Меню

Постоянная больцмана значение единица измерения



Постоянная Больцмана

Краткое описание

Постоянная Больцмана — физическая постоянная, определяющая связь между температурой и энергией.

Взаимосвязь между макроскопическими свойствами материи (давление, температура) и характером движения атомов и молекул описывается молекулярно-кинетической теорией. Одним из ее создателей являлся Людвиг Больцман.

В рамках этой теории температура газа объясняется кинетической энергией его молекул (скоростью движения), а давление — их упругими ударами о стенки сосуда. Это соотношение устанавливает формула:

где m — масса молекул газа, v — их средняя скорость, k — постоянная Больцмана, а T — температура газа по шкале Кельвина.

Физический смысл постоянной Больцмана заключается в обеспечении взаимосвязи характеристик атомно-молекулярного уровня и объемными свойствами газа, которые можно измерить при помощи приборов.

Постоянная Больцмана обозначается буквой k, а ее величина равна

Как соотносится энергия и температура

При абсолютной температуре T в идеальном однородном газе на каждую поступательную степень свободы приходится энергия \(kT/2\) , что следует из распределения Максвелла. Значение этой энергии при 300 К (комнатной температуре) составляет примерно

В идеальном одноатомном газе каждый атом имеет три степени свободы, которые соответствуют трем пространственным осям. Поэтому энергию, приходящуюся на каждый атом можно выразить как

Если известна величина тепловой энергии, то нетрудно рассчитать среднеквадратичную скорость атомов. Она будет обратно пропорциональна корню квадратному из атомной массы. Например, при температуре 300 К среднеквадратичная скорость молекул ксенона составит 240 м/с, а гелия — 1370 м/с.

Вычисления для молекулярного газа усложняются. Это связано с увеличением степеней свобод. Так, например, при низкой температуре двухатомный газ имеет уже две вращательных и три поступательных степеней свободы. Рассмотрим решение конкретной задачи.

Задача

Газ состоит из N-атомных объемных молекул и находится при определенной температуре Т, при которой у молекул возбуждены колебательные, вращательные и поступательные степени свободы. Найти среднюю энергию молекул этого газа.

На каждую степень свободы в среднем приходится одинаковая величина кинетической энергии (закон равномерного распределения энергии по степеням свободы), которая равна

Тогда можно утверждать, что средняя энергия молекулы составит

Сделаем небольшое пояснение: i — сумма поступательных, вращательных и удвоенного количества колебательных степеней свободы, то есть

Теперь необходимо определить сколько степеней свободы имеют молекулы рассматриваемого газа:

Сокращаем полученное выражение и получаем:

Ключевые нюансы

Постоянная Больцмана представляет собой отношение газовой постоянной (R) к постоянной Авогадро (Na):

По состоянию на 2017 год в международной системе единиц (СИ) ее значение составляет

а размерность — Дж/К.

Постоянную Больцмана не следует путать с постоянной Стефана-Больцмана, которая является константой пропорциональности в законе Стефана-Больцмана.

Способы нахождения постоянной Больцмана

Для нахождения постоянной Больцмана можно использовать различные методы.

Универсальный метод

Искомый коэффициент входит в уравнение состояния идеального газа:

Многочисленные опыты показывают, что при нагревании любого газа от T=273 К до Т1=373 K его давление на стенки сосуда увеличивается с \(P_0=1.013\times10^5\) Па до \(P_1=1.38\times10^5 Па.\)

Провести такой опыт совсем несложно. В качестве газа используется обычный воздух, давление измеряется при помощи манометра, а температура — термометра. При этом известно, что один моль любого газа при нормальных условиях занимает объем V=22,4 л и содержит \(6.02\times10^<23>\) молекул.

Подставим известные параметры в уравнение состояния идеального газа:

Отсюда, коэффициент k

Подставив в получившиеся уравнение известные данные и решив его получаем значение постоянной Больцмана равное \(1.38\times10^<-23>.\)

Через формулу броуновского движения

Небольшое зеркальце подвешивают на упругой нити. Система зеркало-воздух находится в статическом равновесии. О поверхность зеркала ударяются хаотично движущиеся молекулы воздуха. Поэтому оно ведет себя как одна из броуновских частиц. Помимо этого, зеркало будет совершать и крутильные колебания вокруг оси, которой является упругая нить-подвес.

Читайте также:  Как измерить сопротивление датчика уровня топлива

Зеркальную поверхность освещают лучом света. При ее, даже небольших поворотах, отраженный луч будет смещаться. Это позволяет не только увидеть, но и измерить крутильные колебания.

Обозначим угол поворота зеркала как \(\varphi\) , момент инерции зеркала — J, а модуль кручения подвеса — L. Теперь запишем уравнение крутильных колебаний, которое будет иметь вид:

Умножив обе части уравнения на \(\varphi\) и преобразовав его получаем:

Так как малые крутильные колебания являются гармоничными, то можно записать:

Исходя из него получаем:

Подставив в полученную формулу полученные опытным путем данные, например

Получаем приблизительное значение постоянной Больцмана равное

Области применения

Постоянная Больцмана является важным членом многих уравнений:

  • кинетической теории газов;
  • распределения Максвелла-Больцмана;
  • средней энергии молекулы;
  • состояния идеального газа.

Кроме того, постоянная Больцмана играет роль в распределении энергии, используется в определении энтропии. Немаловажное значение имеет эта константа и в физике полупроводников. Она входит в состав формулы, описывающей зависимость между электропроводимостью и температурой.

Источник

Постоянная Больцмана

Значение постоянной Размерность
1,380 6488(13)·10 −23 Дж·К −1 [1]
1,380 6488(13)·10 −16 эрг·К −1
8,617 3324(78)·10 −5 эВ·К −1 [1]

Постоя́нная Бо́льцмана ( или ) — физическая постоянная, определяющая связь между температурой и энергией. Названа в честь австрийского физика Людвига Больцмана, сделавшего большой вклад в статистическую физику, в которой эта постоянная играет ключевую роль. Её экспериментальное значение в Международной системе единиц (СИ) равно:

Дж/К [1] .

Числа в круглых скобках указывают стандартную погрешность в последних цифрах значения величины. Постоянная Больцмана может быть получена из определения абсолютной температуры и других физических постоянных. Однако вычисление постоянной Больцмана с помощью основных принципов слишком сложно и невыполнимо при современном уровне знаний. [источник не указан 257 дней] В естественной системе единиц Планка естественная единица температуры задаётся так, что постоянная Больцмана равна единице.

Универсальная газовая постоянная определяется как произведение постоянной Больцмана на число Авогадро, . Газовая постоянная более удобна, когда число частиц задано в молях.

Содержание

Связь между температурой и энергией

В однородном идеальном газе, находящемся при абсолютной температуре , энергия, приходящаяся на каждую поступательную степень свободы, равна, как следует из распределения Максвелла, . При комнатной температуре (300 К) эта энергия составляет Дж, или 0,013 эВ. В одноатомном идеальном газе каждый атом обладает тремя степенями свободы, соответствующими трём пространственным осям, что означает, что на каждый атом приходится энергия в .

Зная тепловую энергию, можно вычислить среднеквадратичную скорость атомов, которая обратно пропорциональна квадратному корню атомной массы. Среднеквадратичная скорость при комнатной температуре изменяется от 1370 м/с для гелия до 240 м/с для ксенона. В случае молекулярного газа ситуация усложняется, например, двухатомный газ имеет приблизительно пять степеней свободы.

Определение энтропии

Энтропия термодинамической системы определяется как натуральный логарифм от числа различных микросостояний , соответствующих данному макроскопическому состоянию (например, состоянию с заданной полной энергией).

Коэффициент пропорциональности и есть постоянная Больцмана. Это выражение, определяющее связь между микроскопическими () и макроскопическими состояниями (), выражает центральную идею статистической механики.

См. также

Примечания

  1. 123http://physics.nist.gov/cuu/Constants/Table/allascii.txt Fundamental Physical Constants — Complete Listing

Wikimedia Foundation . 2010 .

Смотреть что такое «Постоянная Больцмана» в других словарях:

ПОСТОЯННАЯ БОЛЬЦМАНА — (обозначение k), отношение универсальной ГАЗОВОЙ постоянной к ЧИСЛУ АВОГАДРО, равное 1,381.10 23 джоулей на градус Кельвина. Оно указывает на взаимосвязь между кинетической энергией частицы газа (атома или молекулы) и ее абсолютной температурой.… … Научно-технический энциклопедический словарь

постоянная Больцмана — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN Boltzmann constant … Справочник технического переводчика

Читайте также:  Таблица допуск погрешности измерения

Постоянная больцмана — Значение постоянной Размерность 1,380 6504(24)×10−23 Дж·К−1 8,617 343(15)×10−5 эВ·К−1 1,3807×10−16 эрг·К−1 Постоянная Больцмана (k или kb) физическая постоянная, определяющая связь между температурой и энергией. Названа в честь австрийского… … Википедия

Постоянная Больцмана — Boltzmann Constant Постоянная Больцмана Физическая постоянная, определяющая связь между температурой и энергией. Названа в честь австрийского физика Людвига Больцмана, сделавшего большой вклад в статистическую физику, в которой эта постоянная … Толковый англо-русский словарь по нанотехнологии. — М.

постоянная Больцмана — Bolcmano konstanta statusas T sritis fizika atitikmenys: angl. Boltzmann constant vok. Boltzmann Konstante, f; Boltzmannsche Konstante, f rus. постоянная Больцмана, f pranc. constante de Boltzmann, f … Fizikos terminų žodynas

БОЛЬЦМАНА ПРИНЦИП — соотношение S k lnW между энтропией S и термодинамической вероятностью W (k постоянная Больцмана). На Больцмана принципе основано статистическое истолкование второго начала термодинамики: природные процессы стремятся перевести термодинамическую… … Большой Энциклопедический словарь

БОЛЬЦМАНА РАСПРЕДЕЛЕНИЕ — (Максвелла Больцмана распределение) равновесное распределение частиц идеального газа по энергиям (E) во внешнем силовом поле (напр., в поле тяготения); определяется функцией распределения f e E/kT, где E сумма кинетической и потенциальной энергий … Большой Энциклопедический словарь

Постоянная Стефана — Не следует путать с постоянной Больцмана. Постоянная Стефана Больцмана (также постоянная Стефана), физическая постоянная, являющаяся постоянной пропорциональности в законе Стефана Больцмана: полная энергия, излучаемая единицей площади … Википедия

Больцмана постоянная — Значение постоянной Размерность 1,380 6504(24)×10−23 Дж·К−1 8,617 343(15)×10−5 эВ·К−1 1,3807×10−16 эрг·К−1 Постоянная Больцмана (k или kb) физическая постоянная, определяющая связь между температурой и энергией. Названа в честь австрийского… … Википедия

БОЛЬЦМАНА РАСПРЕДЕЛЕНИЕ — статистически равновесная функция распределения по импульсам и координатам частиц идеального газа, молекулы к рого подчиняются классич. механике, во внешнем потенциальном поле: Здесь постоянная Больцмана (универсальная постоянная ), абсолютная… … Математическая энциклопедия

Источник

Постоянная Больцмана

Для постоянной, связанной с энергией излучения чёрного тела, смотри Постоянная Стефана-Больцмана

Значение постоянной k [1]

1,380 6504(24) • 10 −23

8,617 343(15) • 10 −5

Смотри также Значения в различных единицах ниже.

Постоянная Больцмана ( k или kB ) — физическая постоянная, определяющая связь между температурой вещества и энергией теплового движения частиц этого вещества. Названа в честь австрийского физика Людвига Больцмана, сделавшего большой вклад в статистическую физику, в которой эта постоянная играет ключевую роль. Её экспериментальное значение в системе СИ равно

Дж/К.

В таблице последние цифры в круглых скобках указывают стандартную погрешность значения постоянной. В принципе, постоянная Больцмана может быть получена из определения абсолютной температуры и других физических постоянных. Однако точное вычисление постоянной Больцмана с помощью основных принципов слишком сложно и невыполнимо при современном уровне знаний.

Экспериментально постоянную Больцмана можно определить с помощью закона теплового излучения Планка, описывающего распределение энергии в спектре равновесного излучения при определённой температуре излучающего тела, а также другими методами.

Существует связь между универсальной газовой постоянной и числом Авогадро , из которой следует значение постоянной Больцмана:

Размерность постоянной Больцмана такая же, как и у энтропии.

Содержание

  • 1 История
  • 2 Уравнение состояния идеального газа
  • 3 Связь между температурой и энергией
    • 3.1 Соотношения газовой термодинамики
  • 4 Множитель Больцмана
  • 5 Роль в статистическом определении энтропии
  • 6 Роль в физике полупроводников: тепловое напряжение
  • 7 Применения в других областях
  • 8 Постоянная Больцмана в планковских единицах
  • 9 Постоянная Больцмана в теории бесконечной вложенности материи
  • 10 Значения в различных единицах
  • 11 Ссылки
  • 12 См. также

История

В 1877 г. Больцман впервые связал между собой энтропию и вероятность, однако достаточно точное значение постоянной k как коэффициента связи в формуле для энтропии появилось лишь в трудах М. Планка. При выводе закона излучения чёрного тела Планк в 1900–1901 гг. для постоянной Больцмана нашёл значение 1,346 • 10 −23 Дж/K, почти на 2,5% меньше принятого в настоящее время. [2]

Читайте также:  Группы ремонта средств измерений

До 1900 г. соотношения, которые сейчас записываются с постоянной Больцмана, писались с помощью газовой постоянной R, а вместо средней энергии на одну молекулу использовалась общая энергия вещества. Лаконичная формула вида S = k log W на бюсте Больцмана стала таковой благодаря Планку. В своей нобелевской лекции в 1920 г. Планк писал: [3]

Эта константа часто называется постоянной Больцмана, хотя, насколько я знаю, сам Больцман никогда не вводил её — странное состояние дел, при том, что в высказываниях Больцмана не было речи о точном измерении этой константы.

Такая ситуация может быть объяснена проведением в то время научных дебатов по выяснению сущности атомного строения вещества. Во второй половине 19 века существовали значительные разногласия в отношении того, являются ли атомы и молекулы реальными, либо они лишь удобный способ описания явлений. Не было единства и в том, являются ли «химические молекулы», различаемые по их атомной массе, теми же самыми молекулами, что и в кинетической теории. Далее в нобелевской лекции Планка можно найти следующее: [3]

«Ничто не может лучше продемонстрировать положительную и ускоряющуюся скорость прогресса, чем искусство эксперимента за последние двадцать лет, когда было открыто сразу множество методов измерения массы молекул практически с той же точностью, что и измерение массы какой-нибудь планеты».

Уравнение состояния идеального газа

Для идеального газа справедлив объединённый газовый закон, связывающий давление P, объём V, количество вещества n в молях, газовую постоянную R и абсолютную температуру T:

В данном равенстве можно сделать замену . Тогда газовый закон будет выражаться через постоянную Больцмана и количество молекул N в объёме газа V:

Связь между температурой и энергией

В однородном идеальном газе, находящемся при абсолютной температуре T , энергия, приходящаяся на каждую поступательную степень свободы, равна, как следует из распределения Максвелла, kT / 2 . При комнатной температуре (≈ 300 K) эта энергия составляет Дж, или 0,013 эВ.

Соотношения газовой термодинамики

В одноатомном идеальном газе каждый атом обладает тремя степенями свободы, соответствующими трём пространственным осям, что означает, что на каждый атом приходится энергия 3kT / 2 . Это хорошо согласуется с экспериментальными данными. Зная тепловую энергию, можно вычислить среднеквадратичную скорость атомов, которая обратно пропорциональна квадратному корню из атомной массы. Среднеквадратичная скорость при комнатной температуре изменяется от 1370 м/с для гелия до 240 м/с для ксенона.

Кинетическая теория даёт формулу для среднего давления P идеального газа:

Учитывая, что средняя кинетическая энергия прямолинейного движения равна:

находим уравнение состояния идеального газа:

Это соотношение неплохо выполняется и для молекулярных газов; однако зависимость теплоёмкости изменяется, так как молекулы могут иметь дополнительные внутренние степени свободы по отношению к тем степеням свободы, которые связаны с движением молекул в пространстве. Например, двухатомный газ имеет уже приблизительно пять степеней свободы.

Множитель Больцмана

В общем случае система в равновесии с тепловым резервуаром при температуре T имеет вероятность p занять состояние с энергией E, что может быть записано с помощью соответствующего экспоненциального множителя Больцмана:

В данном выражении фигурирует величина kT с размерностью энергии.

Вычисление вероятности используется не только для расчётов в кинетической теории идеальных газов, но и в других областях, например в химической кинетике в уравнении Аррениуса.

Роль в статистическом определении энтропии

Основная статья: Термодинамическая энтропия

Источник