Меню

Расстояние между молекулами газа по сравнению с размерами молекул при



Идеальный газ. Температура. Основное уравнение молекулярно — кинетической теории.

Понятие идеального газа как физической идеализации.

Из трех агрегатных состояний, в которых может находиться вещество, наиболее простым для изучения является газообразное. Поэтому изучение свойств веществ мы начинаем именно с свойств газов. В разреженного газа расстояние между молекулами во много раз превышает их размеры. В этом случае взаимодействие между молекулами очень мала и кинетическая энергия движения молекул значительно превышает потенциальную энергию их взаимодействия. Молекулы газа можно рассматривать как маленькие твердые шарики. Вместо реального газа мы будем рассматривать его физическую модель, пренебрегая сложными силами взаимодействия между молекулами и облегчая тем самым изучения свойств газов. Эта модель называется идеальным газом.

Идеальный газ — это газ, взаимодействием между молекулами в котором можно пренебречь.
Газ можно считать идеальным, если:

  1. отсутствуют силы межмолекулярного взаимодействия, то есть молекулы НЕ привлекаются и не отталкиваются;
  2. взаимодействие между молекулами происходит только во время их ударяння и является упругой;
  3. молекулы газа не имеют объема и считаются материальными точками.

Следует помнить, что в физической модели учитывают те свойства реальной системы, учет которых необходимо для объяснения закономерностей поведения системы, исследуются.

Условия, при которых реальные газы можно считать идеальными
Газами, свойства которых близки к свойствам идеального газа, реальные газы, находящиеся под низким давлением имеют высокую температуру. Например, воздух при нормальных условиях (105 Па и 0 ° С) можно приближенно считать идеальным газом.
Вопросы на которые стоит ответить самому себе:

  1. Почему газы при высокой температуре можно считать идеальными? (Чем выше температура газа, тем больше вследствие теплового движения молекул расстояние между ними по сравнению с размерами, а следовательно, газ ближе к идеальному.
  2. Почему при высоком давлении свойства реальных газов отличаются от свойств идеального? (При высоком давлении молекулы газов размещаются на расстояниях, которые примерно равны диаметрам самих молекул: для этого их уже нельзя считать материальными точками, следовательно, такой газ нельзя считать идеален.)

Тепловое равновесие и температура как термодинамический параметр идеального газа.

Состояние газа описывают с помощью определенных величин, называют параметрами состояния. различают:

  1. микропараметры, то есть характеристики собственно молекул — размеры, массу, скорость, импульс, энергию;
  2. макропараметры, то есть параметры газа как физического тела в целом, — температура, давление, объем.

Со словом «температура» вы знакомы с раннего детства. Теперь ознакомимся с температурой как параметром.

Следовательно, температура характеризует состояние теплового равновесия: все тела находятся в тепловом равновесии, имеют одинаковую температуру.

Тепловое равновесие — это состояние, при котором все макроскопические параметры остаются сколь угодно долго неизменными. Состояние теплового равновесия определяется для изолированной системы, то есть только для тел, которые взаимодействуют только между собой и не взаимодействуют с другими телами.

Следовательно, температура характеризует внутреннее состояние изолированной системы тел, находящихся в состоянии теплового равновесия. Чем быстрее движутся молекулы в теле, тем сильнее есть ощущение тепла во время соприкосновения с ним. Большая скорость движения молекул соответствует большей кинетической энергии. Согласно по величине температуры можно составить представление о кинетической энергии молекул.
Во всех частях системы, находящейся в тепловом равновесии, температура одинакова.
В молекулярно-кинетической теории температура —
это величина, обусловленная средней кинетической энергией частиц, из которых состоит система:

де — кількість ступеней вільності молекул газу, Дж/K- постоянная Больцмана, которая связывает температуру в энергетических единицах с температурой в кельвинах ()

Температура — это мера кинетической энергии теплового движения молекул.
Температура является скалярной величиной, в СИ измеряется в градусах Кельвина.

Основное уравнение молекулярно-кинетической теории (МКТ) выражет зависимость давление газа () от концентрации () и темперутары ():

Закон Авогадро: в равных объемах газа при одинаковой температуре и давлении содержится одинаковое количество молекул:

p =\frackT\]» title=»Rendered by QuickLaTeX.com»/>

Концентрация () равна числу частиц в еденице объема:

Источник

Идеальный газ. Параметры состояния идеального газа.

Примером простейшей системы, изучаемой в молекулярной физике, является газ. Согласно статистическому подходу газы рассматриваются как системы, состоящие из очень большого числа частиц (до 10 26 м –3 ), находящихся в постоянном беспорядочном движении. В молекулярно-кинетической теории пользуются моделью идеального газа, согласно которой считают, что:

Читайте также:  Как сравнить емкость аккумуляторов

1) собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда;

2) между молекулами газа отсутствуют силы взаимодействия;

3) столкновения молекул газа между собой и со стенками сосуда абсолютно упругие.

Оценим расстояния между молекулами в газе. При нормальных условиях (н.у.: р=1,03·10 5 Па; t=0ºС) число молекул в единице объема: . Тогда средний объем, приходящийся на одну молекулу:

(м 3 ).

Среднее расстояние между молекулами: м. Средний диаметр молекулы: d»3·10 -10 м. Собственные размеры молекулы малы по сравнению с расстоянием между ними (в 10 раз). Следовательно, частицы (молекулы) настолько малы, что их можно уподобить материальным точкам.

В газе молекулы большую часть времени находятся так далеко друг от друга, что силы взаимодействия между ними практически равны нулю. Можно считать, что кинетическая энергия молекул газа много больше потенциальной, поэтому последней можно пренебречь.

Однако в моменты кратковременного взаимодействия (столкновения) силы взаимодействия могут быть значительными, что приводит к обмену энергией и импульсом между молекулами. Столкновения служат тем механизмом, с помощью которого макросистема может переходить из одного доступного ей при данных условиях энергетического состояния в другое.

Модель идеального газа можно использовать при изучении реальных газов, так как они в условиях, близких к нормальным (например, кислород водород, азот, углекислый газ, пары воды, гелий), а также при низких давлениях и высоких температурах близки по своим свойствам к идеальному газу.

Состояние тела может измениться при нагреве, сжатии, изменении формы, то есть при изменении каких — либо параметров. Различают равновесные и неравновесные состояния системы. Равновесное состояние – это состояние, при котором все параметры системы не меняются со временем (в противном случае — это неравновесное состояние), и нет сил, способных изменить параметры.

Важнейшими параметрами состояния системы являются плотность тела (или величина обратная плотности – удельный объем), давление и температура. Плотность (r) – масса вещества в единице объема. Давление (р – сила, действующая на единицу площади поверхности тела, направленная по нормали к этой поверхности. Разность температур () – мера отклонения тел от состояния теплового равновесия. Существует температура эмпирическая и абсолютная. Эмпирическая температура (t) – мера отклонения тел от состояния теплового равновесия с тающим льдом, находящимся под давлением в одну физическую атмосферу. В качестве единицы измерения принят 1 градус Цельсия (1 о С), который определен тем условием, что тающему под атмосферным давлением льду приписывают 0 о С, а кипению воды при том же давлении – 100 о С, соответственно. Различие между абсолютной и эмпирической температурой заключается, прежде всего, в том, что абсолютная температура отсчитывается от предельно низкой температуры – абсолютного нуля, который лежит ниже температуры таяния льда на 273,16 о , то есть

T = t + 273,16. (6.2.1)

В термодинамике часто количество вещества определяют в грамм-молекулах (количество вещества, выраженное в граммах, численно равное его молекулярному весу). Грамм-молекулу называют молем. Объем одного моля – молярный объем. 1000 молей соответствует киломолю.

Три основных параметра: r, Р и Т или V, Р и Т — не являются независимыми. Они связаны уравнением, которое называют уравнением состояния:

f (р,V,T) = 0, (6.2.2,а)
р = f (V,T). (6.2.2,б)

Отметим, что любая функциональная зависимость, связывающая между собой термодинамические параметры подобно (6.2.2,а), называется также уравнением состояния. Вид функции зависимости между параметрами ((6.2.2,а), (6.2.2,б)) определяется для каждого вещества экспериментально. Однако до сих пор удалось определить уравнение состояния только для газов, находящихся в разряженных состояниях, и, в приближенной форме, для некоторых сжатых газов.

Дата добавления: 2016-12-09 ; просмотров: 2228 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

ИНФОФИЗ — мой мир.

Весь мир в твоих руках — все будет так, как ты захочешь

Весь мир в твоих руках — все будет так, как ты захочешь

Как сказал.

Вопросы к экзамену

Для всех групп технического профиля

Список лекций по физике за 1,2 семестр

Урок 15. Лекция 15. Идеальный газ

Как известно, многие вещества в природе могут находиться в трех агрегатных состояниях: твердом, жидком и газообразном.

Учение о свойствах вещества в различных агрегатных состояниях основывается на представлениях об атомно-молекулярном строении материального мира. В основе молекулярно-кинетической теории строения вещества (МКТ) лежат три основных положения:

  • все вещества состоят из мельчайших частиц (молекул, атомов, элементарных частиц), между которыми есть промежутки;
  • частицы находятся в непрерывном тепловом движении;
  • между частицами вещества существуют силы взаимодействия (притяжения и отталкивания); природа этих сил электромагнитная.
Читайте также:  Сравнение квадрокоптеров dji mavic air 2

Значит, агрегатное состояние вещества зависит от взаимного расположения молекул, расстояния между ними, сил взаимодействия между ними и характера их движения.

Сильнее всего проявляется взаимодействие частиц вещества в твердом состоянии. Расстояние между молекулами примерно равно их собственным размерам. Это приводит к достаточно сильному взаимодействию, что практически лишает частицы возможности двигаться: они колеблются около некоторого положения равновесия. Они сохраняют форму и объем.

Свойства жидкостей также объясняются их строением. Частицы вещества в жидкостях взаимодействуют менее интенсивно, чем в твердых телах, и поэтому могут скачками менять свое местоположение – жидкости не сохраняют свою форму – они текучи. Жидкости сохраняют объем.

Газ представляет собой собрание молекул, беспорядочно движущихся по всем направлениям независимо друг от друга. Газы не имеют собственной формы, занимают весь предоставляемый им объем и легко сжимаются.

Существует еще одно состояние вещества – плазма. Плазма — частично или полностью ионизованный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. При достаточно сильном нагревании любое вещество испаряется, превращаясь в газ. Если увеличивать температуру и дальше, резко усилится процесс термической ионизации, т. е. молекулы газа начнут распадаться на составляющие их атомы, которые затем превращаются в ионы.

Модель идеального газа. Связь между давлением и средней кинетической энергией.

Для выяснения закономерностей, которым подчиняется поведение вещества в газообразном состоянии, рассматривается идеализированная модель реальных газов – идеальный газ. Это такой газ, молекулы которого рассматриваются как материальные точки, не взаимодействующие друг с другом на расстоянии, но взаимодействующие друг с другом и со стенками сосуда при столкновениях.

Идеальный газэто газ, взаимодействие между молекулами которого пренебрежимо мало. (Ек>>Ер)

Идеальный газ – это модель, придуманная учеными для познания газов, которые мы наблюдаем в природе реально. Она может описывать не любой газ. Не применима, когда газ сильно сжат, когда газ переходит в жидкое состояние. Реальные газы ведут себя как идеальный, когда среднее расстояние между молекулами во много раз больше их размеров, т.е. при достаточно больших разрежениях.

Свойства идеального газа:

  1. расстояние между молекулами много больше размеров молекул;
  2. молекулы газа очень малы и представляют собой упругие шары;
  3. силы притяжения стремятся к нулю;
  4. взаимодействия между молекулами газа происходят только при соударениях, а соударения считаются абсолютно упругими;
  5. молекулы этого газа двигаются беспорядочно;
  6. движение молекул по законам Ньютона.

Состояние некоторой массы газообразного вещества характеризуют зависимыми друг от друга физическими величинами, называемыми параметрами состояния. К ним относятся объем V, давление p и температура T.

Объем газа обозначается V. Объем газа всегда совпадает с объемом того сосуда, который он занимает. Единица объема в СИ м 3 .

Давлениефизическая величина, равная отношению силы F, действующей на элемент поверхности перпендикулярно к ней, к площади S этого элемента.

До настоящего времени употребляются внесистемные единицы давления:

техническая атмосфера 1 ат = 9,81-104 Па;

физическая атмосфера 1 атм = 1,013-105 Па;

миллиметры ртутного столба 1 мм рт. ст.= 133 Па;

1 атм = = 760 мм рт. ст. = 1013 гПа.

Как возникает давление газа? Каждая молекула газа, ударяясь о стенку сосуда, в котором она находится, в течение малого промежутка времени дей­ствует на стенку с определенной силой. В результате беспорядочных ударов о стенку сила со стороны всех молекул на единицу площади стенки быстро меняется со временем относительно некоторой (средней) величины.

Давление газа возникает в результате беспорядочных ударов молекул о стенки сосуда, в котором находится газ.

Используя модель идеального газа, можно вычислить давление газа на стенку сосуда.

В процессе взаимодействия молекулы со стенкой сосуда между ними возникают силы, подчиняющиеся третьему закону Ньютона. В результате проекция υx скорости молекулы, перпендикулярная стенке, изменяет свой знак на противоположный, а проекция υy скорости, параллельная стенке, остается неизменной.

Приборы, измеряющие давление, называют манометрами. Манометры фиксиру­ют среднюю по времени силу давления, приходящуюся на единицу площади его чувствительного элемента (мембраны) или другого приемника давления.

Читайте также:  Сравнение печорин грушницкий мери

  1. открытый – для измерения небольших давлений выше атмосферного
  2. закрытый — для измерения небольших давлений ниже атмосферного, т.е. небольшого вакуума

Металлический манометр – для измерения больших давлений.

Основной его частью является изогнутая трубка А, открытый конец которой припаян к трубке В, через которую поступает газ, а закрытый – соединен со стрелкой. Газ поступает через кран и трубку В в трубку А и разгибает её. Свободный конец трубки, перемещаясь, приводит в движение передающий механизм и стрелку. Шкала градуирована в единицах давления.

Основное уравнение молекулярно-кинетической теории идеального газа.

Основное уравнение МКТ: давление идеального газа пропорционально произведению массы молекулы, концентрации молекул и среднему квадрату скорости движения молекул

m — масса одной молекулы газа;

n = N/V – число молекул в единице объема, или концентрация молекул;

v 2 — средняя квадратичная скорость движения молекул.

Так как средняя кинетическая энергия поступательного движения молекул E = m*v 2 /2, то домножив основное уравнение МКТ на 2, получим p = 2/3· n·(m· v 2 )/2 = 2/3·E·n

Давление газа равно 2/3 от средней кинетической энергии поступательного движения молекул, которые содержатся в единичном объеме газа.

Так как m·n = m·N/V = m/V = ρ, где ρ – плотность газа, то имеем p = 1/3· ρ· v 2

Объединенный газовый закон.

Макроскопические величины, однозначно характеризующие состояние газа, называют термодинамическими параметрами газа.

Важнейшими термодинамическими параметрами газа являются его объем V, давление р и температура Т.

Всякое изменение состояния газа называется термодинамическим процессом.

В любом термодинамическом процессе изменяются параметры газа, определяющие его состояние.

Соотношение между значениями тех или иных параметров в начале и конце процесса называется газовым законом.

Газовый закон, выражающий связь между всеми тремя параметрами газа называется объединенным газовым законом.

Соотношение p = nkT связывающее давление газа с его температурой и концентрацией молекул, получено для модели идеального газа, молекулы которого взаимодействуют между собой и со стенками сосуда только во время упругих столкновений. Это соотношение может быть записано в другой форме, устанавливающей связь между макроскопическими параметрами газа – объемом V, давлением p, температурой T и количеством вещества ν. Для этого нужно использовать равенства

где n – концентрация молекул, N – общее число молекул, V – объем газа

Тогда получим или

Так как при постоянной массе газа N остается неизменным, то Nk – постоянное число, значит

При постоянной массе газа произведение объема на давление, деленное на абсолютную температуру газа, есть величина одинаковая для всех состояний этой массы газа.

Уравнение, устанавливающее связь между давлением, объемом и температурой газа было получено в середине XIX века французским физиком Б. Клапейроном и часто его называют уравнением Клайперона.

Уравнение Клайперона можно записать в другой форме.

Здесь N – число молекул в сосуде, ν – количество вещества, NА – постоянная Авогадро, m – масса газа в сосуде, M – молярная масса газа. В итоге получим:

Произведение постоянной Авогадро NА на постоянную Больцмана k называется универсальной (молярной) газовой постоянной и обозначается буквой R.

Ее численное значение в СИ R = 8,31 Дж/моль·К

называется уравнением состояния идеального газа.

В полученной нами форме оно было впервые записано Д. И. Менделеевым. Поэтому уравнение состояния газа называется уравнением Клапейрона–Менделеева.`

Для одного моля любого газа это соотношение принимает вид: pV=RT

Установим физический смысл молярной газовой постоянной. Предположим, что в некотором цилиндре под поршнем при температуре Е находится 1 моль газа, объем которого V. Если нагреть газ изобарно (при постоянном давлении) на 1 К, то поршень поднимется на высоту Δh, а обьем газа увеличится на ΔV.

Запишем уравнение pV=RT для нагретого газа: p ( V + ΔV ) = R (T + 1)

и вычтем из этого равенства уравнение pV=RT , соответствующее состоянию газа до нагревания. Получим pΔV = R

ΔV = SΔh, где S – площадь основания цилиндра. Подставим в полученное уравнение:

pS = F – сила давления.

Получим FΔh = R, а произведение силы на перемещение поршня FΔh = А – работа по перемещению поршня, совершаемая этой силой против внешних сил при расширении газа.

Универсальная (молярная) газовая постоянная численно равна работе, которую совершает 1 моль газа при изобарном нагревании его на 1 К.

Источник