Меню

Расчет погрешностей косвенных измерений примеры



Расчет погрешностей косвенных измерений примеры

Чтобы найти погрешность косвенных измерений, надо воспользоваться формулами, приведенными в таблице. Эти формулы могут быть выведены «методом границ».

Сначала надо вспомнить основные понятия теории погрешности.

Абсолютная погрешность физической величины ΔА — это разница между точным значением физической величины и ее приближенным значением и измеряется в тех же единицах, что и сама величина:

Так как мы никогда не знаем точного значения величины А, а лишь определяем из опыта ее приближенное значение, то и величину абсолютной погрешности мы можем определить лишь при­бли­зи­тель­но. Наиболее просто находится максимальная величина абсолютной погрешности, которая и используется нами в лабораторных работах.

Относительная погрешность измерения εА равна:

При косвенных измерениях величину погрешности искомой величины вычисляют по формулам:

В случае, когда искомая величина находится по формуле, в которой в основном присутствуют произведение и частное, удобней находить сначала относительную погрешность. Если при этом один из множителей представляет собой сумму или разность, нужно предварительно найти его абсолютную погрешность (сложением абсолютных погрешностей слагаемых), а затем относительную.

Зная относительную погрешность, найти абсолютную погрешность измерений можно так:

«Правило ничтожных погрешностей»

при суммировании погрешностей любым из слагаемых можно пренебречь, если оно не превосходит ⅓ – ⅟ 4 от другого.

Запись результата с указанием погрешности.

Абсолютная погрешность измерений обычно округляется до 1 значащей цифры, а, если эта цифра 1, то до двух.

Результат записывается в виде:

А = Аизм ± ΔА, например: ℓ = (13 ± 2) мм.

При этом в измеренном значении следует оставлять столько десятичных знаков, сколько их в значении погрешности (последняя цифра погрешности «поправляет» последнюю цифру измеренного значения) . Значение величины и погрешность следует выражать в одних и тех же единицах!

Пример оценки погрешностей косвенных измерений № 1

Пример оценки погрешностей косвенных измерений № 2

Задания для самостоятельного решения

Задание 1. Найдите плотность вещества, из которого сделан куб со стороной 7,00 ± 0,15 см, если его масса 847 ± 2 г. Что это за вещество?

Задание 2. Найдите удельную теплоту сгорания топлива, 2,10 ± 0,15 г которого хватило, чтобы нагреть 400 ± 10 мл воды на 35°С ± 2°С. Что это за топливо?

© Ивашкина Д.А., 2017. Публикация материалов с сайта разрешена только при наличии активной ссылки на главную страницу.

Источник

Расчет погрешностей косвенных измерений примеры

Погрешности прямых измерений. Промах. Систематическая погрешность. Случайная погрешность. Полная погрешность. Погрешности косвенных измерений. Запись результата измерений

  1. Оценка погрешности прямых измерений

Измерить физическую величину – это значит сравнить ее с однородной величиной, принятой за единицу меры.

Различают прямые и косвенные измерения.

Если измеряемая величина непосредственно сравнивается с мерой, то измерения называются прямыми. Например, измерения линейных размеров тел с помощью масштабной линейки и т.д.

Если измеряется не сама искомая величина, а некоторые другие величины, связанные с ней функциональной зависимостью, то измерения называются косвенными. Например, измерения объема, ускорения и т.д.

Из-за несовершенства средств и методик измерения, органов чувств при любом измерении неизбежны отклонения результатов измерений от истинных величин. Эти отклонения называются погрешностями измерений.

Читайте также:  Вычислить оценку ско результата измерения по формуле

Погрешности измерений делятся на систематические, случайные и промахи.

1.1. Промахи, связанные с неправильными отсчетами по прибору, неправильными записями и т.д., приводят к очень большой по абсолютной величине погрешности. Они, как правило, не укладываются в общую закономерность измеренных величин. Обнаруженный промах следует отбросить.

1.2. Систематическими погрешностями Δxсист называются погрешности, которые сохраняются при повторных измерениях одной и той же величины x или изменяются по определенному закону.

Систематические погрешности подразделяются на несколько групп. Отметим только приборную погрешность.

Систематическая приборная погрешность определяется по классу точности прибора, который указывается на приборе следующими цифрами: 0,01; 0,02; 0,05; 1,0; 2,5; 4,0. Класс точности показывает предельно допустимое значение систематической погрешности, выраженной в процентах от верхнего предела на выбранном диапазоне измерений. Например, предел измерения вольтметра с классом точности 0,5 равен 200 В. Систематическая погрешность равна 0,5% от 200В. Следовательно, систематическая погрешность вольтметра равна 1 В.

Если на приборе класс точности не указан, то погрешность равна половине цены наименьшего деления шкалы прибора.

1.3. Случайными называются погрешности, которые изменяются беспорядочно при повторных измерениях одной и той же физической величины при одинаковых условиях.

Оценим случайную погрешность. Пусть при измерении какой-либо физической величины было произведено N измерений и были получены значения x1, x2, … xN. Тогда наиболее вероятным значением измеряемой величины является ее среднее арифметическое значение

Результаты измерений x1, x2, … xN «рассеиваются» вокруг среднего. В качестве меры «рассеяния» результатов наблюдения вокруг среднего служит среднее квадратичное отклонение

Пусть a будет истинным, но неизвестным значением измеряемой величины x. Доказано, что вероятность попадания результатов измерения величины x в интервал значений от (aS) до (a + S) оказывается равной α = 0,68.

Вероятность попадания результатов наблюдений в более широкие интервалы (a – 2S, a + 2S) и (a – 3S, a + 3S) равна α = 0,95 и α = 0,99 соответственно.

Вероятность попадания в заданный интервал значений величины x называется доверительной вероятностью, а сам интервал – доверительным интервалом.

Однако, таким образом полученный доверительный интервал справедлив при большом значении N. В учебных лабораториях, как правило, приходится ограничиваться небольшим числом измерений. В этом случае доверительный интервал находят с помощью коэффициента Стьюдента, который зависит от числа измерений N и доверительной вероятности α. В таблице 1 приведены коэффициенты Стьюдента для различного числа наблюдений при доверительных вероятностях α = 0,68; 0,95; 0,99.

Источник

Расчёт погрешностей косвенных измерений

Пусть известны две независимо измеренных физических величины и с погрешностями и соответственно. Тогда справедливы следующие правила:

1. Абсолютная погрешность суммы (разности) есть сумма абсолютных погрешностей. То есть, если

Более разумная (учитывающая то, что величины и независимы и маловероятно, что их истинные значения одновременно окажутся на краях диапазонов) оценка получается по формуле:

На всех школьных олимпиадах допускается применение любой из этих двух формул. Аналогичные формулы справедливы для случая нескольких (более двух) слагаемых.

Таким образом, в результате сложения двух величин сначала вычисляется абсолютная погрешность величины, а после этого может быть вычислена относительная погрешность.

Пусть величина , ,

.

2. Относительная погрешность произведения (частного) есть сумма относительных погрешностей.

Как и в предыдущем случае, более разумной будет формула

Читайте также:  Единица измерения дозы поглощения является

Аналогичные формулы справедливы для случая нескольких (более двух) множителей.

Таким образом, в результате сложения двух величин сначала вычисляется абсолютная погрешность величины, а после этого может быть вычислена относительная погрешность.

Пусть величина , ,



3. Правило для возведения в степень. Если , то .

Пусть



4. Правило умножения на константу. Если .

Пусть


5. Более сложные функции величин разбиваются на более простые вычисления, погрешности которых можно рассчитать по формулам представленным выше.

Пусть




6. Если расчётная формула сложна и не сводиться к описанным выше случаем, то, школьники знакомые с понятием частной производной могут найти погрешность косвенного измерения следующим образом: пусть , тогда

или более простой оценкой:

Пусть

7. Школьники, не знакомые с производными, могут пользоваться методом границ, который состоит в следующем: пусть нам известно, что и для каждой величины диапазон в котором лежит её истинное значение. Рассчитаем минимальное и максимальное возможное значение величины на области задания величин :

За абсолютную погрешность величины возьмём полуразность максимального и минимального значения:

Пусть


Правила округления

При обработке результатов измерений часто приходится производить округление. При этом нужно следить, чтобы ошибка, возникающая при округлении, была хотя бы на порядок меньше остальных погрешностей. Однако оставлять слишком много значащих цифр [1]тоже неправильно, поскольку влечёт за собой потерю драгоценного времени. В большинстве случаев бывает достаточно погрешность округлить до двух значащих цифр, а результат до того же порядка, что и погрешность. При записи же конечного ответа принято оставлять в погрешности только одну значащую цифру, за исключением случая, когда эта цифра единица, тогда нужно оставить две значащих цифры в погрешности. Также часто порядок числа выносится за скобку, таким образом, чтобы первая значащая цифра числа осталась либо в порядке единиц, либо в порядке десятых.

Например, пусть были проведены измерения модуля Юнга стали и Алюминия и были получены следующие значения (до округления):

, , , .

Правильно записанный конечный ответ тогда будет иметь вид:

Построение графиков

Во многих задачах, предлагаемых на физических олимпиадах школьников, требуется снять зависимость одной физической величины от другой, а затем проанализировать эту зависимость (сравнить экспериментальную зависимость с теоретической, определить неизвестные параметры теоретической зависимости). График является наиболее удобным и наглядным способом представления данных и их дальнейшего анализа. Поэтому в критериях оценивания большинства экспериментальных задач присутствуют баллы за график, даже если построение графика не требуется явно в условии. Таким образом, если при решении задачи Вы сомневаетесь нужно ли в данной задаче построение графика или нет — сделайте выбор в пользу графика.

Правила построения графика

1. График строится на миллиметровой бумаге. Если на экспериментальном туре олимпиады миллиметровая бумага не была предоставлена сразу, нужно попросить её у организаторов.

2. График нужно подписать в верхней части, чтобы всегда можно было установить, какой участник строил этот график. В работе следует указать, что был построен соответствующий график, на случай если график будет потерян во время проверки.

3. Ориентация миллиметровой бумаги может быть как альбомная, так и книжная.

4. На графике обязательно должны присутствовать координатные оси. Вертикальная ось проводится в левой части графика, а горизонтальная ось в нижней части.

Читайте также:  Как измерить интеллект способы

5. Вертикальная ось должна соответствовать значениям функции, а горизонтальная – значениям аргумента.

6. Оси на графике рисуются с отступом 1-2см от края миллиметровой бумаги.

7. Каждая ось должна быть подписана, то есть должна быть указана физическая величина, отложенная вдоль этой оси, и (через запятую) единица её измерения. Записи вида « », « » и « » эквивалентны, но первые два варианта предпочтительнее. Горизонтальная ось подписывается слева у верхнего конца, а вертикальная снизу у правого конца.

8. Оси не обязательно должны пересекаться в точке (0,0).

9. Масштаб графика и положение начала отсчёта на координатных осях выбираются так, чтобы наносимые точки располагались по возможности на всей площади листа. При этом нули координатных осей могут вообще не попадать на график.

10. Линии, проведённые на миллиметровой бумаге через сантиметр, должны попадать на круглые значения величин. С графиком удобно работать, если 1 см на миллиметровой бумаги соответствуют 1, 2, 4, 5 *10 n единиц измерения по данной оси. Часть делений на оси нужно подписать. Подписанные деления должны находится на равном расстоянии друг от друга. Подписанных делений на оси должно быть не менее 4х и не более 10ти.

11. Точки на график нужно наносить так, чтобы они были чётко и ясно видны. Для того чтобы показать, что величина наносимая на график имеет погрешность, из каждой точки проводятся отрезки вверх и вниз, вправо и влево. Длина горизонтальных отрезков соответствует погрешности величины, отложенной по горизонтальной оси, длина вертикальных отрезков — погрешности величины, отложенной по вертикальной. Таким образом, обозначаются области определения экспериментальной точки, называемые крестами ошибок. Кресты ошибок обязательны к нанесению на графике, за исключением случаев: в условии задачи дано непосредственное указание не оценивать погрешности, погрешность составляет меньше 1 мм в масштабе соответствующей оси. В последнем случае необходимо указать, что погрешность значений слишком мала для нанесения по этой оси. В таких случаях считается, что размер точки соответствует ошибке измерения.

12. Стремитесь к тому, чтобы ваш график был удобен, понятен и аккуратен. Стройте его карандашом, чтобы можно было исправить ошибки. Не подписывайте рядом с точкой соответствующее ей значение — это загромождает график. Если на одном графике показано сразу несколько зависимостей, используйте разные символы или цвета для точек. Для определения, какой тип экспериментальных точек, какой зависимости соответствует, используйте легенду графика[2]. На графике допускаются зачёркивания (если подвёл ластик или под рукой не оказалось хорошего карандаша), но делать их нужно аккуратно. Не стоит использовать штрих-корректор — это выглядит некрасиво.

Примечание: все вышеперечисленные правила происходят исключительно из соображений удобства работы с графиком. Однако, при проверке работ на олимпиадах жюри пользуются этими правилами как формальными критериями: плохо выбран масштаб — минус полбалла. Поэтому на олимпиаде следует неукоснительно придерживаться этих правил.

Справа приведен график, построенный не по критериям, а слева, построенный по указанным выше правилам.

Источник