Меню

Решение сравнение натуральных чисел



Сравнение натуральных чисел

Сравнить два различных натуральных числа − это значит определить, какое из них больше, а какое − меньше.

Из двух натуральных чисел меньшим является то, которое в натуральном ряду стоит раньше, а бОльшим − то, которое в натуральном ряду стоит позже. Поэтому, например, число 5 меньше числа 7, а число 171 больше числа 19 . Результаты сравнения записывают с помощью знаков (больше): 5 7 и 171 > 19 . Такие записи называют неравенствами.

Число 0 меньше любого натурального числа. Например, 0 12 .

Сравнивать можно одновременно и три числа. Например, число 17 больше 15, но меньше 20 . Это записывают так: 15 17 20 . Такую запись называют двойным неравенством. Часто слово «двойное» опускают, называя двойное неравенство неравенством.

Натуральные числа можно сравнивать, не обращаясь к натуральному ряду.

Сравнивать многозначные числа, имеющие разное количество чисел, легко.

Из двух натуральных чисел, имеющих разное количество цифр, бОльшим является то, у которого количество цифр больше.

Например, число 597 013 617 − девятизначное, а число 99 982 475 − восьмизначное, поэтому первое число больше второго.

Если два многозначных числа имеют одинаковое количество цифр, то следует руководствоваться этим правилом.

Из двух натуральных чисел с одинаковым количеством цифр бОльшим является то, у которого больше первая (при чтении слева направо) из неодинаковых цифр.

Например, 7 2 5 6 > 7 2 4 9, а 582 6 47 582 8 79 .

Отметим, что на координатном луче точка с меньшей координатой расположена левее точки с большей координатой. Например точка A( 7 ) лежит левее точки B( 9 ), так как 7 9 (рис. 63 ).

На координатном луче из двух натуральных чисел меньшее число расположено левее большего.

Пример 1 . В записи чисел вместо некоторых цифр поставили звездочки. Сравните эти числа:

1 ) Поскольку первое число трехзначное, а второе четырехзначное, то 69 * 43 ;

2 ) Цифр в этих числах поровну. Первая цифра каждого из них равна 7 . Вторы цифры этих чисел равны соответственно 2 и 0 . Поскольку 2 > 0, то 72 *** > 70 ***.

Пример 2 . Сравните 8 км 24 м и 8 146 м.

Поскольку 8 км 24 м = 8 024 м, то 8 км 24 м 8 146 м.

Источник

Сравнение натуральных чисел.

Определение, что такое сравнение натуральных чисел.

Сравнение в жизни мы используем постоянно. Например, длинная дорога или короткая, высокий или низкий человек, много игрушек или мало, большая емкость или маленькая. Так, что же такое сравнение натуральных чисел?

Сравнение натуральных чисел – это определение какое из натуральных чисел больше, а какое меньше.

Способы сравнения натуральных чисел.

1, 2, 3, 4, 5, 6, 7 , 8, 9 ,10, 11, 12, 13, 14, 15, …

1) Всегда числа, стоящие справа в натуральном ряду больше чисел, стоящих слева.
Например, сравним числа 7 и 9. Число 9 стоит правее числа 7, следовательно, число 9 больше 7.

Единица, является самым маленьким натуральным числом.

Любое натуральное число больше нуля.

2) Всегда больше то натуральное число, у которого разрядов больше.

Сравним два числа 45 и 190. Сразу понятно, что число 190 больше числа 45. Мы сделали такой вывод потому, что число 190 является трехзначным числом, а 45 – двухзначным числом. У числа 190 есть разряд сотен, десятков и единиц, а у числа 45 только разряд десятков и единиц.

3) Если количество разрядов одинаково, то мы будем сравнивать величины цифр разрядов, начиная с высшего разряда (слева направо).
Например, сравним числа 478 и 399. Оба числа являются трехзначными, поэтому подробно рассмотрим высший разряд сотен. У первого числа 478 разряд сотен равен 4, а у второго числа 399 разряд сотен равен 3. Следовательно, первое число 478 больше второго числа 399, потому что 4 больше 3.

Если высшие разряды одинаковые мы сравниваем следующий меньший разряд цифр.
Сравним числа 7890 и 7860. Начинаем сравнивать высший разряд единиц тысяч он у обоих чисел равен 7. Следующий разряд сотен, также равен у обоих чисел 8. А вот разряд десятков различен. У первого числа 7890 разряд десятков равен 9, а у второго числа 7860 равен 6. Далее делаем вывод, первое число 7890 больше 7860, потому что разряд десятков у первого числа больше чем у второго. Проще сказать, 9 больше 6.

4) Если при сравнении все цифры разрядов двух натуральных чисел одинаковы, значит числа равны.
Например, сравним числа 4890765 и 4890765. Видно, что у обоих чисел все цифры разрядов одинаковы, следовательно, они равны.

Неравенство и знаки неравенства.

Чтобы не писать словами больше, меньше или равно в математике придумали обозначения. Больше (>), меньше ( 2. Или 6 меньше 10, мы запишем как 6 2, 6 1 в) 7=7
Ответ: а) пять меньше двенадцати б) шесть больше одного в) семь равено семи.

Пример №2:
Запишите неравенство: а) 4 меньше 8 б) 10 больше 9 в) 11 равно 11.
Ответ: а) 4 9 в) 11=11.

Читайте также:  Huawei matebook d14 или honor magicbook 14 сравнение

Пример №3:
Верны ли неравенства? Проверьте знаки сравнения: а) 5 23 г) 5=55
Ответ: а) верно б) неверно в) неверно г) неверно.

Пример №4:
Сравните числа, поставьте правильно знаки неравенства ( , =): а)3 и 3 б)4 и 9 в)8 и 3
Ответ: а) 3=3 б) 4 3

Посмотрите на рисунок и составьте неравенство.

Ответ: 10>2 или 2 Category: 5 класс, Натуральные числа Leave a comment

Источник

Сравнение натуральных чисел

Сравнить два числа — это значит определить, равны они или нет, если нет, то определить, какое из них больше, а какое — меньше.

Равные и неравные натуральные числа

Если записи двух натуральных чисел одинаковы, то говорят, что эти числа равны между собой. Числа, которые равны, называются равными. Если записи двух натуральных чисел отличаются, то говорят, что эти числа не равны. Числа, которые не равны, называются неравными.

Пример. Натуральное число 34 равно числу 34 (их записи одинаковы), а натуральные числа 63 и 67 не равны (их записи различны). Следовательно числа 34 и 34 — равные, а 63 и 67 — неравные.

Равенства и неравенства

Для записи результата сравнения чисел используются следующие знаки:

=, > и = называется знаком равенства и заменяет собой слово равно или равняется . Например, если числа a и b равны, то пишут a = b и говорят: a равно b .

Запись, которая состоит из математических выражений, между которыми ставится знак = называется равенством.

4 = 4 — равенство.

2 + 3 = 5 — равенство.

2 + 2 = 1 + 1 + 2 — равенство (подобные записи представляют собой равенство двух числовых выражений, и означают равенство значений этих выражений).

Равенства могут быть как верными (например, 5 = 5 — верное равенство), так и неверными (например, 11 = 14 — неверное равенство).

Два других знака > и называются знаками неравенства и означают: знак > — больше , а знак — меньше . Например, если число a больше числа b, то пишут a > b и говорят: a больше b или пишут b b меньше a .

Знаки > и должны быть обращены остриём к меньшему числу.

Запись, которая состоит из математических выражений, между которыми ставится знак > или называется неравенством.

5 > 4 — неравенство.

2 8 — неверное неравенство).

Кроме неравенств со знаками > и , которые называются строгими, используются нестрогие неравенства, для которых введены знаки ⩾ и ⩽ . Знак ⩾ читается больше или равно , знак ⩽ — меньше или равно . Нестрогое неравенство допускает случай равенства левой и правой его частей. Так, например, 7 ⩽ 7 — верное неравенство.

Также для записи неравенства двух натуральных чисел может применяться знак ≠ . Знак ≠ читается не равно . Например, запись ab — означает a не равно b.

Обычно, если не оговорено иное, понятие неравенства относится только к записям со знаками > , , ⩾ и ⩽ .

Правила чтения равенств и неравенств

Равенства и неравенства читаются слева направо. Левая часть равенства читается в именительном падеже, а правая — в дательном.

Пример. 7 = 7 — семь равно семи.

Левая часть неравенства читается в именительном падеже, а правая — в родительном.

Пример. 11 > 9 — одиннадцать больше девяти, 3 Пример. Сравним числа 1 и 3, 7 и 4. Запишем все однозначные натуральные числа в одной строке в следующем порядке:

1, 2, 3, 4, 5, 6, 7, 8, 9.

Число 1 меньше числа 3 (1 4), так как в натуральном ряду число 7 находится правее числа 4.

Для применения правил сравнения чисел по их десятичной записи необходимо принять одну условность: будем считать, что число 0 меньше любого натурального числа, и что нуль равен нулю.

Правила сравнения натуральных чисел по их десятичной записи:

Если записи сравниваемых чисел состоят из одинакового количества цифр, то числа сравниваются поразрядно слева направо. Большим будет считаться то число, у которого первая (слева направо) из неодинаковых цифр больше.

Когда говорят, что цифры равны (или одна цифра больше другой), то имеют ввиду, что соответствующие им числа равны (или одно число больше другого).

Пример. Сравним натуральные числа 4026 и 4019. Для удобства сравнения можно записать их одно под другим:

Сначала сравниваем значения разряда тысяч. Получаем равенство 4 = 4, поэтому переходим к сравнению значений следующего разряда. Опять получаем равенство 0 = 0, переходим к сравнению значений разряда десятков. Теперь имеем неравенство 2 > 1, из которого делаем вывод, что число 4026 больше числа 4019 (4026 > 4019), потому что у первого числа, цифра разряда десятков (2) больше, чем цифра разряда десятков (1) у второго числа.

Если количество цифр в записи, сравниваемых чисел, разное, то большим будет считаться то число, у которого количество цифр больше.

Пример. Сравним натуральные числа 347 503 и 34 503. Для удобства сравнения можно записать их одно под другим:

347 503
34 503

Записав числа одно под другим, можно наглядно заметить, что первое число имеет большее количество цифр, чем второе, следовательно 347 503 > 34 503.

Два натуральных числа равны, если у них одинаковое количество цифр и цифры одинаковых разрядов равны.

Читайте также:  Сравнение столбцов через если

Пример. Сравним числа 38 526 734 и 38 526 734. Для удобства сравнения можно записать их одно под другим:

38 526 734
38 526 734

Записи данных чисел одинаковы (количество цифр и цифры одинаковых разрядов равны), следовательно эти числа равны.

Двойные неравенства, тройные неравенства и т. д.

Когда нужно записать, что одно число больше другого, но меньше третьего, часто используют двойные неравенства.

Пример. Известно, что 4 четыре больше двух, но меньше пяти .

В виде двойного неравенства можно записывать результат сравнения трёх натуральных чисел.

Пример. Допустим, нужно сравнить три натуральных числа 11, 34 и 8. Сравнивая данные числа между собой, получим три неравенства 11 8, которые можно записать как двойное неравенство:

8 Пример. Известно, что 12 15, 47 Сравнить .

Источник

Математика. 5 класс

Конспект урока

Сравнение натуральных чисел

Перечень вопросов, рассматриваемых в теме:

— сравнение натуральных чисел;

— упорядочивание натуральных чисел;

— знаки сравнения чисел.

Числа можно сравнивать при помощи натурального ряда.

Натуральный ряд – последовательность всех натуральных чисел, расположенных в порядке возрастания.

Число, которое больше нуля, называют положительным.

  1. Никольский С. М. Математика: 5 класс. // С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин. – М.: Просвещение, 2017. – 272 с.
  2. Потапов М. К. Математика. Книга для учителя. 5-6 классы. // М. К. Потапов, А. В. Шевкин. – М.: Просвещение, 2010.- 256 с.
  1. Бурмистрова Т. А. Математика. Сборник рабочих программ. 5-6 классы. // Составитель Т. А. Бурмистрова – М.: Просвещение, 2014.- 80 с.
  2. Потапов М. К. Математика: дидактические материалы. 6 класс. // М. К. Потапов, А. В. Шевкин – М.: Просвещение, 2010.- 118 с.
  3. Чесноков А. С. Дидактические материалы по математике 5 класс. // А. С. Чесноков, К. И. Нешков. – М.: Академкнига, 2014.- 124 с.

Теоретический материал для самостоятельного изучения

Числа можно сравнивать при помощи натурального ряда.

Вспомним, что называют натуральным рядом.

Натуральные числа 1, 2, 3, 4 и так далее, записанные в порядке возрастания и без пропусков, образуют натуральный ряд, или ряд натуральных чисел.

Из двух натуральных чисел больше то, которое в ряду натуральных чисел стоит правее (дальше от начала).

Рассмотри пример. Сравним числа:

7 > 4, так как в ряду натуральных чисел 7 стоит правее, чем 4.

6 > 2, так как в ряду натуральных чисел 6 стоит правее, чем 2.

Натуральные числа можно сравнивать по их десятичной записи.

Из двух натуральных чисел больше то, у которого разрядов больше.

Например, сравним числа 2002 и 898.

2002 > 898, так как число 2002 содержит разрядов больше, чем число 898.

Из двух натуральных чисел с одинаковым числом разрядов больше то, у которого больше первая (если читать слева направо) из неодинаковых цифр.

Например, сравним числа 3821 и 3819.

3821 > 3819, потому что у них одинаковое число разрядов, цифры четвёртых и третьих разрядов одинаковые, а цифры второго разряда у них разные: у первого числа больше, чем у второго.

Два натуральных числа равны, если у них одинаковое число разрядов и цифры одинаковых разрядов равны.

Сравним числа: 47 834 567 362 и 47 834 567 362.

47 834 567 362 = 47 834 567 362, так как у них одинаковое число разрядов и цифры одинаковых разрядов равны.

Числа иногда удобно обозначать буквами латинского алфавита.

Число, которое больше нуля, называют положительным.

Поэтому натуральные числа называют ещё целыми положительными числами. Число нуль также целое, но не положительное.

Натуральные числа и число нуль называют ещё целыми неотрицательными числами, так как, кроме неотрицательных чисел, есть ещё и отрицательные числа. Они будут изучаться в дальнейшем.

Если к ряду натуральных чисел приписать слева число 0, то получится ряд неотрицательных целых чисел: 0, 1, 2, 3, 4.

Разбор решения заданий тренировочного модуля

Источник

Сравнение натуральных чисел

Вам уже известно, что натуральные числа используются для обозначения количества тех или иных предметов. Возьмем, к примеру, конфеты. Мама купила шоколадные батончики и высыпала их кучкой на столе. Дети пересчитали, и их оказалось 25 штук.

Но часто бывает так, что кроме знания количества предметов, нам необходимо определить, одинаковое ли оно в их разных группах или как-то отличается .

Пришел с работы папа и высыпает рядом еще конфеты. На первый взгляд, эта кучка не отличается от первой, но пересчитав количество папиных конфет, дети увидели, что их всего 23. Значит, эти кучки разные. Чтобы это выяснить, дети произвели два действия:

  1. Подсчитали количество конфет в каждой их кучек.
  2. Сравнили два натуральных числа, которые получили после подсчетов.

Сравнить натуральные числа – это означает узнать, отличаются ли они друг от друга или они одинаковые. Если сравниваемые числа отличаются, тогда мы может узнать, что одно число больше другого, а второе, соответственно, меньше первого.

Читайте также:  Сравните листья папоротника с листьями зеленого мха найдите жилки

Как сравнить натуральные числа

Сравнить натуральные числа можно такими способами:

  • по их положению в натуральном ряду;
  • по их записи в десятичной системе.

В результате сравнения мы можем получить:

Равенство натуральных чисел

Если два натуральных числа имеют полностью одинаковую запись, то и записанные с их помощью числа одинаковы (говорят просто – они равны). Если их записи отличаются, тогда эти числа не равны.

Равенство – это запись равных между собой чисел. Оно обозначается знаком равно : « = » .

Между неравными числами ставится знак не равно : « » , который означает отсутствие равенства .

Если мы определили, что числа не равны, тогда нам необходимо выяснить, какое положение они занимают по отношению друг к другу, большее или меньшее.

Запись и чтение неравенств

Записываются результаты сравнений неравных чисел при помощи знаков неравенства : меньше « » и знака больше « > » . Их, как и знаки равенства и неравенства, ставят непосредственно между числами , которые мы сравниваем:

Неравенство – это запись чисел или математических выражений, которая содержит знаки неравенства.

Читается подобная запись следующим образом. Первое число называется в именительном падеже (кто? что?), а второе в родительном (кого? чего?). Например, так: «два меньше четырех», «восемьдесят девять больше семидесяти восьми».

Если стрелка смотрит влево: « меньше » и означает, что слева от него находится число меньшее, чем справа.
Если стрелка смотрит вправо: «>», такой знак называется « больше » и означает, что слева от него находится большее число, чем справа.
Стрелка знака всегда указывает на меньшее число, а двойная вилка – на большее!

Неравенство можно прочесть как слева направо, так и справа налево . При этом необходимо учитывать направление стрелки и двойной вилки указанного знака неравенства.

Например, дано неравенство 5 верным (правильно отмеченным), например, 1 неверным (неправильно отмеченным), например, 5>6.

Сравнение однозначных натуральных чисел с помощью ряда

Этот способ лучше всего подходит для сравнения однозначных натуральных чисел.

Меньшим называют число, которое в натуральном ряду находится раньше другого, а большим – то, которое расположено позже другого.

Например, число 2 в натуральном ряду стоит раньше, чем число 4, значит, 2 8.

Число 1 (единица) – самое меньшее из натуральных чисел, поскольку стоит в натуральном ряду первым.

На координатном луче меньшее число обозначается раньше (левее), а большее число – позже (правее) другого числа.

Рис. 1. Большее и меньшее число на координатном луче.

На рисунке 1 видно, что так как 5 разное количество цифр , то большим будет то число, которое состоит из большего количества цифр.

Действительно, чем больше в числе цифр, тем выше разряд самой первой цифры в этом числе.

К примеру, 123456>12345, потому что в первом числе цифра 1 обозначает сотню тысяч, а во втором – десяток тысяч.

Поэтому, для решения задач на сравнение чисел с разным количеством цифр, из которых они состоят, нам достаточно сравнить эти количества:

123456 – шестизначное число, 6 цифр;

12345 – пятизначное число, 5 цифр;

Если натуральные числа состоят из одинакового количества цифр , то мы начинаем сравнивать количество единиц каждого разряда этих чисел, начиная с самого большого (то есть, слева направо). Большим будет то число, у которого будет больше единиц в одном и том же с другим числом разряде.

Например, сравним два числа: 12336 и 12345. Оба числа пятизначные. Значит, сравниваем каждую цифру, начиная с 5 разряда (десятков тысяч):

десятки тысяч: 1=1;

единицы тысяч: 2=2;

десятки: 3 из одинакового количества цифр , то большим будет такое число, у которого, если сравнивать составляющие их цифры слева направо, большей является первая из неодинаковых цифр.

Сравнение двух, трех, и более чисел

Сравнивать между собой можно не только два натуральных числа.

Вернемся к примеру с конфетами на столе. Бабушка тоже купила конфеты и высыпала их на столе. Дети пересчитали их, и в бабушкиной кучке оказалось 33 штуки. Количество конфет мы можем записать натуральными числами: 25, 23 и 33.

Сравнив их между собой, мы увидим три неравенства:

Гораздо удобнее записать результат сравнения в виде двойного неравенства :

23

Как видите, все неравенства верны.

Чтобы быстро записать двойное, тройное, и т.д. неравенство, нужно расставить данные числа слева направо в порядке возрастания (предварительно сравнив между собой), оставив небольшие промежутки между ними. А после этого в оставленные промежутки записать знаки

Средняя оценка 5 / 5. Количество оценок: 1

Оценок пока нет. Поставьте оценку первым.

Так как вы нашли эту публикацию полезной.

Подписывайтесь на нас в соцсетях!

Сожалеем, что вы поставили низкую оценку!

Позвольте нам стать лучше!

Расскажите, как нам стать лучше? Отправить отзыв

Источник