Меню

Прибор измерения потока жидкости дизеля



Измерение расхода жидкости: приборы и методы

Расход – это объем жидкости протекающий в единицу времени через поперечное сечение трубопровода. Измерение расхода жидкости является одной из задач при производственных испытаниях оборудования.

В этой статье мы собрали для Вас все современные методы определения расхода жидкости, а так же приборы для измерения расхода: трубчатые расходомеры, расходомерные шайбы, крыльчатые расходомеры, ультразвуковые и вихревые расходомеры.

Содержание статьи

Методы измерения расхода жидкости

Наиболее простые и вместе с тем точные методы измерения расхода жидкости являются объемный и массовый (весовой).

В соответствии с методами измерения, единицами расхода жидкости являются:
для объемного способа: м 3 /с, м 3 /ч
для массового способа: кг/c, кг/ч, г/с и т.д.

При объемном способе измерения протекающая в исследуемом потоке(например, в трубе) жидкость поступает в особый, тщательно протарированный сосуд (так называемый мерник), время наполнения которого точно фиксируется по секундомеру.

Если известен объем мерника – V и измеренное время его наполнения – T, то объемный расход будет

При весовом способе взвешиванием находят вес Gv = mv*g (где g – ускорение свободного падения) всей жидкости, поступившей в мерник за время T. Затем определяют её массу

и массовый расход

и по ней, зная плотность жидкости (ρ), вычисляют объемный расход

Но объемный и весовой методы измерения расхода жидкости пригодны только при сравнительно небольших значениях расхода жидкости, так как в противном случае размеры мерников получаются довольно громоздкими и, как следствие, замеры очень затруднительными.

Кроме того, этими способами невозможно измерить расход в произвольном сечении, например, длинного трубопровода или канала без нарушения их целостности. Поэтому, за исключением случаев измерения сравнительно небольших расходов жидкостей в коротких трубах и каналах, объемный и весовой способы, как правило, не применяются, а на практике пользуются специальными приборами, которые предварительно тарируются объемным или весовым способом.

Приборы для измерения расхода жидкости

Трубчатые расходомеры

Одним из таких приборов является трубчатый расходомер или расходомер Вентури. Большим достоинством этого расходомера является простота конструкции и отсутствие в нем каких-либо движущихся частей. Трубчатые расходомеры могут быть горизонтальными и вертикальными. Рассмотрим, к примеру, горизонтальный вариант.

Расходомер состоит из двух цилиндрических труб А и В диаметра d1, соединенных при помощи двух конических участков (патрубков) С и D с цилиндрической вставкой E меньшего диаметра d2. В сечениях 1-1 и 2-2 расходомера присоединены пьезометрические трубки a и b, разность уровней жидкости h в которых показывает разность давлений в этих сечениях.

Расход жидкости в этом случае определяется по тарировочным кривым, полученным опытным путем и дающим для данного расходомера прямую зависимость между показаниями манометра и измеряемыми расходами жидкости. Пример такой кривой на картинке рядом

Расходомерная шайба

Другим широко распространенным прибором для измерения расхода является расходомерная шайба (или диафрагма), обычно выполняемая в виде плоского кольца с круглым отверстием в центре, устанавливаемого между фланцами трубопровода

Края отверстия чаще всего имеют острые входные кромки под углом 45° или закругляются по форме втекающей в отверстие струи жидкости (сопло). Два пьезометра a и b (или дифференциальный манометр) служат для измерения перепада давления до и после диафрагмы.В основе метода положен принцип неразрывности Бернулли.

Расход в этом случае определяется по замеренной разности уровней в трубках. Трубки подсоединяют к датчикам, замеряющим перепад давления. Датчик перепада давления преобразует перепад в электрический сигнал, который отправляется на компьютер.

Крыльчатый расходомер

Расходы могут быть вычислены также в результате измерения скоростей течения жидкости и живых течений потока.

Одним из широко распространенных приборов, применяемых для этой цели является гидрометрическая вертушка. Современный турбинный расходомер устанавливают только на горизонтальном участке трубопровода. Лопасти крыльчатки колеса турбины изготавливают из не магнитного материала.

Вертушка состоит из крыльчатки А, представляющей собой колесо с винтовыми лопастями, насаженное на горизонтальный вал С. Когда она установлена в потоке, крыльчатка под действием протекающей жидкости вращается, причем число её оборотов прямо пропорционально скорости течения. Число импульсов за один оборот крыльчатки равно числу лопастей, а значит частота импульсов пропорциональна расходу.

При вращении лопасти поочередно пересекают магнитное поле, которое наводит электродвижущую силу в катушке в виде импульса. От вертушки вверх выводятся провода В, подающему сигнал к специальному счетчику, автоматически записывающему число оборотов и время.

Приборы для измерения расхода жидкости в этом случае называют турбинными расходомерами

Ультразвуковой метод измерения расхода

Ультразвуковой расходомер работает по принципу использования разницы по времени прохождения ультразвукового сигнала в направлении потока и против него.

Расходомер формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д.

Читайте также:  Измерение усилия гидравлического пресса

Такой контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды.

Аналогично электронное устройство подает импульсы в обратном направлении, т.е. от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется своей частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды.

Следующим шагом является определение разности Δf указанных частот, которая пропорциональна расходу среды. Приборы для измерения расхода жидкости называются ультразвуковые расходомеры.

Вихревой метод измерения расхода

В основу работы вихревых расходомеров положена зависимость между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа.

Принцип действия преобразователя основан на ультразвуковом детектировании вихрей, образующихся в потоке жидкости, при обтекании жидкостью специальной призмы, расположенной поперек потока.

В зависимости от конструкции датчика чувствительные тепловые элементы устанавливаются непосредственно в теле датчика или вихревой дорожке.

Если в тело образующее вихри, установить магнит, то он может служить датчиком. Реакция, возникающая при срыве вихрей, заставляет помещённый в поток цилиндр колебаться с частотой вихреобразования. Достоинством вихревых расходомеров является, обеспечение низкой зависимости качества измерений от физико-химических свойств жидкости, состояния трубопровода, распределения скоростей по сечению потока и от точности монтажа первичных преобразователей на трубопроводе. Приборы для измерения расхода жидкости называются вихревые расходомеры.

Видео о измерении расхода

При проведении измерения расхода, в некоторых случая используется понятие количества вещества – это количество жидкости или другой среды, проходящей через поперечное сечение трубопровода в течении определенного промежутка времени(за час, месяц, рабочую смену и т.д.)

Приборы для измерения количества вещества по аналогии с измерением расхода монтируются на – на трубопроводе, с выводом вторичного прибора к оператору.

Источник

Датчики расхода и счётчики количества вещества

Содержание

Расходомер – прибор, измеряющий объемный расход или массовый расход вещества, то есть количество вещества (объем, масса), проходящее через данное сечение потока, например, сечение трубопровода в единицу времени. Если прибор имеет интегрирующее устройство (счетчик) и служит для одновременного измерения и количества вещества, то его называют счетчиком-расходомером. Масса или объем вещества, прошедшего через счетчик, определяется по разности двух последовательных во времени показаний отсчетного устройства или интегратора.

Расход вещества – это масса или объем вещества, проходящего через данное сечение канала средства измерения расхода в единицу времени. В зависимости от того, в каких единицах измеряется расход, различают объемный расход или массовый расход. Объемный расход измеряется в м 3 /с (м 3 /ч и т. д.), а массовый – в кг/с (кг/ч, т/ч и т. д.).

Расходомеры с овальными шестернями – это объемные расходомеры вытеснительного типа, которые перемещают определенные части объема в отдельные измерительные камеры (рисунок 2.54). В положении а левая Л ведомая шестерня выталкивает объём 0 , а правая П ведущая шестерня отсекла дозированный объём 1. В положении б выталкивается объём 1 , в то время как шестерня Л отсекает дозированный объём 2 . В положении в выталкивается объём 2 , а отсекается объём 3 . За пол–оборота шестерен, например, от а к в выталкивается два дозированных объёма, а за один оборот – 4 дозированных объёма. Выходным сигналом счётчика является число оборотов любой шестерни, которое прямо пропорционально объему прошедшей через счётчик жидкости.

  • относительно высокая точность измерений;
  • возможность генерации импульсного выхода, который может быть передан в систему управления;
  • данные расходомеры хорошо подходят для автоматического дозирования и учета.
  • потеря напора от установки счётчика составляет примерно 0,02МПа;
  • узкий диапазон измерений величины расхода (от 0,8 до 36 м 3 /ч при рабочем давлении 1,57 МПа);
  • небольшие диаметры трубопроводов (диаметры условных проходов 15–50 мм);
  • снижение точности, связанное с просачиванием вещества через внутреннюю изолированную поверхность.

Скоростной счётчик (рисунок 2.55) содержит крыльчатку или ротор, которые вращаются под действием протекающего потока жидкости или газа. Число оборотов будет пропорционально объёму вещества, прошедшему через счётчик.

  • просты по конструкции;
  • обладают малой потерей давления.
  • зависимость показаний от вязкости измеряемой жидкости;
  • менее надежны в эксплуатации вследствие одностороннего износа опоры;
  • значительного изменения показаний при засорении.

Расходомеры переменного перепада давления

Расходомеры переменного перепада давления основаны на зависимости от расхода перепада давления, создаваемого устройством, которое установлено в трубопроводе, или же самим элементом последнего.

Измерение расхода напорными трубками (см. рисунок 2.56 а) основано на измерении динамического напора потока вещества. В минусовой трубке 1 имеется только статическое давление потока, а в плюсовой 2 к статическому напору добавляется динамический напор. По скорости движения при известном сечении S трубы определяется расход вещества как: vS, м3/с. Дифманометром ДМ измеряется динамический напор, но шкала может быть проградуирована в единицах расхода.

Читайте также:  Единица измерения ммоль это

Более точными и, поэтому, чаще всего применяемыми на практике являются расходомеры на основе сужающих устройств типов диафрагмы (рисунок 2.56 б) и сопла (рисунок 2.56 в). На диафрагме поток сжимается и под действием сил инерции продолжает сжиматься на некотором расстоянии после диафрагмы. Движущей силой потока, определяющей скорость движения вещества через диафрагму, является перепад давлений. В самом узком сечении потока давление минимальное, а перед диафрагмой давление – максимальное. Перепад давления измеряется дифманометром.

На точность измерения расхода диафрагмами оказывают завихрения после диафрагмы. У сопел Вентури таких завихрений нет, поэтому их точность существенно выше.

  • метод применяется для измерения расход практически любых сред: жидкостей, газа, пара;
  • низкая первоначальная стоимость;
  • беспроливная методика поверки;
  • отсутствие движущихся частей;
  • измерение расхода в условиях высокого давления (до 40 МПа);
  • измерение расхода в условиях высоких и низких температур. (–200 до +1000 °С);
  • широкий диапазон типоразмеров (Ду = 15–2000 мм);
  • простота конструкции;
  • возможность расчетным путем определять расход без натурной градуировки расходомера в случае трубопроводов диаметрами 50–1000 мм.
  • небольшой диапазон измерений из-за квадратичной зависимости между расходом и перепадом давлений;
  • значительные потери давления на гидравлическом сопротивлении и связанные с этим дополнительные затраты энергии;
  • узкий динамический диапазон (1:3);
  • высокая стоимость эксплуатации из-за периодического обслуживания: измерение геометрических размеров сужающего устройства, прочистка импульсных линий, прогрев импульсных линий, установка нуля на датчике дифференциального давления;
  • небольшой межповерочный интервал (стандартный межповерочный интервал расходомера составляет – 1 год).

Расходомеры постоянного перепада давления

Расходомеры постоянного перепада давления – ротаметры (рисунок 2.57 а) – предназначены для измерения расхода чистых жидкостей и газов. Они состоят из вертикальной конической трубы, выполненной из металла, стекла или пластика, в которой свободно перемещается вверх и вниз специальный поплавок. Поток движется по трубе в направлении снизу вверх, заставляя поплавок подниматься до уровня, на котором все действующие силы находятся в состоянии равновесия. На поплавок воздействуют три силы:

  • Выталкивающая сила, которая зависит от плотности среды и объёма поплавка.
  • Сила тяжести, которая зависит от массы поплавка.
  • Сила потока, которая зависит от формы поплавка и скорости потока, проходящего через сечение ротаметра между поплавком и стенками трубы.

Каждая величина расхода соответствует определённому переменному сечению, зависящему от формы конуса измерительной трубы и конкретного положения поплавка. В случае стеклянных конусов, значение расхода может быть считано прямо со шкалы на уровне поплавка. В случае конусов, выполненных из металла, положение поплавка передаётся на дисплей при помощи системы магнитов. Не требуется никакого дополнительного источника питания. Различные диапазоны измерения достигаются за счёт многообразия размеров и форм конуса, а также возможности выбора различных форм и материалов изготовления поплавка.

Поплавковый расходомер постоянного перепада давления (см. рисунок 2.57 б) состоит из поплавка 1 и конического седла 2 расположенных в корпусе прибора. Коническое седло выполняет ту же роль, что и коническая трубка ротаметра. Различие заключается в том, что длина и диаметр седла примерно равны, а у ротаметров длина конической трубки значительно больше ее диаметра.

В поршневом расходомере (рисунок 2.57 в) чувствительным элементом является поршень, перемещающийся внутри втулки 2.

Втулка имеет входное отверстие 5 и выходное отверстие 4, которое является диафрагмой переменного сечения. Поршень с помощью штока соединен с сердечником передающего преобразователя 3. Протекающая через расходомер жидкость поступает под поршень и поднимает его. При этом открывается в большей или меньшей степени отверстие выходной диафрагмы. Жидкость, протекающая через диафрагму, одновременно заполняет также пространство над поршнем, что создает противодействующее усилие.

  • простота конструкции;
  • возможность измерений в широком диапазоне значений расхода;
  • возможность измерений в широком диапазоне диаметров трубопроводов (от десятков до 3000 мм и более);
  • возможности применения для различных по составу и агрессивности жидкостей и газов при температурах до 350–400 °С и давлениях до 100 МПа;
  • возможности расчетным путем определять расход без натурной градуировки расходомера в случае трубопроводов диаметрами 50–1000 мм.
  • небольшой диапазон измерений из-за квадратичной зависимости между расходом и перепадом давлений (3:1);
  • значительные потери давления на гидравлическом сопротивлении и связанные с этим дополнительные затраты энергии.

В основе электромагнитных расходомерах (рисунок 2.58) лежит закон электромагнитной индукции, известный как закон Фарадея. Когда проводящая жидкость, например вода, проходит через силовые линии магнитного поля, индуцируется электродвижущая сила. Она пропорциональна скорости движения проводника, а направление тока – перпендикулярно направлению движения проводника.

В электромагнитных расходомерах жидкость течет между полюсами магнита, создавая электродвижущую силу. Прибор измеряет напряжение между двумя электродами, рассчитывая тем самым объем проходящей через трубопровод жидкости. Это надежный и точный метод, потому что сам прибор не влияет на скорость течения жидкости, а за счет отсутствия движущихся частей оборудование долговечное.

Читайте также:  Как измерить детскую ногу для покупки ботинок

При движении проводников в магнитном поле в них возникает электродвижущая сила Е, равная

где В – индукция магнитного поля внутри трубы; d – длина проводников, равная внутреннему диаметру трубы; v – скорость движения жидкости.

  • умеренная стоимость;
  • нет движущихся и неподвижных частей в поперечном сечении;
  • большой динамический диапазон измерений.
  • необходимость изолирования трубопровода в месте измерения;
  • невозможность измерения расхода непроводящих сред (газ, спирт, легкие нефтепродукты);
  • требования к прямым участкам – 5…10 D до и после расходомера;
  • расходомеры (особенно с постоянным магнитом) могут забивать трубопровод металлическим мусором – для этого их приходится периодически отключать;
  • очень чувствителен к различного рода неоднородностям потока.

В ультразвуковом расходомере (см. рисунок 2.59) имеется два излучателя И1 и И2 и два приёмника П1 и П2 ультразвука. Время прохождения t2 звуковой волной расстояния между И2 и П2 больше, чем время прохождения t1 звуковой волной расстояния между И1 и П1, так как в первом случае волна звука распространяется навстречу потоку жидкости, а во втором – согласно с потоком.

По разности Δt=t2 – t1 определяется скорость v, а затем при известном сечении S трубы определяется расход Sv.

  • отсутствие гидродинамического сопротивления;
  • отсутствие подвижных элементов;
  • значительное быстродействие – незаменимы для систем регулирования, где не допускается запаздывание;
  • чистка узла без демонтажа;
  • физико–химические свойства (температура, плотность, вязкость) не влияют на точность измерения (если они не изменяют электропроводность);
  • возможность измерения расхода агрессивных и абразивных сред;
  • применяются для измерения чрезвычайно малых расходов вплоть до 3∙10 –9 м 3 /с и для больших – 3 м 3 /с;
  • широчайший диапазон для однотипного устройства 500:1.
  • чувствительность измерений к отражающим и поглощающим ультразвук осадкам;
  • чувствительность к вибрациям;
  • чувствительность к перекосам потока для однолучевых расходомеров.

Тепловые расходомеры могут применяться при измерении небольших расходов практически любых сред при различных их параметрах. Кроме того, они весьма перспективны для измерения расхода очень вязких материалов. Принцип действия их основан на использовании зависимости эффекта теплового воздействия на поток вещества от массового расхода этого вещества.

Тепловые расходомеры могут выполняться по трем основным принципиальным схемам: калориметрические, основанные на нагреве или охлаждении потока посторонним источником энергии, создающим в потоке разность температур; теплового слоя, основанные на создании разности температур с двух сторон пограничного слоя; термоанемометрические, в которых используется зависимость между количеством теплоты, теряемой непрерывно нагреваемым телом, помещенным в поток, и массовым расходом вещества.

Выбор принципиальной схемы измерения зависит от измеряемой среды, необходимой точности, типа используемых термочувствительных элементов и режима нагрева. Для упруго-вязких пластичных веществ, предпочтительным является измерение по схеме термоанемометра с постоянной температурой подогрева потока.

Чувствительными элементами термоанемометрического расходомера (рисунок 2.60) являются резисторы R1 и R2 , помещаемые (наматываемые) на стенке трубопровода на некотором расстоянии друг от друга. Манганиновые резисторы R3 и R4 служат для создания мостовой схемы, питаемой от источника напряжения. Сигнал разбаланса, пропорциональный изменению расхода, подается на электронный усилитель ЭУ , где усиливается и после этого управляет вращением реверсивного электродвигателя РД , который, производя перестановку движка компенсирующего переменного резистора Rp, изменяет напряжение питания до тех пор, пока разбаланс в измерительной диагонали моста не станет равным заданному. Мерой расхода могут служить показания амперметра, ваттметра или положение движка Rp.

С помощью тепловых расходомеров может быть обеспечена точность измерения расхода вязких продуктов ±2÷2,5 %.

Для измерения расхода газов используют калориметрические расходомеры, представленные на рисунке 2.61. В состав расходомера входят: 1,2 – термометры сопротивления, 3 – электрический нагреватель. Если пренебречь теплотой, отдаваемой потоком в окружающую среду, то уравнение теплового баланса имеет вид:

где количество теплоты, отдаваемое нагревателем жидкости или газу, k — поправочный коэффициент на неравномерность распределения температур по сечению трубы, QM — массовый расход вещества, cp — удельная массовая теплоёмкость при температуре — разность температур нагреваемой среды до и после нагревателя.

Существует два способа измерений расхода: измерение по мощности, потребляемой нагревателем и обеспечивающей постоянную разность температур Δt ; измерение по разности температур Δt при постоянной мощности нагревателя (разность температур измеряется термометрами сопротивления, выполненных в виде сетки, что позволяет измерять среднюю температуру по сечению трубопровода). Второй способ является более экономичным, т.к. контролируемая среда нагревается на 1–3 ºС, поэтому даже при больших расходах потребляемая мощность невелика.

  • высокая точность измерений (±0,5÷1%);
  • большой диапазон измерений (10:1);
  • измерение пульсирующих и малых расходов.
  • сложность устройства для автоматического поддержания заданной разности температур и постоянного расхода электроэнергии на нагрев потока.

Литература

Элементы и функциональные устройства судовой автоматики — Авдеев Б.А. [2018]

Источник