного прибора на примере изготовления шкалы амперметра.

Источник

Шкала измерений

Высокое качество продукции любого предприятия напрямую зависит от точности и общего качества измерений. Мы не можем решить, соответствует ли конкретный образец продукции требованиям заказчика, если не выразим эти требования количественно или качественно. Для сравнения какого-либо параметра с его заданным значением служат шкалы измерений.

Виды шкал измерений

Суть измерения состоит в том, что текущему состоянию объекта ставится в соответствие некоторое число, порядковый номер или символ.

Что такое шкала

Совокупность таких чисел, номеров или символов и называется шкалой измерений

По своему типу выделяют следующие виды шкал:

  • номинальная (наименований);
  • порядковая;
  • интервальная;
  • отношений;
  • абсолютная.

Шкалы также относят к одной из двух групп:

  • качественные, для которых не существует единиц измерений;
    • номинальная;
    • порядковая;
  • количественные, выражающие значения в определенных единицах;.
    • интервалов;
    • отношений;
    • абсолютная .

Шкалы также делятся по их силе. Чем больше сведений об объекте измерений можно извлечь из результатов измерений по ней. Самыми сильными считаются абсолютные шкалы, самыми слабыми — номинальные. Иногда исследователи усиливают шкалу, характерным примером является «оцифровка» номинальных шкал. Качественным признакам присваивают некое их числовое выражение. Это облегчает обработку результатов, особенно компьютерную. Важно помнить, что оцифровка не придает качественным признакам всех свойств, которыми обладают числа. К такой шкале можно применять операции сравнения, но нельзя — сложения, вычитания и т.п.

Шкалы измерения по Стивенсу

Шкалы измерений

Рассмотрим шкалы измерений подробнее.

Номинальная

Самые простые измерительные шкалы – номинальные. Они относятся к качественным и отражают те или иные свойства объекта, выраженные словесно. Их элементы могут только совпадать или не совпадать друг другом, Их нельзя сопоставлять по принципу «больше-меньше». Недопустимы также и арифметические действия.

Характерным примером может служить группа крови. Первая группа не больше третьей и не может быть сложена с четвертой. У человека может быть только одна группа крови, и измерение

Порядковая

По ней можно ранжировать и сравнивать объекты, по какому — либо признаку, например, расположить людей в строю по росту. Иванов больше Сидорова, а Сидоров больше Кузнецова.

Читайте также:  Как измерить расход топлива авто

Из этих данных можно сделать вывод о том, что Иванов выше Кузнецова, но нельзя определить, насколько именно.

Интервалов

Она состоит из заранее определенных и равных между собой интервалов. И является намного более информативной. Свойство объекта соотносится с одним из таких интервалов.

Характерным примером такой шкалы измерений может служить принятое у людей исчисление времени. Период оборота Земли вокруг Солнца делится на 365 дней, дни делятся на часы, далее на минуты и секунды. Мы можем соотнести событие с одним из таких интервалов: «эта статья была написана в 2018 году» или «Дождь начнется в 14 часов»

Значения в этом случае можно сравнивать друг с другом не только качественно, но и количественно, становятся доступны операции сложения и вычитания. «Заход солнца произойдет на 12 часов позже восхода». «Фильм А длиннее фильма В на 25 минут»

Однако поскольку начало отсчета не установлено, невозможно определить, во сколько раз одно значение больше другого.

Отношений

Точкой начала отсчета является точка, в которой значение параметра равно нулю. Появляется возможность отсчитывать от нее абсолютное значение параметра, определять разницы значений и во сколько раз одно больше другого. Характерный пример — температурная шкала Кельвина. За начало отчета взята точка «абсолютного нуля», при которой прекращается тепловое движение материи. Второй опорной точкой выбрана температура таяния льда при нормальном давлении. Разница между этими точками по Цельсию составляет 273 °C, и один градус Кельвина равен одному градусу Цельсия. Таким образом, можно сказать, что лед тает при 273К.

Отношений – наиболее информативная. На ней возможны все арифметические операции-

Деление, умножение сложение и вычитание значений параметра будет иметь физический смысл. Мы можем вычислить не только насколько одно значение больше другого, но и во сколько раз.

Разностей

Представляет собой частный случай интервальных. Для них значение не меняется при произвольном числе сдвигов на определенный параметр. Другими характерными признаками являются

  • единицы измерений и точка отсчета определяется по соглашению;
  • существует понятие размерности;
  • доступны операции линейных преобразований;
  • осуществляется путем создания системы эталонов.

В качестве примера можно привести циферблат часов – каждые сутки значение времени будет, например, «7 часов», хотя это разные дни.

Другим примером может служить компас, показывающий направление из одной точки. Сама эта точка может иметь различные координаты.

Важно помнить, что в этом случае при измерении мы можем вычислять разницу между двумя значениями, но должны все время помнить о том, что начальное значении задано произвольно. Например, при переходе на летнее время придется задать новое начальное значение.

Абсолютная

Абсолютная шкала занимает высшую ступень в шкальной иерархии. Единицы их естественные и не основаны на соглашениях и допущениях. Кроме того, эти единицы не имеют размерности, не служат производными системы СИ или какой-либо другой. Они всегда безразмерны:

Абсолютные подразделяют на

  • ограниченные. Диапазон от 0 до 1. Сюда относятся КПД, оптические коэффициенты поглощения т.д.
  • неограниченные – предел упругости, коэффициент усиления в радиотехнике и т.д. Все они нелинейные и не имеют единиц измерений.

Иерархия шкал измерений

Условная иерархия составляется по признаку силы.

  • Количественные:
    • абсолютная;
    • разностей;
    • отношений;
    • интервалов;
  • Качественные:
    • порядковая;
    • наименований.

По мере возрастания силы увеличивается конкретность информации об объекте.

Источник

Шкалы измерений, типы данных и переменных

Переменные различаются тем, как много измеряемой информации они содержат. Объём этой информации определяется выбранной шкалой измерения.

Шкала – это совокупность числовых значений какого-то признака, в которой введена единица измерения, направление возрастания или убывания и начало отсчета. Каждая шкала, как правило, применяется ко многим признакам и переменным. Шкала является инструментом измерения признаков или свойств тех или иных объектов. Каждая шкала предполагает наличие определенных правил её использования, например установление соответствия между числами и признаками или свойствами эмпирических объектов, преобразований шкал, т.е. приданию иных значений числовых выражений этих признаков и свойств, методов вычислений с числовыми значениями шкал. Шкалы могут объединяться в группы, которые имеют одинаковую форму и сходные правила использования.

Различают следующие типы шкал:

· Номинальная (номинативная) шкала.

· Порядковая (ординальная) или ранговая шкала.

· Шкала отношений (шкала отношений или равных отношений).

Первые два вида шкал называются неметрическими, а последние два – метрическими шкалами.

Эти четыре шкалы измерения принадлежат к трем типам данных: качественные, порядковые и количественные. Данные – это информация, предназначенная для обработки с применением процедур, основанных на алгоритмах. Данные в ходе обработки нередко классифицируются, разбиваются на категории или преобразуются. Типы измеряемых данных определяют допустимые для данной шкалы математические преобразования, а также типы отношений, отображаемых соответствующей шкалой.

В номинальных шкалах нет ни единиц, ни направлений, а в порядковых – единиц. Но такие совокупности данных тоже включаются в типологию шкал для обеспечения единообразия изложения: от номинальной шкалы до шкалы отношений в каждом типе будут появляться те или иные дополнительные их свойства.

Номинальные переменные используются только для качественной классификации. Это означает, что данные переменные могут быть измерены только в терминах принадлежности к некоторым, существенно различным классам. Эти классы не могут быть упорядочены по увеличению или уменьшению интенсивности какого-то качества, например, лучше или хуже, больше или меньше. Типичные примеры номинальных переменных – пол, национальность, цвет, группа крови, город и т.д. Номинальные переменные – наблюдение, классифицированные в одну из целого ряда взаимоисключающих категорий. Например, человек может иметь лишь одну из четырех групп крови (I, II, III, IV). При этом установить, как группа крови лучше или какой пол у людей лучше – невозможно. Хотя обычно можно определить и группу крови и какому полу принадлежит человеческий индивид, а различать индивидов разного пола или с разными группами крови по их социальному статусу запрещают современные нормы прав человека. Часто номинальные переменные называют категориальными. Никакие арифметические операции с номинальными переменными невозможны, их можно только сравнивать на совпадение.

Читайте также:  Бланки протоколов для измерения сопротивления изоляции

Порядковые переменные позволяют ранжировать (упорядочить) объекты, указав какие из них в большей или меньшей степени обладают качеством, выраженным данной переменной. На порядковой шкале значения переменных можно сравнивать только по порядку: какое больше или меньше, выше или ниже. Никакие другие сравнения невозможны. В частности, нельзя сказать «на сколько больше» или «на сколько меньше» одно значение другого. Порядковые переменные иногда также называют ординальными. Типичный пример порядковой переменной – социоэкономический статус семьи. Мы понимаем, что верхний средний уровень выше среднего уровня, однако сказать, что разница между ними равна, скажем, 18% мы не сможем. Другой пример – оценки на экзамене. Понятно, что высший балл – отлично, ниже – хорошо, ещё ниже – удовлетворительно. Но определить, например, насколько хорошо лучше, чем удовлетворительно невозможно. Никакие арифметические операции с номинальными переменными невозможны, их можно только сравнивать на совпадение или больше – меньше.

Интервальные переменные позволяют не только упорядочивать объекты измерения, но и численно выразить и сравнить различия между ними. Для значений по этой шкале вполне осмыслен вопрос насколько одно значение больше или меньше другого. Например, температура, измеренная в градусах Фаренгейта или Цельсия, образует интервальную шкалу. Можно не только сказать, что температура 40 градусов выше, чем температура 30 градусов, но и что увеличение температуры с 20 до 40 градусов вдвое больше увеличения температуры от 30 до 40 градусов. С интервальными переменными возможны операции сложения и вычитания, операции умножения и деления — невозможны.

Относительные переменные очень похожи на интервальные переменные. В дополнение ко всем свойствам переменных, измеренных в интервальной шкале, их характерной чертой является наличие определенной точки абсолютного нуля или точки отсчёта. Таким образом, для этих переменных являются обоснованными предложения типа: одно значение в два раза больше, чем другое. Типичными примерами шкал отношений являются измерения времени или пространства. Например, температура по Кельвину образует шкалу отношения, и можно не только утверждать, что температура 200 градусов выше, чем 100 градусов, но и что она вдвое выше. Интервальные шкалы (например, шкала Цельсия) не обладают данным свойством шкалы отношения. С относительными переменными возможны любые арифметические операции.

Правда, в большинстве статистических процедур не делается различия между свойствами интервальных шкал и шкал отношений. Это означает просто, что для интервальных шкал исследователи вводят условные точки отсчёта, которые фактически преобразуют интервальные переменные в относительные. Но для интервальных переменных такие точки отсчёта могут поменяться в других исследованиях, и тогда, например, пропорции значений таких переменных могут измениться. Это необходимо учитывать при интерпретации результатов анализа данных.

Сводная таблица характеристик типов шкал

Тип шкалы Отношения между шкальными значениями Допустимые преобразования шкалы Допустимые статистические расчеты Наличие нуля и единиц измерения
Номинальная шкала отношения неравенства, различия установление взаимооднозначных соответствий процент, доля, мода нет нуля, нет единиц измерения
Порядковая шкала есть иерархия признаков, сравнение, отношение неравенства. Больше, меньше, равно, не равно. сохранение порядка процент, доля, мода, медиана нет нуля, нет единиц измерения
Интервальная шкала равенство, неравенство, больше, меньше, больше на, меньше на. Отношения между интервалами. можно менять единицу измерения и условный ноль процент, доля. мода, медиана, среднее арифметическое, дисперсия, среднеквадратическое отклонение условный ноль, есть единицы измерения
Шкала отношений равенство, неравенство, больше, меньше, больше на, меньше на, больше в. меньше в. можно менять единицы измерения, ноль переносить нельзя процент, доля. мода, медиана, среднее арифметическое, дисперсия, среднеквадратическое отклонение абсолютный ноль, есть единицы измерения

Таблицы данных

Результаты сбора данных располагаются обычно в таблицах данных. В современной науке существует стандарт отображения данных в таблицах, который позволяет легко обрабатывать эти табличные данные с помощью практически любых статистических программ.

Таблица является весьма рациональной, наглядной и компактной формой представления результатов измерения тех или иных признаков, выраженных в соответствующих значениях переменных.

Таблица должна иметь заголовок, который показывает, какая информация располагается в ней. В самой таблице по столбцам располагаются наименования переменных, а по строкам – номера или много реже наименования объектов, признаки которых были измерены в переменных. Для использования методов современной прикладной статистики для целей анализа данных предпочтительно все результаты измерений признаков выражать в числовом виде. Тогда каждая номинальная или ранговая переменная получает коды значений соответствующего признака, которые часто имеют и словесное объяснение.

Список учебной группы (номинальная переменная):

Источник