Меню

Относительных величин относительные показатели сравнения



Относительная величина (относительный показатель) сравнения, координации, интенсивности

Следующий вид относительных величин – это относительная величина сравнения или как еще ее называют относительный показатель сравнения. По своему статусу величина сравнения занимает, скорее всего, пятое место среди всех относительных величин, после величин динамики, выполнения плана, планового задания и структуры. А вот по частоте использования, пожалуй, первое. Кроме того в этой части мы рассмотрим еще две относительные величины, которые также могут быть использованы в аналитических целях.

Относительная величина сравнения

Дело все в том, что относительная величина сравнения проводит сравнение одного показателя с другим. Получаем, что показатель сравнения это и есть сама относительная величина. Что такое относительные величины и как она рассчитывается можно посмотреть в этой лекции.
Относительная величина сравнения характеризует сравнительные размеры разных объектов или абсолютных величин, но отнесенных к одному и тому же явлению. Например, пакет молоко объемом 1 литр в одном магазине стоит 50 рублей, а в другом 60 рублей, то мы можем сравнить их стоимость, и выявить во сколько раз один стоит дороже другого. 60 : 50 = 1,2. То есть пакет молока во втором магазине стоит в 1,2 раза дороже.
Таким нехитрым действие и рассчитываются относительные величины сравнения, причем процесс расчета может состоять не из одного действия, а сразу из нескольких. Если в качестве сравниваемых величин будут использоваться несколько объектов, а база сравнения естественно будет одна.
Учитывая вышесказанное определить относительную величину сравнения (ОВСр) можно по следующей формуле

В данном случае, как и в любой относительной величине в числителе (сверху) находится сравниваемая величина, а в знаменателе (внизу) базисная величина. Базисная величина может меняться в зависимости от задания и целей расчета. Например, имеет данные о производстве мяса в Московской области, Тульской области, Брянской области, Смоленской области. Если за базу сравнения взять область Московскую, то все данные по другим областям мы будем делить на данные по Московской области. Если же за базу сравнения мы возьмем Тульскую, то, следовательно, данные по всем другим областям мы поделим на данные по Тульской области.
Пример. Имеются условные данные о производстве молока в четырех областях. Рассчитайте относительный показатель сравнения, приняв за базу сравнения данные по Московской области, а затем данные по Тульской области.

Кроме сравнения с данным по Московской и Тульской областям, аналогично можно производить сравнение с данными по Смоленской и Брянской областям. Все зависит от целей сравнения.

Кроме рассмотренных пяти относительных величин в статистике также используются еще две разновидности. Используются они реже, чем основные, но также достойны внимания.

Относительная величина координации

Относительный показатель координации используется в основном в узко аналитических целях. Для сравнения частей внутри статистической совокупности.
Относительная величина координации показывает соотношение частей целого между собой. Это базовое определение данной относительной величины.
Величина координации похожа на относительную величину структуры. Только если в структуре мы части делили на целое, то здесь часть будет делиться на другую часть, которую выбрали за базу сравнения.
Получаем соотношение основных базовых частей друг с другом, которые используются для конкретных целей анализа.
Формула расчет относительной величины координации (ОВК) имеет вид:

Возможны и другие варианты частей, например 3 с 1 и так далее.

Относительная величина интенсивности развития

Величина интенсивности показывает степень развития какого-то показателя в какой-то среде. Способ расчета показателя интенсивности классический, и похож на расчет величины сравнения.
Часто величина интенсивности рассчитывается в процентах, промиллях.
Обычно используется в статистике населения для характеристики демографических показателей. Например, уровней рождаемости.
Число родившихся в городе составило 15 человек на каждую тысячу живущих. Это и есть пример величины интенсивности развития.
Кроме того такой способ расчета используется и в экономике организации. Фондовооруженность показатель характеризующий величину основных фондов приходящихся на одного работника.
Чтобы вернуться к списку лекций нажмите на ссылку.

Источник

8.2. Относительные величины (показатели)

Относительная величина (показатель) представляет собой результат деления одного абсолютного показателя на другой и выражает соотношение между количественными характеристиками социально-экономических процессов и явлений. Относительными величинами в статистике называются обобщающие показатели. В статистике относительные показатели используют в сравнительном анализе, в обобщении. Ниже в данной теме представлены примеры вычисления всех относительных величин.

По отношению к абсолютным показателям, относительные показатели или показатели в форме относительных величин являются производными, вторичными.

Без относительных показателей невозможно измерить интенсивность развития изучаемого явления во времени, оценить уровень развития одного явления на фоне других взаимосвязанных с ним явлений, осуществить про­странственно-территориальные сравнения, в том числе и на международном уровне.

Относительные показатели могут выражаться в коэффициентах, процентах, ­милле, промилле, продецимилле или быть именованными числами. Если база сравнения принимается за 1, то относительный показатель выражается в коэффициентах, если база принимается за 100, 1000, то относительный показатель соответственно выражается в процентах (%), промилле (‰) и т.д.

Читайте также:  Таблица умножения 3 класс сравнение

Все используемые на практике относительные статистические показатели можно подразделить на следующие виды:

1. Относительный показатель динамики (ОПД);

2. Относительный показатель плана (ОПП);

3. Относительный показатель реализации плана (ОПРП);

4. Относительный показатель структуры (ОПС);

5. Относительный показатель координации (ОПК);

6. Относительный показатель интенсивности (ОПИ);

7. Относительный показатель сравнения (ОПСр).

Рассмотрим ниже формулы и примеры выше обозначенных относительных величин.

1) Относительный показатель динамики (ОПД) представляет собой отношение уровня исследуемого процесса или явления за данный период времени (по состоянию на данный момент времени) к уровню этого же процесса или явления в прошлом (формула 8.1):

  • Пример вычисления относительного показателя динамики (ОПД). Предположим, внешнеторговый оборот фирмы в 2017 г. составил 3,0 млн. руб., а в в 2018 г. составил 3,8 млн.

Решение. В этом случае относительный показатель динамики (ОПД) представляющий собой отношение текущего уровня к предшествующему или базе сравнения составит (3,8/3,0=1,27 х 100 =126,7 %)

Все субъекты финансово-хозяйственной деятельности, от небольших индивидуальных частных предприятий и до крупных корпораций, в той или иной степени осуществляют как оперативное, так и стратегическое планирование, а также сравнивают реально достигнутые результаты с ранее намеченными.

Для этой цели используются относительные показатели плана (ОПП) и относительные показатели реализации плана (ОПРП) (формулы 8.2 и 8.3):

2) Относительный показатель плана ( ОПП) характеризует относительную высоту планового уровня, т.е. во сколько раз, намечаемый объемный показатель превысит достигнутый уровень или сколько процентов от этого уровня составит:

3) Относительный показатель реализации плана (ОПРП) отражает фактический объем производства или реализации в процентах или коэффициентах по сравнению с плановым уровнем :

  • Пример вычисления (относительный показатель плана ( ОПП)).

Внешнеторговый оборот фирмы в 2017 г. составил 3,0 млн. руб. Исходя из проведенного анализа складывающихся на рынке тенденций, руководство фирмы считает реальным в следующем 2018 году довести оборот до 3,6 млн. руб. В этом случае (ОПП), представляющий собой отношение планируемой величины к фактически достигнутой, составит (3,6/ 3,0=1,2 х 100 =120%) .

  • Пример вычисления (относительный показатель реализации плана(ОПРП)).

Фактический оборот фирмы за 2018 г. составил 3,8 млн. руб. Тогда относительный показатель реализации плана, определяемый как отношение фактически достигнутой величины к ранее запланированной, составит (3,8/3,6=1,056 х 100 = 105,6%).

  • Между относительными показателями плана, реализации плана и динамики существует следующая взаимосвязь: ОПП х ОПРП = ОПД.
  • В нашем примере: 1,20х 1,056 = 1,267 или 3,8/3,0=1,267. Основываясь на этой взаимосвязи, по любым двум известным величинам при необ­ходимости всегда можно определить третью неизвестную величину.

4) Относительный показатель структуры (ОПС) представляет собой соотношение структурных частей изучаемого объекта и их целого :

Пример вычисления (ОПС -относительный показатель структуры) рассмотрим в таблице 8.1.

Таблица 8.1 ‑ Структура валового внутреннего продукта РФ в 2018 г. (цифры условные)

ВВП – всего

– чистые налоги на продукты

Рассчитанные в последней графе данной таблицы проценты представляют собой относительные показатели структуры (ОПС) (в данном случае ‑ удельные веса). Сумма всех удельных весов всегда должна быть строго равна 100% или 1.

5) Относительный показатель координации (ОПК) представляет собой отношение одной части совокупности к другой части этой же совокупности:

При этом в качестве базы сравнения выбирается та часть, которая имеет наибольший удельный вес или является приоритетной с экономической, социальной или какой-либо другой точки зрения. В результате получают, во сколько раз данная часть больше базисной или сколько процентов от нее составляет, или сколько единиц данной структурной части приходится на 1 единицу (иногда ‑ на 100, 1000 и т.д. единиц) базисной структурной части.

Пример вычисления ( относительный показатель координации (ОПК)). На основе данных приведенной выше таблице 8.1 мы можем вычислить (ОПК), т.е. на каждый рубль произведенных товаров приходится 4,84 руб. произведенных услуг (59417/32928,6) и 0,35 руб. чистых налогов на продукты (11530,2/32928,6).

6) Относительный показатель интенсивности (ОПИ) характеризует степень распространения изучаемого процесса или явления и представляет собой отношение исследуемого показателя к размеру присущей ему среды:

Данный показатель получают сопоставлением уровней двух взаимосвязанных в своем развитии явлении. Поэтому, наиболее часто он представляет собой именованную величину, но может быть выражен и в процентах, промилле, продецимилле.

Обычно относительный показатель интенсивности рассчитывается в тех случаях, когда абсолютная величина оказывается недостаточной для формулировки обоснованных выводов о масштабах, явления, его размерах, насыщенности, плотности распределения. Так, например, для определения уровня обеспеченности населения легковыми автомобилями рассчитывается число автомашин, приходящихся на 100 семей, для определения плотности населения рассчитывается число людей, приходящихся на 1 кв. км.

Читайте также:  У физически тренированных людей по сравнению с нетренированным

Примеры вычисления (относительный показатель интенсивности)

Пример 1 (ОПИ). Так, по данным социальной статистики на конец 2008 г. общая численность зарегистрированных безработных в РФ составляла 1,552 млн. чел., а экономически активное население – 75,892 млн. чел.

Отсюда следует, что уровень безработицы (ОПИ) составлял (1552/75892 х 100=2,05% ).

Разновидностью относительных показателей интенсивности являются относи­тельные показатели уровня экономического развития, характеризующие производство продукции в расчете на душу населения и играющие важную роль в оценке развития экономики государства или региона. Так как объемные показатели производства продукции по своей природе являются интервальными, а показатель численности населения ‑ моментным, в расчетах используют среднюю за период численность населения (предположим, среднегодовую).

Пример 2 (ОПИ).Рассматривая лишь абсолютный размер ВВП России (в текущих ценах) на конец 2008 года (41668034 млн. руб.), трудно оценить эту величину. Для того, чтобы на основе данной цифры сделать вывод об уровне развития экономики, необходимо сопоставить ее со среднегодовой численностью населения страны (142,1 млн.чел), которая в простейшем случае рассчитывается как полусумма численности населения на начало и на конец года. В результате годовой размер ВВП на душу населения (ОПИ)составит:

(293,2 тыс.руб. = 41668034 млн. руб./142,1 млн.чел.

7) Относительный показатель сравнения (ОПСр) представляет собой соотношение одноименных абсолютных показателей, характеризующих разные объекты (предприятия, фирмы, районы, области, страны и т.п.):

Для выражения данного показателя могут использоваться как коэффициенты, так и проценты.

Пример вычисления (относительный показатель сравнения (ОПСр).

Согласно официальным статистическим данным, инвестиции в основной капитал в РФ в 2002 г. за счет средств федерального бюджета составили 81,6 млрд. руб., бюджетов субъектов Федерации и местных бюджетов ‑ 184,5 млрд. руб., средств предприятий ‑ 653,1 млрд. руб. Вычислим ОПСр (653,1/81,6=8 и 653,1/184,5=3,5).

Вывод: инвестиции за счет средств предприятий в 8 раз превышали инвестиции из средств федерального бюджета и в 3,5 раза превышали инвестиции из бюджетов субъектов Федерации и местных бюджетов.

Источник

Относительная величина сравнения

Относительная величина сравнения (показатель сравнения) — характеризует соотношение между разными совокупностями по одноименным показателям.

Пример 8: Объем выданных кредитов частным лицам на 1 февраля 2008 г. Сбербанком России составил 520189 млн.руб, по Внешторгбанку — 10915 млн.руб.
Решение:
ОВС = 520189 / 10915 = 47,7
Таким образом, объем выданных кредитов частным лицам Сбербанком России на 1 февраля 2006 г. был выше в 47,7 раза, чем аналогичный показатель Внешторгбанка.

13.Определение относительных показателей динамики: темпов роста, плана, реализации плана, структуры, координации, интенсивности, сравнения.

Относительные величины, используемые в статистической практике:

  • относительная величина структуры;
  • относительная величина координации;
  • относительная величина планового задания;
  • относительная величина выполнения плана;
  • относительная величина динамики;
  • относительная величина сравнения;
  • относительная величина интенсивности.

Относительная величина структуры (ОВС) характеризует структуру совокупности, определяет долю (удельный вес) части в общем объеме совокупности. ОВС рассчитывают как отношение объема части совокупности к абсолютной величине всей совокупности, определяя тем самым удельный вес части в общем объеме совокупности (%):

(4.1)

где mi — объем исследуемой части совокупности; M — общий объем исследуемой совокупности.

Относительная величина координации (ОВК) характеризует соотношение между двумя частями исследуемой совокупности, одна из которых выступает как база сравнения (%):

(4.2)

где mi — одна из частей исследуемой совокупности; mб — часть совокупности, которая является базой сравнения.

Относительная величина планового задания (ОВПЗ) используется для расчета в процентном отношении увеличения (уменьшения) величины показателя плана по сравнению с его базовым уровнем в предшествующем периоде, для чего используется формула

(4.3)

где Рпл — плановый показатель; Р — фактический (базовый) показатель в предшествующем периоде.

Относительная величина выполнения плана (ОВВП) характеризует степень выполнения планового задания за отчетный период (%) и рассчитывается по формуле

(4.4)

где Рф — величина выполнения плана за отчетный период; Рпл — величина плана за отчетный период.

Относительная величина динамики (ОВД) характеризует изменение объема одного и того же явления во времени в зависимости от принятого базового уровня. ОВД рассчитывают как отношение уровня анализируемого явления или процесса в текущий момент времени к уровню этого явления или процесса за прошедший период времени. В результате мы получаем коэффициент роста, который выражается кратным отношением. При исчислении этой величины в процентах (результат умножается на 100) получаем темп роста.

Темпы роста можно просчитывать как с постоянным базовым уровнем (базисные темпы роста — ОВДб ), так и с переменным базовым уровнем (цепные темпы роста — ОВДц ):

(4.5)

где Рт — уровень текущий; Рб — уровень базисный;

Читайте также:  Роутер tenda ac6 сравнить

(4.6)

где Рт — уровень текущий; Рт-1 — уровень, предшествующий текущему.

Относительная величина сравнения (ОВСр) — соотношение одноименных абсолютных показателей, относящихся к разным объектам, но к одному и тому же времени (например, соотносятся темпы роста населения в разных странах за один и тот же период времени):

(4.7)

где МА — показатель первого одноименного исследуемого объекта; МБ — показатель второго одноименного исследуемого объекта (база сравнения).

Все предыдущие показатели относительных величин характеризовали соотношения одноименных статистических объектов. Однако есть группа относительных величин, которые характеризуют соотношение разноименных, но связанных между собой статистических показателей. Эту группу называют группой относительных величин интенсивности (ОВИ), которые выражаются, как правило, именованными числами. В статистической практике относительные величины интенсивности применяются при исследовании степени объемности явления по отношению к объему среды, в которой происходит распространение этого явления. ОВИ здесь показывает, сколько единиц одной совокупности (числитель) приходится на одну, на десять, на сто единиц другой совокупности (знаменатель).

Примерами относительных величин интенсивности могут служить, скажем, показатели уровня технического развития производства, уровня благосостояния граждан, показатели обеспеченности населения средствами массовой информации, предметами культурно-бытового назначения и т.д. ОВИ рассчитывается по формуле

(4.8)

где А — распространение явления; ВА — среда распространения явления А.

При расчете относительных величин интенсивности может возникнуть проблема выбора адекватной явлению базы сравнения (среды распространения явления). Например, при определении показателя плотности населения нельзя брать в качестве базы сравнения общий размер территории того или иного государства, в этом случае базой сравнения может быть лишь территория в 1 км 2 . Критерием правильности расчета является сопоставимость по разработанной методологии расчета сравниваемых показателей, применяющихся в статистической практике.

14.Сущность и виды средних.

Средней величиной называется статистический показатель, который дает обобщенную характеристику варьирующего признака однородных единиц совокупности.

Величина средней дает обобщающую количественную характеристику всей совокупности и характеризует ее в отношении данного признака.

Так, например, средняя заработная плата дает обобщающую количественную характеристику состояния оплаты труда рассматриваемой совокупности работников. Кроме того, используя средние величины, имеется возможность сопоставлять различные информационные совокупности. Так, например, можно сравнивать различные организации по уровню производительности труда, а также по уровню фондоотдачи, материалоотдачи и по другим показателям.

Сущность средней заключается в том, что в ней взаимопогашаются случайные отклонения значений признака и учитываются изменения вызванные основным фактором.

Статистическая обработка методом средних величин заключается в замене индивидуальных значений варьирующего признака некоторой уравновешенной средней величиной .

Виды средних величин

Средние величины делятся на два больших класса: степенные средние и структурные средние

Степенные средние:

  • Арифметическая — Равна отношению суммы индивидуальных значений признака к количеству признаков в совокупности

Гармоническая — используется в тех случаях когда известны индивидуальные значения признака и произведение , а частоты неизвестны.

В примере ниже — урожайность известна, — площадь неизвестна (хотя её можно вычислить делением валового сбора зерновых на урожайность), — валовый сбор зерна известен.

Среднегармоническую величину можно определить по следующей формуле:

Геометрическая Среднегеометрическая величина дает возможность сохранять в неизменном виде не сумму, а произведение индивидуальных значений данной величины. Ее можно определить по следующей формуле:

Среднегеометрические величины наиболее часто используются при анализе темпов роста экономических показателей

Квадратическая Средние диаметры колес, труб, средние стороны квадратов определяются при помощи средней квадратической.

Среднеквадратические величины используются для расчета некоторых показателей, например коэффициент вариации, характеризующего ритмичность выпуска продукции. Здесь определяют среднеквадратическое отклонение от планового выпуска продукции за определенный период по следующей формуле:

Структурные средние:

  • Мода — это наиболее часто встречающийся вариант ряда. Мода применяется, например, при определении размера одежды, обуви, пользующейся наибольшим спросом у покупателей. Модой для дискретного ряда является варианта, обладающая наибольшей частотой. При вычислении моды для интервального вариационного ряда необходимо сначала определить модальный интервал (по максимальной частоте), а затем — значение модальной величины признака по формуле:
  • где:
  • — значение моды
  • — нижняя граница модального интервала
  • — величина интервала
  • — частота модального интервала
  • — частота интервала, предшествующего модальному
  • — частота интервала, следующего за модальным
  • Медианаэто значение признака, которое лежит в основе ранжированного ряда и делит этот ряд на две равные по численности части.

Выбор формы средней величины зависит от исходной базы расчета средней и от имеющейся экономической информации для ее расчета.

Исходной базой расчета и ориентиром правильности выбора формы средней величины являются экономические соотношения, выражающие смысл средних величин и взаимосвязь между показателями.

15.Область применения и расчет средней арифметической простой и взвешенной. Основные свойства средней арифметической и их применения.

Самым распространенным видом средней является средняя арифметическая.

Источник