Меню

Прибор для измерения эквивалентной дозы ионизирующего излучения



Что такое дозиметр

Дозиметр – прибор для измерения кермы фотонного излучения, экспозиционной и поглощенной дозы, эквивалента дозы нейтронного, фотонного излучений, мощности этих величин. Основная задача его использования – определение дозы ионизирующего излучения. Процесс измерения называется дозиметрией. Оборудование такого типа применяется, чтобы оперативно измерять уровень радиации вручную или выступать в качестве предупреждающих индикаторов радиоактивной опасности.

На основе показаний бытового дозиметра оценивается уровень тяжести лучевого поражения, которое было получено человеком во время пребывания в зоне облучения. Индивидуальные приборы регистрируют и сохраняют данные о полученной дозе обучения за продолжительные временные периоды.

Существует множество разновидностей дозиметров, которые различаются конструкционными особенностями, техническими характеристиками, количество измеряемых типов радиации (α, β, γ), нейронное, рентгеновское излучение. Универсальные в использовании приборы имеют сложную конструкцию, высокую стоимость, являются профессиональными. Индивидуальные модели рассчитаны на измерение β, γ-излучения, реже – α. Бытовые устройства имеют небольшой диапазон измеряемых величин.

Из чего состоит дозиметр?

Бытовые модели включают в себя несколько основных конструкционных элементов. Из чего состоит прибор?

  • Детектор частиц (также его принято называть ионизационной камерой). Датчик часто монтируется в едином блоке с регистрирующим, преобразующим устройствами. Детекторы работают в одном из двух режимов: подсчет отдельных частиц, которые через него проходят, или определение регистрируемой дозы (поглощенной за определенный временной промежуток).
  • Регистрирующее устройство. Представлено в виде совокупности элементов средства измерений, регистрирующих значений измеряемых величин.
  • Питающее устройство. Необходимо для приложения разности потенциалов на электроды. Обеспечивает питание электрической энергией всех энергозависимых элементов прибора.
  • Преобразующее устройство. Преобразует первичный эффект излучения в электроимпульсы.

Предназначение

Индивидуальные дозиметры – приборы, которые измеряют дозу ионизирующего излучения или ее мощность. Бытовые модели предназначены для измерения эквивалентной дозы или ее мощности, созданной гамма и рентгеновским излучением. Применение устройств такого типа актуально для зон с высоким радиационным фоном или возле объектов высокого риска выбросов радиоактивности в окружающую среду.

Работа любого дозиметра базируется на задействовании детектора ионизирующего излучения. Датчики такого типа могут быть различными:

  • полупроводниковые;
  • сцинтилляционные;
  • ионизационные камеры;
  • счетчик Гейгера.

Вне зависимости от типа детектора, суть функционирования прибора заключается в преобразовании импульса кванта изучения, который передается веществу датчика, в электросигнал и последующего его перерасчета в единицы эквивалентной дозы. Дозиметры, будучи средствами измерений ионизирующих излучений, разделяют на следующие категории:

  • измерители мощности дозы, ее изменения, что позволяет дать оценку радиоактивной обстановки на местности;
  • комбинированные устройства (измеряют дозу и ее мощность);
  • измерители дозы (рассчитаны на измерение поглощенной дозы в облучаемых объектах).

При использовании бытовых дозиметров, вне зависимости от типа детектора, для точного измерения дозы ионизирующего излучения требуется определенное время.

Как работает радиационный дозиметр: принцип работы

Детектор прибора заполнен аргоном, к нему подано напряжение с двух электродов (в условиях устранения всех возможных скачков напряжения). В процессе прохождения бета-частиц через ионизационную камеру, которая заполнена газом под напряжением, он ионизируется, благодаря чему увеличиваются его токопроводящие характеристики. За счет этого формируется электроразряд, снижающий напряжение на электродах до нулевого уровня.

Затем ионизационная камера мгновенно восстанавливается, напряжение имеет номинальное значение, а детектор готов к обнаружению и приему новых бета-частиц. Скачки регистрируются микропроцессорной платой, которая преобразует их в цифровые показатели. Пользователь в современных устройствах может задать указанный временной промежуток, за который и будут высвечиваться полученные значения измерений.

В процессе регистрации рентгеновских лучей, гамма-излучения принцип работы дозиметра примерно аналогичный. Отличие заключает в том, что формирование электроразряда в детекторе прибора возникает за счет выбивания электронов рентгеновскими или гамма-фотонами из специальной пленки, расположенной на поверхности датчика. Степень эффективной дозы, мощность излучения за определенный временной промежуток регистрируется и устанавливается благодаря последовательному подсчету подобных импульсов (соответственно, каждой частицы, которая проходит через детектор). Полученные сведения обрабатываются электронной схемой и преобразуются в цифровой сигнал, выводимый на дисплей прибора.

Что показывает?

Бытовые автоматические дозиметры могут иметь разные варианты подсчета радиации. Исчисление ведется в следующих показателях:

  • зиверты в час (Зв/ч);
  • рентгены в час (Р/ч).

В современных устройствах чаще применяются сведения, которые зарегистрированы в микрозивертах, микрорентгенах (в зависимости от того, как работает прибор). При измерении радиации нормальное значение радиоактивного фона – около 0,2 мкЗв/ч (20 мкР/ч). Зиверты и рентгены находятся в соотношении 1 мкЗв = 100 мкР.

Виды ионизирующих излучений

Ионизирующее излучение – тип энергии, которая высвобождается атомами в виде электромагнитных частиц, волн. Радиоактивность – спонтанный распад атомов. Излишки энергии, которые возникают при этом – форма ионизирующего излучения. Нестабильные элементы, которые формируются при распаде и испускают ионизирующее излучение – радионуклиды. Выделяются следующие виды ионизирующего излучения:

Каждая разновидность ионизирующего излучения обладает персонализированными показателями проникающей способности и иными характеристиками, оказывающими воздействие на степень воздействия (соответственно, нуждающиеся в различных мерах по обеспечению безопасности здоровья людей).

Сферы применения

Дозиметр и радиометр – приборы, которые по-разному устроены и имеют различные принципы работы. Дозиметр применяется для определения дозы излучения, а радиометр используется для установления уровня активности радионуклида. Измерения могут проводиться в отношении различных веществ, независимо от их физического состояния. Поэтому контроль с помощью дозиметра выполняется над твердыми телами, жидкостями, газами, аэрозолями (независимо от того, какие формы принимает объект исследования)

Приборы имеют широкую область применения – их используют в любых местах и случаях, в которых нужно проконтролировать радиационную ситуацию. А также при наличии подозрений относительно того, что существует опасность радиационного заражения. Дозиметрами пользуются для исследования следующих объектов:

  • антиквариат, предметы старины;
  • бумажные деньги, монеты;
  • стройматериалы;
  • сооружения, железобетонные конструкции, различные дома и здания;
  • земельные участки;
  • продовольственные товары, корма для животных;
  • грузы, почтовые отправления;
  • драгоценности, ювелирные изделия;
  • удобрения;
  • транспортные средства разного типа и т. д.

Виды дозиметров по методу измерения

Если говорить кратко и простыми словами, то основной рабочим элементом любого дозиметра является детектор радиации. От его технических характеристик и типа зависит скорость и точность получаемых сведений. При воздействии гамма-, бета-, альфа-излучения в детекторе происходят скачки напряжения, преобразующиеся в цифровые данные. По типу датчика бывают следующие виды дозиметров:

  • слюдяные счетчики Гейгера-Мюллера (устанавливаются в бытовые дозиметры, фиксируют бета- и альфа-частицы);
  • газоразрядные (применяются в миниатюрных приборах, способны регистрировать гамма- и бета-излучения, но только критические показатели);
  • термолюминесцентные лампы (часто встречаются в бытовых устройствах, призваны замерять накопленную дозу радиации);
  • сцинтилляционные кристаллы (не используются для измерения альфа-излучения);
  • пин-диоды (устройства с невысокой чувствительностью, показывающие только критические уровни).

Как пользоваться индивидуальным дозиметром?

Чтобы замерить радиационный фон разных предметов и объектов, необходимо действовать в определенной последовательности. Работа с дозиметром включает в себя следующие этапы:

  1. Сначала делают следующее – измеряется радиационный фон на расстоянии нескольких метров от объекта в течение 30-60 секунд. Нормальный показатель при этом – около 10-20 мкР/ч. В помещениях радиационный фон выше, чем в уличных условиях.
  2. Затем необходимо поднести индикатор радиоактивности к измеряемому объекту стороной, где установлен детектор (обычно на задней поверхности устройства).
  3. После этого замеряется радиационный фон на расстоянии в 10-20 мм от предмета.
  4. В завершении из полученных данных нужно вычесть измеренный ранее уровень радиационного фона окружающей среды.

Своевременная проверка предметов личного пользования, грузов, продуктов питания и других веществ позволяет уберечь человека от невидимой угрозы и ее опасных последствий.

Источник

3. Приборы для измерения ионизирующих излучений.

Классификация дозиметрических приборов (по назначению):

1. Приборы для измерения мощности дозы:

а) индикатор-сигнализатор радиоактивности ДП-64;

б) рентгенметр-радиометр ДП-5 в модификациях А, Б, В.

2. Приборы для измерения полученных доз облучения (дозиметры):

Читайте также:  Измерение температуры тела ребенку до года

а) контрольные (прямопоказывающие) — предназначены для оцен­ки боеспособности военнослужащих по радиационному показа­телю: — ДКП-50А, ИД-1;

6) накопители доз — дозиметры, применяемые медицинской служ­бой для диагностики степени тяжести острой лучевой болез­ни по радиационному показателю: — ДП-70М (ДП-70МП), ИД-11.

3. Приборы для определения степени радиоактивного загрязнения объектов.

В полевых условиях данные определения проводятся по гамма-составляющей с помощью прибора ДП-5 – А, Б, В.

Для экспертизы воды и продовольствия на загрязнение их ПЯВ используется декадно-счетная установка ДП-100-АДМ.

Приборы для измерения мощности дозы.

Индикатор-сигнализатор ДП-64предназначен для постоян­ного радиационного наблюдения и оповещения о радиоактивной за­грязненности местности. Он работает в следящем режиме и обеспе­чивает звуковую и световую сигнализацию при достижении на мест­ности мощности дозы излучения 0,2 Р/ч. Время срабатывания сиг­нализации не превышает 3 с.

Питается прибор от сети переменного тока с напряжением 127/200 В или от аккумулятора с напряжением 6 В. Прибор работо­способен в интервале температур от -40 до +50°С при относи­тельной влажности окружающего воздуха до 98%. Прибор готов к действию через 30 с после включения.

В комплект индикатора-сигнализатора ДП-64 входят прибор, техническое описание и инструкция по эксплуатации, формуляр, запасные части и принадлежности. Датчик соединен с пультом сиг­нализации кабелем длиной 30 м. С помощью второго кабеля пульт присоединяется к источнику электрического питания; этот кабель оканчивается вилкой для подключения к сети переменного тока и двумя выводами (+, -) для присоединения к аккумуляторной батарее.

В датчике размещены детектор ионизирующих излучений — га­зоразрядный счетчик СТС-5 и контрольный радиоактивный препарат.

Подготовка прибора к работе.

Подготовка прибора к работе состоит из следующих последо­вательных приемов.

Вначале пульт сигнализации подключается к источнику пита­ния. При использовании аккумуляторной батареи выводы кабеля пи­тания присоединяются к клеммам аккумулятора, соблюдая полярность.

Если индикатор-сигнализатор питается от сети переменного тока напряжением 127/200 В, то предохранитель в зависимости от напряжения сети устанавливается в одно из двух положений, обоз­наченных внутри отсека предохранителя.

После этого вилка кабеля включается в сеть, тумблер «Вкл. — Выкл.» устанавливается в положение «Вкл.», тумблер «Работа — Контроль» переводится в положение «Контроль». Если прибор исправен, срабатывают световой и звуковой сигналы.

Затем тумблер «Работа — Контроль» переводится в положение «Работа», прибор готов к работе.

В том случае, если мощность дозы ионизирующего излучения равна или превышает 0,2 Р/ч, срабатывают звуковая и световая сигнализации; частота сигналов возрастает с увеличением мощности дозы ионизирующего излучения.

Радиометр-рентгенметр ДП-5Апредназначен для из­мерения гамма- излучения и наличия радиоактивного загрязнения местности и различных предметов по бета-излучению.

Рис. 1. Общий вид рентгенметра ДП-5А.

Мощность дозы гамма-излучения определяется в миллирентге­нах в час (мР/ч) или рентгенах в час (Р/ч) в той точке простра­нства, в которой помещен при измерениях соответствующий счетчик прибора. Радиометр ДП-5А имеет возможность измерять уровни излучения по гамма-излучению от 0,05 мР/ч до 200 Р/ч.

Конструкция и назначение прибора.

Техническое описание и инструкция по эксплуатации, а так­же принципиальная схема прилагаются к каждому прибору. В техни­ческом описании подробно изложены основные характеристики прибора и правила эксплуатации. Здесь же приводится общее описа­ние прибора, и детально рассматриваются те основные уз­лы, с которыми приходится встречаться непосредственно при про­изводстве радиометрических измерений.

Прибор состоит из следующих основных частей (рис. 1): зонд с гибким кабелем, измерительный пульт, головные телефоны, футляр с контрольным источником. Кроме того, в комплект прибора входит укладочный ящик, в котором размещаются удлинительная штанга, колодка питания, комплект запасного имущества и комплект техни­ческой документации.

Зонд прибора (рис. 2) представляет собой стальной ци­линдр, в котором размещаются детекторы излучения, усилитель-нормализатор и другие элементы схемы. В качестве детекторов излучения используются галогенные счетчики типов СТС-5 и СИ-3БГ.

Рис. 2. Зонд прибора ДП-5А.

1- стальной корпус зонда; 2 — опорный штифт; 3 — вращаю­щийся латунный цилиндрический экран с вырезом; 4 — окно в кожухе зонда, заклеенное пластмассовой пластинкой; 5 — фик­сатор; 6 — стопорный буртик; 7 — опорная вилка; 8 — накидная гайка; 9 — плата; l0 — гибкий кабель.

В стальном корпусе цилиндра имеется окно-вырез для инди­кации бета-излучения. Окно заклеено этилцеллюлозной водостой­кой пленкой. На корпусе зонда смонтирован вращающийся цилиндри­ческий латунный экран, который также имеет вырез, по размерам совпадающий с окном в корпусе зонда. Экран может немного пере­мещаться вдоль корпуса зонда. Для закрепления экрана в опреде­ленном положении на нем имеются два фиксатора (зуба), на кото­рых указаны буквы Б и Г. На корпусе цилиндра имеется стопорный буртик в виде кольца с двумя пазами для фиксатора.

При положении Б в пазе у опорной вилки окно-вырез экра­на совмещается с окном корпуса. При таком положении экрана гамма — и бета-излучения проходят через совмещенные окна-вы­резы и пластмассовую пленку и попадают в счетчики.

При положении фиксатора Г против стопорной вилки окно корпуса зонда перекрывается цилиндрическим экраном, и доступ бета-излучения к счетчикам прекращается, счетчики будут вы­давать импульсы только под воздействием гамма-излучения.

Для смены положения экрана необходимо слегка подвинуть его в сторону опорного штифта (фиксатор выходит из паза сто­порного буртика) и повернуть до желаемого положения.

Электрическая часть зонда крепится на плато. Корпус зон­да соединяется с плато при помощи накидной гайки. Для удобст­ва измерения зонд имеет ручку. Гибкий кабель длиной 1,2 м со­единяет зонд с пультом прибора.

Измерительный пульт (рис. 3) состоит из следующих основ­ных узлов: панель, кожух, шасси и крышка отсека питания.

Панель (рис. 3) размещается в верхней части кожуха (кор­пуса) и соединяется с ним двумя винтами.

Рис. 3. Передняя панель радиометра-рентгенметра ДП-5А.

1 — измерительный прибор; 2 — переключатель поддиапазонов; 3 — потенциометр регулировки режима; 4 — кнопка сброса пока­заний; 5 — тумблер подсвета шкалы; б — гнездо для включения телефонов; 7 — винт для установки нуля (с предохранительной крышкой).

Электроизмерительный прибор — микроамперметр имеет две шкалы — верхнюю и нижнюю. Верхняя шкала (рис. 4,б) имеет 16 де­лений: она предназначена для определения уровней гамма- и бета-излучения в диапазоне от 0,05 мР/ч до 5 Р/ч. Отсчет показаний по верхней шкале произ­водится при работе на II-IVподдиапазонах. Нижняя шкала имеет 18 делений. Отсчет показаний по нижней шкале производится при работе на поддиапазоне I. На поддиапазоне I измеряются уровни гамма-излучений от 5 до 200 Р/ч.

Переключатель поддиапазонов имеет восемь положений (рис. 4,а). Назначение поддиапазонов, вид и интервал измерений приведены в табл. 2.

При измерениях участок шкалы от 0 до первой значащей цифры является нерабочим. Поэтому, если стрелка прибора окажется на этом участке шкалы, необходимо измерения проводить на следующем, более чувствительном поддиапазоне.

Рис. 4. Шкалы переключателя поддиапазонов (а) и измеритель­ного поддиапазона (б):

1 — шкала для измерения уровней бета-излучения на поддиапазонах х 0,1, x1, x10, x100, x1000; 2 — шкала для из­мерений уровней гамма-излучения на поддиапазоне 200.

Положение ручки переключателя

Продолжит. измерения, с

В этом полож. переключателя поддиапазонов произв.регули- ровка режима питания прибора

Включение головных телефонов в гнездо 6 позволяет грубо, на слух определять интенсивность излучения при работе на всех поддиапазонах, кроме первого.

Винт установки нуля применяется в тех случаях, когда при сбросе стрелка прибора неточно устанавливается на нуле. Для приведения стрелки в нулевое положение необходимо вывернуть предохранительный винт на передней панели. Под этим винтом в углублении размещается второй винт, вращение которого изменяет положение стрелки прибора. В колодку крепления вставляется вилка кабеля, соединяющего зонд с измерительным пультом.

Кожух, так же как и передняя панель, изготовлен из стекловолокнита. Кожух скреплен с панелью двумя невыпадающими вин­тами. В нижней части кожуха имеется отсек для размещения источ­ников питания. Крышка отсека питания соединена с кожухом че­тырьмя винтами.

Читайте также:  Целью измерения интересов может быть управление

Монтажное шасси заключено в кожухе. Конструкция и схема размещения элементов достаточно подробно изложены в техничес­ком описании.

Блок питания размещается в специальном отсеке в нижней части кожуха. В блоке смонтированы крепления для батарей типа 1,6 ПМЦ-Х-10,5 (КБ-1), элемент А-336. Схема включения батарей выгравирована на стенке отсека.

Прибор имеет колодку питания, позволяющую питать радио­метр от источников постоянного тока с напряжением 3,6 или 12 В в зависимости от положения перемычек. Колодка питания хранится в укладочном ящике. Принципиальная схема колодки питания и схе­ма ее включения приведены в техническом описании.

Потенциометр регулировки режима регулирует подачу элект­роэнергии к прибору. Нормальная работа прибора может быть обес­печена только соблюдением определенного режима питания прибора электроэнергией. Перед началом измерений переключатель поддиапазонов устанавливается в положение «Реж.» (режим). Вращением ручки «Реж.» стрелку прибора устанавливают на отметку, располо­женную на верхней шкале («черный треугольник»).

Кнопка сброса показаний применяется для быстрого приведе­ния стрелки прибора в нулевое положение (положение «0»).

Тумблер подсвета шкалы используется при работе в ночное время.

Головные телефоны состоят из двух малогабаритных телефонов типа ТГ-7М и подключаются к розетке, расположенной на боковой панели прибора. Телефоны применяются для звуковой индикации. При включении телефонов можно по звуку (частота щелчков) ориентировочно судить об интенсивности излучения.

Работа с радиометром-рентгенметром ДП-5А.

Для определения мощности дозы гамма-излучения необходимо выполнить следующее: подготовить прибор к работе, проверить работоспособность прибора, провести измерение уровней гамма-излучения.

Подготовка прибора к работе.

1. Извлечь прибор из укладочного ящика и провести внеш­ний осмотр на отсутствие механических повреждений.

2. Если прибор подготавливается к работе впервые или после долгого перерыва, необходимо установить или заменить источники питания. Для установки источников питания отвинчиваются винты, и снимается крышка отсека питания. Три элемента 1,6 ПМЦ-Х-1,05 (КГБ-1) устанавливаются в отсеке согласно схеме, выгравированной на внутренней стенке отсека, контакты устанавливаемых элементов тщательно зачищаются. При питании прибора от посторонних источников постоянного тока (3,6 или 12 В) пользуются колодкой питания, предварительно устанавливая две перемычки на нужное напряжение.

З. При необходимости с помощью винта установки нуля привес­ти стрелку измерительного прибора в нулевое положение.

4. Включить прибор, поставив переключатель в положение «Реж.» (режим).

5. Вращением ручки «Режим» установить стрелку прибора на метку «черный треугольник» (▼).

При проверке в положении «Режим» стрелка колеблется, но при колебаниях она не должна выходить за пределы зачерненной дуги. Если стрелка прибора не доходит до метки «черный треугольник» (▼), необходимо проверить годность источников питания.

Проверка работоспособности прибора.

Проверка работоспособности прибора проводится с помощью контрольного источника, укрепленного на крышке футляра. С помощью этого источника можно проверить работу прибора на всех поддиапазонах, кроме первого.

Проверка работоспособности проводится следующим образом:

1. Открывают контрольный источник, вращая защитную пластинку (экран) вокруг оси.

2. Экран зонда устанавливают в положение Б.

3. Устанавливают зонд опорными точками над источником.

4. Подключают головные телефоны.

Работоспособность прибора проверяется по наличию щелчков в те­лефонах. В исправном приборе частота щелчков увеличивается с увеличением интенсивности излучения или при приближении датчи­ка к контрольному препарату. При этом стрелка прибора на поддиапазонах * 0,1, * 1 должна зашкаливать (уходить до конца вправо), на поддиапазонах * 10, * 100 — отклоняться, на поддиапазоне * 1000 — отклоняться незначительно.

Измерение уровня гамма-излучения.

Перед измерением уровней гамма-излучения необходимо установить режим и проверить работоспособность прибора. Установка режима ра­боты проводится перед каждым измерением уровня гамма-излуче­ния. Проверка работоспособности прибора проводится ежедневно или после непрерывной работы, измерение уровней гамма-излучения проводится на высоте 1 м, т.е. на уровне «критических» органов, имеющих быстроделящиеся клетки, которые являются наиболее радиопоражаемыми – лимфоидная ткань, эпителий кишечника, клетки красного костного мозга, эпителий половых желез, клетки кожи.

Для определения мощности дозы гамма-излучения прибором ДП-5А. необходимо выполнить следующее:

а) поставить экран зонда в положение Г;

б) переключатель поддиапазонов поставить в положение «200» (на этом поддиапазоне датчик автоматически отключается, и изме­рения проводятся непосредственно счетчиком, расположенным в кожухе прибора, место которого обозначено знаком +). Через 15 с. следует провести отсчет по положению стре­лки прибора на нижней шкале. Полученный отсчет указывает на ве­личину гамма-излучения в рентген-часах. Если стрелка прибора на каком-либо поддиапазоне отклоняется незначительно, то следует про­водить измерение на более чувствительном поддиапазоне;

в) перевести переключатель в положение * 1000 или * 100 (в зависимости от отклонения стрелки). На этих поддиапазонах измеряетсямощность дозы гамма-излучения в том месте, где раз­мещается зонд прибора. Отсчет проводится по верхней шкале че­рез 15 с. при измерениях на поддиапазоне * 1000 и через 40 с. при измерениях на поддиапазоне * 100. Результат отсчета, умножен­ный на коэффициент поддиапазона (* 1000, * 100), соответствует измеренной мощности дозы гамма-излучения в мР/ч.

При измерениях на более чувствительных поддиапазонах — * 10, * 1, * 0,1 — отсчеты проводятся по верхней шкале. Продолжительность измерений 60 с. Отсчет по шкале, умноженный на коэф­фициент поддиапазона, соответствует измеренной мощности дозы гамма — излучения в мР/ч.

Если при измерениях на каком-либо поддиапазоне прибор за­шкаливает (стрелка уходит в крайнее правое положение), то пере­ходят на более грубый поддиапазон измерения.

При измерениях следует избегать отсчетов при крайних по­ложениях стрелки (в начале или в конце шкалы). При длительных измерениях необходимо через 30-40 мин проверять режим работы прибора.

Как уже указывалось, определение дозы гамма-излучения проводится на высоте I м. При этом необходимо следить, чтобы при измерении на поддиапазоне 200 пульт прибора находился на уровне 1 м, а при изме­рении на всех других поддиапазонах на уровне 1 м находился зонд.

Примеры измерения уровней гамма-излучения и

определения плотности радиоактивного загрязнения.

В табл.3 показаны уровни гамма-излучения в мР/ч на различ­ных поддиапазонах при положениях I, II, III, IV стрелки измерительного прибора ДП-5А (рис. 5).

Основные правила обращения с прибором:

Содержать прибор в чистоте.

О6ерегать прибор от ударов и тряски.

3. Защищать от прямых солнечных лучей, сильного дождя и мороза.

4. Выключать в перерывах между работой.

Следить за наличием смазки в резьбе корпуса зонда.

Не перегибать слишком сильно кабель зонда.

Не прилагать больших усилий при вращениях ручек потенциомет­ра и переключателей.

После работы под дождем пульт и зонд протереть промасленной тряпкой.

Раз в два года проводить градуировку и настройку прибора.

Внеплановая градуировка и настройка прибора проводится при смене счетчиков, стабилизаторов или при замене других деталей, резко изменяющих параметры прибора.

После работы в зонах с высокими уровнями радиации проводить дезактивацию прибора. Поверхность прибора тщательно протира­ют влажной тряпкой или тампонами, чтобы снять пыль. Использованные тряпки и тампоны выбрасывают в специальную тару или ящик.

Миллирентген в час

Рис. 5 Уровни гамма-излу­чения на различных

поддиапазонах прибора ДП-5А.

Основные различия в модификациях измерителей мощности дозы типов ДП-5А, ДП-5Б и ДП-5В.

Назначение и принцип действия всех модификаций измерите­ля мощности доз (рентгенметра) ДП-5А, ДП-5Б и ДП-5В одни и те же, различие между указанными модификациями состоит в основном в конструктивном исполнении и, частично, в электрической схеме.

Прибор ДП-5Б отличается от ДП-5А следующими изменениями в конструкции:

1. Крышка отсека источников питания в приборе ДП-5А кре­пится четырьмя винтами с помощью отвертки, а в приборе ДП-5Б эта крышка крепится одним специальным невыпадающим винтом без применения отвертки.

2. В приборе ДП-5А для измерения мощности дозы на поддиапазоне 200 используется дополнительный газоразрядный счетчик типа СИ-3БГ, который расположен внутри корпуса пульта, а в при­боре ДП-5Б для этой цели используется имеющийся в зонде счет­чик СИ-3БГ. Этим самым уменьшено количество счетчиков, применя­емых в приборе, и улучшены условия проведения измерения больших уровней радиации.

Читайте также:  Принцип измерения глубины эхолотом

3. В приборе ДП-5А у зонда имеется отстегивающаяся корот­кая ручка для проведения измерений на близких расстояниях и уд­линительная штангадля измерения на больших расстояниях, в то время как в приборе ДП-5Б для этих целей используется только удлинительная штанга, конструкция которой немного изменена.

4. Изменена конструкция делителя напряжения, предназначен­ного для осуществления питания прибора постоянным током напряже­нием 3,6 и 12 В.

Различия модификации измерителя мощности дозы ДП-5Б и ДП-5В являются более существенными и состоят в следующем:

1. Прибор ДП-5В сохраняет работоспособность после падения с высоты 0,5 м, так как корпус пульта изготовлен из пресс-материала, обладающего более высокой механической прочностью, чем у прибора ДП-5Б.

2. Прибор ДП-5В не имеет «обратного хода» стрелки микроамперметра при перегрузочных облучениях на поддиапазонах 4, 5 и 6 до 50 Р/ч, в то время как у прибора ДП-5Б — только до 1 Р/ч.

3. В приборе ДП-5Б контрольный радиоактивный источник ук­реплен на внутренней стороне крышки футляра прибора, а в ДП-5В он вмонтирован под поворотным экраном зонда, что исключает ка­кую-либо возможность повреждения радиоактивного источника и уп­рощает процесс проверки работоспособности прибора.

4. В приборе ДП-5Б при подготовке прибора к работе необхо­димо с помощью специального потенциометра «Режим» вручную уста­навливать нужное напряжение, подаваемое в схему прибора, при этом в процессе проведения измерений необходимо периодически пе­реводить переключатель поддиапазонов в положение «Режим» и проводить подрегулировку напряжения. В приборе ДП-5В в результате изменения схемы прибора регулировка напряжения, подаваемого в схему, производится автоматически, что заметно упрощает работу с прибором.

Сокращение методических ошибок при пользовании

измерителями мощности дозы типа ДП-5.

В современных условиях важное значение приобрела точность измерения, которая характеризуется близостью результатов к ис­тинному значению измеряемой величины, необходимой для практичес­кого использования, к тому же повышение точности измерений — один из путей совершенствования познания природы человека, наибо­лее эффективного применения точных знаний. Повышение точности измерения плотности воды привело в 1932 году к открытию тяжелого водорода – дейтерия, ничтожное количество которого в обычной во­де увеличивает ее плотность. Большая точность измерения необхо­дима и применительна к величинам, которые характеризуют физичес­кие явления, связанные с их влиянием на человека. Это требование имеет прямое отношение к радиации и величинам ее измерения, к дозиметрическим приборам и, в частности, к основному прибору ра­диационной разведки типа ДП-5, который требует тщательной и стро­го последовательной подготовки его к применению.

Для такой подготовки большое значение имеют установка ме­ханического нуля микроамперметра, правильное определение и конт­роль режима работы прибора. Для этого ручку «Режим» вращают про­тив часовой стрелки влево и доводят до упора, если при этом стрелка микроамперметра находится за пределами отметки нуля, то корректором устанавливают ее точно на 0. Затем подключают источ­ники питания, строго соблюдая полярность. Подключив их и поста­вив переключатель поддиапазона в положение «Режим», устанавливают стрелку микроамперметра на отметку шкалы «черный треугольник». Это особенно важно делать в случае, когда прибор работает на старых источниках тока и при низких температурах. Дело в том, что электрическая схема прибора может правильно функционировать и давать более точные показания только при стабилизированном напря­жении 390 В, что фиксируется стрелкой микроамперметра.

При напряжении менее 390 В стрелка микроамперметра не бу­дет достигать режимного сектора. В этом случае требуется заме­нить источник питания.

Работоспособность прибора обязательно должна проверяться на всех поддиапазонах, исключая 200, с помощью контрольного ис­точника.

О работоспособности прибора судят по щелчкам в телефоне и по положению стрелки. На шестом и пятом поддиапазонах стрелка, как правило, зашкаливает, на втором и третьем может не отклонять­ся из-за недостаточной активности контрольного источника. От­клонение стрелки на четвертом поддиапазоне должно соответствовать формулярной записи при последней проверке градуировки прибора. Слуховая индикация обеспечивается на всех поддиапазонах, кроме первого.

При правильном ведении радиационной разведки переключатель поддиапазона ставится на 200, экран зонда находится в положении Г. Зонд на вытянутой в сторону руке (исключая ДП-5А) упорами вниз помещается в сторону на высоте 1 м, детектор прибора ориентируется в пространстве так, чтобы его ось, соответству­ющая максимальной чувствительности, была параллельна поверхности земли. Зонд ДП-5А в этом случае находится в чехле прибора, а прибор расположен на груди разведчика, в этом случае показания регистрирующего устройства следует умножить на коэффициент экра­низации тела, равным. 1,2. При работе с этим прибором на 4-м, 5-м и 6-м поддиапазонах зонд должен быть на вытянутой руке, и тогда не надо пользоваться коэффициентом экранизации.

Участки шкал приборов типа ДП-5 от нуля до первой знача­щей цифры являются нерабочими: на верхней шкале — участок от 0 до 0,5, на нижней — от 0 до 5. Эту особенность также нужно учитывать при измерениях.

Время установки показаний на различных поддиапазонах не­одинаково. Чем выше уровень радиации, тем оно меньше. При уров­нях излучения более 500 мР/ч (первый и второй поддиапазоны) стрел­ка прибора уже через 10 с. занимает устойчивое положение. При меньших уровнях излучения это время составляет для третьего поддиапазона 30, для остальных — 45 с. Измерение уровней излучений в интересах расчета доз облучения проводится как можно чаще, особенно на первые и вторые сутки с момента загрязнения. Периодич­ность измерения при этом должна быть от 30 мин до 1 ч, в пос­леднем — через 3-4 ч.

При радиометрическом контроле измерение степени загрязнен­ности объектов производится в местах, где внешний фон не пре­вышает предельно допустимого загрязнения объекта более чем в 3 ра­за. Гамма-фон измеряется на расстоянии 15-20 м от загрязненных объектов.

Для измерения степени загрязненности зонд необходимо под­нести упорами к поверхности объекта и, медленно перемещая его, определить место максимального загрязнения по наибольшей частоте щелчков в головных телефонах или по максимальному пока­занию микроамперметра. Затем зонд надо установить упорами к по­верхности на высоте 1-1,5 см и снять показания прибора, сравнить величину гамма-фона с измеренной мощностью дозы на объекте, и, в том случае, если она больше гамма-фона, определить величину радио­активного загрязнения объекта, вычтя величину гамма-фона. Загрязненность объектов измеряется на всех поддиапазонах, кроме 200.

Для обнаружения бета-излучений на загрязненном объекте необходимо установить экран зонда в положение Б. Увеличение показаний прибора на одном и том же поддиапазоне по сравнению с показаниями по гамма-излучению (экран зонда в положении Г) бу­дет свидетельствовать о наличии бета-излучения, а, следовательно, о загрязнении обследуемого объекта бета -, гамма- радиоактивными веществами, что повышает степень опасности загрязнен­ного объекта по отношению к контактному обращению с этим объек­том. Обнаружение бета-излучения необходимо также и для того, чтобы определить, на какой стороне брезентовых тентов, кузовов автомашин, стенок тарных ящиков и кухонных емкостей, стен и перегородок сооружении находятся продукты ядерного взрыва или другие источники радиоактивного загрязнения.

При измерении загрязненности жидких и сыпучих веществ на зонд надевается чехол из полиэтиленовой пленки для предохране­ния датчика от загрязнения радиоактивными веществами.

Загрязненность воды и продовольствия меньше, чем поверх­ности объекта, следовательно, измерения их могут проводиться при меньшем гамме-фоне. Гораздо достовернее измерение загрязненности воды и продовольствия в защитных сооружениях, которые существенно снижают гамма-фон.

Для удобства работы при измерении загрязнения различных объектов используется удлинительная штанга. Она же позволяет при необходимости увеличить расстояние от дозиметриста до конт­ролируемого объекта.

Источник