Меню

Руководство по оценке неопределенности измерений



Аккредитация в Росаккредитации

форум для аккредитованных лабораторий

  • Непрочитанные сообщения
  • Темы без ответов
  • Активные темы
  • Поиск
  • Статистика сайта

Неопределенность измерений

#1 Неопределенность измерений

Абсолютно точных измерений не существует. При проведении измерения его результат зависит от измерительной системы, методики измерения, квалификации оператора, внешних условий и других факторов. Так, если измерять одну и ту же величину несколько раз одним способом и в одинаковых условиях, то, как правило, полученные значения измеряемой величины всякий раз будут разными. Их среднее должно обеспечить значение оценки истинного значения величины, которая будет более достоверной, чем отдельное показание. Разброс показаний и их число дают некоторую информацию в отношении среднего значения как оценки истинного значения величины, однако, этого недостаточно. В руководстве по оценке неопределенности измерений (GUM) предложено выражать результат измерения как наилучшую оценку измеряемой величины вместе с соответствующей неопределенностью измерения. Неопределенность измерения можно представить через степень уверенности. Такая неопределенность будет отражать неполноту знания об измеряемой величине. Понятие «уверенности» очень важно, т. к. оно перемещает метрологию в сферу, где результат измерения должен рассматриваться и численно определяться в терминах вероятностей, которые выражают степень доверия. Неопределенность измерения — «неотрицательный параметр, характеризующий рассеяние значений, приписываемых измеряемой величине на основании используемой информации».

Таким образом, параметр этого распределения (также называемый — неопределенность) количественно характеризует точность результата измерений. Сходными для обоих подходов являются последовательности действий при оценивании характеристик погрешности и вычислении неопределенности измерений: Методы вычисления неопределенности, так же как и методы оценивания характеристик погрешности, заимствованы из математической статистики, однако при этом используются различные интерпретации закона распределения вероятностей случайных величин.
Из рассмотренных метрологических ситуаций можно предложить общее правило: результаты измерений в большинстве метрологических ситуаций характеризуются неопределенностью, а нормативы точности средств измерений, измерительных и контрольных процедур характеризуются погрешностью. Таким образом, понятия «неопределенность» и «погрешность» рекомендуется гармонично использовать без взаимного противопоставления и исключения одного из них.

Измерения выполняются ради оценки результата, сравнения его с нормативами и правила оценки результатов обуславливают требования к выполнению измерений.

  • ГОСТ Р ИСО 10576-1-2006 «РУКОВОДСТВО ПО ОЦЕНКЕ СООТВЕТСТВИЯ УСТАНОВЛЕННЫМ ТРЕБОВАНИЯМ»
  • ГОСТ 34100.1-2017/ISO/IEC Guide 98-1:2009 “Неопределенность измерения. Часть 1. Введение в руководства по выражению неопределенности измерения”
  • Межгосударственный стандарт ГОСТ ИСО МЭК 17025-2009
  • Письмо Роспотребнадзора от 13.06.2012 г. №01/6620-12-32

Термины и определения

3.1 предельные значения, пределы поля допуска (limiting values, specification limits) L: Установленные значения параметра, представляющие собой верхнюю и/или нижнюю границы допустимых значений.

3.2 нижняя граница поля допуска (lower specification limit) L SL: Нижняя граница допустимых значений параметра.

3.3 верхняя граница поля допуска (upper specification limit) U SL:Верхняя граница допустимых значений параметра.

3.4 оценка соответствия (conformity test): Систематическая оценка соответствия продукции, процесса или услуги установленным требованиям посредством испытаний.

3.5 область допустимых значений (region of permissible values): Интервал или интервалы всех допустимых значений параметра.

Примечание – Если иначе не установлено, предельные значения считают принадлежащими области допустимых значений.

3.6 область недопустимых значений (region of non-permissible values): Интервал или интервалы всех недопустимых значений параметра.

Оценка соответствия — важный аспект управления качеством производства, метрологического надзора, проверки соответствия требованиям безопасности и санитарным нормам (например, по выбросам, уровню радиации, содержанию химических веществ и т. д.).

Измерение является неотъемлемой частью оценки соответствия, когда необходимо решить, соответствует ли выходная (измеряемая) величина установленному требованию. Для единственной величины такое требование обычно принимает вид границ, определяющих интервал допустимых значений величины. При отсутствии неопределенности полученное значение измеряемой величины, лежащее в пределах границ, считают соответствующим требованиям, в противном случае — несоответствующим. Наличие неопределенности измерения влияет на процедуру контроля и делает необходимым установление баланса рисков производителя и потребителя.

Возможные значения контролируемой величины представляют в виде распределения вероятностей. Можно рассчитать вероятность, с которой она соответствует установленным требованиям.

Из-за неполного знания значения контролируемой величины (что отражает её распределение вероятностей) существует риск ошибочного решения при определении соответствия установленным требованиям:

  • когда значение величины признано соответствующим требованиям, но на самом деле им не является, и
  • когда значение величины признано несоответствующим, но на самом деле установленным требованиям удовлетворяет. Связанные с этим риски относят, соответственно, к риску потребителя и риску производителя.

Риски ошибочного решения в части соответствия или несоответствия установленным требованиям можно уравновесить, выбирая интервал приемки для полученных значений измеряемой величины таким образом, чтобы минимизировать потери, связанные с ошибочными решениями. Выбор границ интервала приемки зависит от последствий принятия ошибочных решений.

Хотя вышеизложенное справедливо для любых распределений вероятностей, в основном, целесообразно рассматривать случай нормального распределения как наиболее характерного для практики.

1.5. Оценка фактических уровней производственных физических факторов должна проводиться с учетом неопределенности измерений*(1).

*(1) ГОСТ Р 54500.1-2011/Руководство ИСО/МЭК 98-1:2009 “Неопределенность измерения. Введение в руководство по неопределенности измерения”, ГОСТ Р ИСО 10576-1-2006 “Руководство по оценке соответствия установленным требованиям.

Примечание: Приказом Росстандарта от 12 сентября 2017 г. N 1064-ст настоящий ГОСТ отменен с 1 сентября 2018 г. в связи с принятием и введением в действие ГОСТ 34100.1-2017/ISO/IEC Guide 98-1:2009 “Неопределенность измерения. Часть 1. Введение в руководства по выражению неопределенности измерения” для добровольного применения в РФ

  • ГОСТ 34100.1-2017/ISO/IEC Guide 98-1:2009 “Неопределенность измерения. Часть 1. Введение в руководства по выражению неопределенности измерения”
  • Межгосударственный стандарт ГОСТ 34100.3-2017/ISO/IEC Guide 98-3:2008 “Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения”
  • Рекомендации по метрологии Р 50.2.038-2004 “Государственная система обеспечения единства измерений. Измерения прямые однократные. Оценивание погрешностей и неопределенности результата измерений”

СКО, характеризующее случайную погрешность Стандартная неопределенность, вычисленная по типу А
СКО, характеризующее неисключенную систематическую погрешность (погрешность СИ) Стандартная неопределенность, вычисленная по типу В
СКО, характеризующее суммарную погрешность Стандартная неопределенность, вычисленная по типу В
Доверительные границы погрешности Расширенная неопределенность

  • инструментальная (приборная) — определяется конструкцией СИ; (основная, дополнительная; предел допускаемой погрешности)
  • систематическая — обусловлена методом измерения;
  • случайная — разброс результатов, обусловленный совокупностью различных факторов;
  • «промах» — грубая ошибка
  1. Выявление «промахов» и исключение их из выборки
  2. Учет систематической погрешности измерения (например, умножение освещенности, измеренной люксметром Ю-116 на поправочный коэффициент для данного типа источника света)
  3. Вычисление стандартной неопределенности по типу А — среднего квадратического отклонения (Аналогично вычислению случайной погрешности)
  4. Вычисление стандартной неопределенности по типу В (Аналогично вычислению неисключенной погрешности)
  5. Определение Расширенной неопределенности (Аналогично суммарной погрешности с доверительными границами)

Метод исключения «промахов» по Q-критерию: (см также ГОСТ Р 8.736-2011)
Q=(X 1-X 2)/R

Наличие грубой погрешности доказано, если Q > Q (Р, n i).

Вычисление стандартной неопределённости измерений.

Стандартная неопределенность измерений (u) включает два компонента:

  • среднее квадратическое отклонение, обусловленное случайными колебаниями результата последовательных измерений, соответствует стандартной неопределенности типа А при отсутствии других составляющих, не связанных со статистически случайными процессами (S X);
  • среднее квадратическое отклонение неисключенной систематической погрешности (НСП) измерения (как правило, погрешность средства измерений — СИ) (S Θ)

ПРИМЕЧАНИЕ: данный способ оценивания неопределённости измерений в терминологии ГОСТ Р 54500.3 является оцениванием по типу В. (настоящий ГОСТ отменен с 1 сентября 2018 г. в связи с принятием и введением в действие ГОСТ 34100.3-2017/ISO/IEC Guide 98-3:2008)

Среднеквадратическое отклонение: (синонимы: среднее квадратическое отклонение, среднеквадратичное отклонение, квадратичное отклонение; близкие термины: стандартное отклонение, стандартный разброс) — в теории вероятностей и статистике наиболее распространённый показатель рассеивания значений случайной величины относительно её математического ожидания. При ограниченных массивах выборок значений вместо математического ожидания используется среднее арифметическое совокупности выборок.

где
Θ – граница НСП симметричного доверительного интервала (выражена как абсолютная погрешность СИ);

Θ+, Θ– верхняя и нижняя граница НСП для несимметричных доверительных интервалов, например, когда погрешность СИ несимметрична в положительную и отрицательную сторону (при измерении плотности потока энергии).

где
X i — результат i-ro наблюдения (единичного замера),
X̅ — среднее арифметическое значение оценки величины X (результат измерения),
n — количество наблюдений (замеров); для многократных измерений количество замеров должно быть не менее 4.

Встречаются ситуации, когда измерения проводятся с однократным наблюдением, и в этом случае стандартная неопределённость измерений оценивается только как Sθ., которая рассчитывается на основе погрешностей СИ.

Выполнение однократных измерений может быть обусловлено следующими факторами:

  • производственной необходимостью (невозможность повторения измерений, экономическая целесообразность и т. д.);
  • возможностью пренебрежения случайными погрешностями (SX).

Примечание 1 — Если Θ/S X> 8, то величиной SX при расчёте u можно пренебречь (Р 50.2.038).
Примечание 2 — Если Θ/S X X, затем S θ для основной погрешности или предела допускаемой погрешности. Если необходимо учесть дополнительную погрешность, то вычисляется также величина стандартной неопределенности, обусловленной дополнительной погрешностью S ΘД также как S Θ. После этого вычисляется величина суммарной стандартной неопределенности.

Вычисление расширенной неопределённости измерений

Расширенная неопределенность измерений (U) определяется как суммарная стандартная неопределенность (u), умноженная на коэффициент охвата (k):

Коэффициент охвата для уровня доверия 95% для двухстороннего интервала охвата можно принять равным 2, а для одностороннего интервала охвата равным 1,64 при условии, что количество замеров будет не менее 11, что соответствует числу степеней свободы, равному 10 (ГОСТ 54500.3, п. 6.3.3, G6.6 (настоящий ГОСТ отменен с 1 сентября 2018 г. в связи с принятием и введением в действие ГОСТ 34100.3-2017/ISO/IEC Guide 98-3:2008). Таким образом, чем больше измерений в выборке, тем меньше ожидаемая неопределенность измерений.

Одно и двусторонний интервал охвата

Интервал охвата = интервал неопределённости (плохой перевод: ГОСТ Р 54500.3-2011/Руководство ИСО/МЭК 98-3:2008 (п. 6.2.2) Раньше использовались термины «одно — и двусторонние доверительные интервалы».

Если неопределённость оценивается по типу А, то интервал охвата=интервалу неопределённости

К чему ведет недостаточное количество измерений?

Коэффициент охвата для уровня доверия 95% для двухстороннего интервала охвата можно принять равным 2, а для одностороннего интервала охвата равным 1,64 при условии, что количество замеров будет не менее 11, что соответствует числу степеней свободы, равному 10 (ГОСТ 54500.3, п. 6.3.3, G6.6 ). Таким образом, чем больше измерений в выборке, тем меньше ожидаемая неопределенность измерений.

Аттестованная методика измерений (МИ) должна содержать значения установленной точности измерений в виде расширенной неопределённости.

При наличии установленного МИ диапазона расширенной неопределённости (U), приведенного в используемой аттестованной МИ, в протоколе измерений следует указывать ее значение, если целью исследования является оценка значения величины с некоторой точностью. Как правило, аттестованные МИ содержат установленные значения расширенной неопределённости измерений для двухстороннего охвата при уровне доверия 95%: ±U(95%), при этом используется коэффициент охвата (k), равный 2. В этом случае результат измерений приводится в протоколе как:

Представление результатов оценивания неопределенности

Источник

ГОСТ 34100.1-2017 Неопределенность измерения. Часть 1. Введение в руководства по выражению неопределенности измерения

Текст ГОСТ 34100.1-2017 Неопределенность измерения. Часть 1. Введение в руководства по выражению неопределенности измерения

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION

МЕЖГОСУДАРСТВЕННЫЙ 34100.1 —

ISO/IEC Guide 98-1:2009

Введение в руководства по выражению неопределенности измерения

(ISO/IEC Guide 98-1:2009,

Uncertainty of measurement — Part 1: Introduction to the expression of uncertainty in measurement,

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0—2015 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2015 «Межгосударственная система стандартизации. Стандарты межгосударственные. правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

1 ПОДГОТОВЛЕН Межгосударственным техническим комитетом по стандартизации МТК 125 «Статистические методы в управлении качеством продукции» на основе собственного перевода на русский язык англоязычной версии международного документа, указанного в пункте 5

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии (Росстан-

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 14 июля 2017 г. Ne 101-П)

За принятие стандарта проголосовали:

Краткое наименование страны по МК 0 или что температура окружающей среды во время измерения отличается от предписанной не более чем на 2 *С.

3.12 Величина, входящая в модель измерения, может зависеть от времени, например, если она отражает распад радионуклида с определенной скоростью. В этом случае соответствующая временная зависимость должна быть включена в модель, чтобы дать возможность соотнести измеряемую величину с временем проведения измерения.

3.13 Зачастую модель измерения предполагает использование помимо результатов наблюдений входящих в нее случайных величин также данных иной природы, в частности, физических констант, из вестныхснвкоторойточностью. При мерами такихконстант могут служитьфиэические характеристики материалов, например модуль упругости или удельная теплоемкость. Также в модель в качестве значений оценок величин могут быть включены данные, заимствованные из справочников, сертифика-тово калибровке и других аналогичных источников.

3.14 Составляющие модели, необходимые для определения измеряемой величины, называют входными величинами модели измерений (JCGM 200:2008 (VIM), словарная статья 2.50). Саму модель, определяющую правило преобразования входных величин, часто называют функциональной зависимостью [см. JCGM 100:2008 (GUM) (4.1)]. Выходной величиной модели измерении (JCGM 200:2008 (VIM), словарная статья 2.51) является измеряемая величина.

Читайте также:  Анемометры крыльчатые диапазон измерений

3.15 Формально, связь выходной величины, обозначаемой У. в отношении которой требуется

получить информацию, с входными величинами, обозначаемыми X. Хн, информация о которых

доступна, часто представляют моделью [см. JCGM 100:2008 (GUM), (4.1.1)] в виде функции измерения (JCGM 200:2008 (VIM), словарная статья 2.49)

3.16 В общем виде модель измерения (см. JCGM 200:2008 (VIM), примечание 1 к словарной статье 2.48) может быть представлена формулой

Предполагается, что для модели, задаваемой формулой (2). существует способ вычисления У по данным X. Хл. и что получаемое при этом значение У единственно.

3.17 Истинные значения входных величин X, Хы неизвестны. В подходе, принятом GUM, X.

Хы ассоциируют со случайными переменными (ISO 3534-1:2006. словарная статья 2.10) с соответствующими распределениями вероятностей [см. JCGM 100:2008(GUM) (3.3.5). а также ISO 3534*1:2006.

словарную статью 2.11]. Эти распределения, принимаемые на основе имеющихся знаний об X. Хи,

описывают вероятности нахождения истинных значений входных величин в разных интервалах. Иногда входные величины (все или некоторые) могут быть связаны между собой, и для их описания используют совместные распределения. В настоящем документе рассматриваются, преимущественно, независимые случайные переменные, однако полученные выводы могут быть легко обобщены и на случай взаимосвязанных величин.

3.18 Если из сертификатов, отчетов, документации изготовителей, анализа данных измерений и

других источников известны значения оценок х. хн соответствующих входных величин X. Хм,

то ассоциированные с Х1. Хы распределения вероятностей должны иметь значения х. xN в

качестве своих математических ожиданий [см. JCGM 101:2008 (3.6), а также ISO 3534-1:2006, словарную статью 2.12]. Для каждого значения оценки х, /-й входной величины существует ассоциированная с ней стандартная неопределенность (JCGM 200:2008 (VIM), словарная статья 2.30), обозначаемая ц(х,) и определяемая как стандартное отклонение [см. JCGM 101:2008 (3.8), а также ISO 3534-1:2006. словарную статью 2.37] входной величины, ассоциированной с X,. Значение оценки х, понимают как наилучшее для данной входной величины в том смысле, что о^х,,) будет меньше, чем математическое ожидание квадрата отклонения X, от любого другого значения.

3.19 Принцип использования всей доступной информации для установления распределения вероятностей, характеризующих входящую в модель величину, справедлив как для каждой входной величины X,, так и для выходной величины У. В последнем случае распределение вероятностей определяют на основе функциональной зависимости (1) или (2) и известных распределений вероятностей для

X,. Данный способ получения распределения вероятностей для У известен как трансформирование распределений [см. JCGM 101:2008 (5.2)].

3.20 Априорное знание об истинном значении выходной величины У также может быть использовано соответствующим образом. Так в отношении измерений на домашних весах в ванной комнате априорными будут сведения, что масса человека на весах положительна, и что измеряют массу именно человека, а не. например, автомобиля. Учет такой дополнительной информации может помочь обоснованно выбрать распределение вероятностей для У с меньшим стандартным отклонением, что. соответственно. даст меньшую стандартную неопределенность, ассоциированную со значением оценки У ([2]. [13]. [24]).

4 Основные понятия и принципы

4.1 Основные понятия и принципы теории вероятностей, которые положены в основу концепции неопределенности измерения, изложенной в разделе 3. представлены в [4].

4.2 Неопределенность измерения определяют как (JCGM 200:2008 (VIM), словарная статья 2.26) «неотрицательный параметр, хараклюризующий рассеяние значений величины, приписываемых измеряемой величине на основании используемой информации«.

Это определение согласуется с положениями, изложенными в 3.8. а также в 3.17—3.20.

4.3 При вычислении неопределенности используются два представления распределения вероятностей [см. JCGM 101:2008 (3.1). а также ISO 3534-1:2006. словарную статью 2.11] случайной переменной X:

• через функцию распределения [см. JCGM 101:2008 (3.2), а также ISO 3534-1:2006, словарную статью 2.7], дающую для любого значения ее аргумента вероятность того, что Xменьше или равна этому значению:

• через функцию плотности вероятностей [см. JCGM 100:2008 (3.3), а также ISO 3534-1:2006. словарную статью 2.26]. являющуюся производной от функции распределения.

4.4 Информациюокаждой входной величине^ в модели измерений, как правило, представляютв виде наилучшего значения оценки х и ассоциированной с ней стандартной неопределенностью и(х;) (см. 3.18). Если для любых / и j Ху и X связаны между собой (зависимы), то соответствующая информация должна быть отражена в виде меры тесноты этой связи, выражаемой через ковариацию (ISO 3534-1:2006, словарная статья 2.43) или корреляцию случайных переменных. Если X, и Х> не связаны между собой (независимы), то соответствующая ковариация будет равна нулю.

4.5 Оценивание данных измерения в контексте модели измерений (1) или (2) — это использование имеющейся информации о входных величинах X. XN для получения ассоциированных с ними

распределений вероятностей и последующего вывода распределения вероятностей, ассоциированного с выходной величиной У. Последнее распределение, таким образом, можно рассматривать как результат оценивания данных измерения.

4.6 Информация о входной величине X, в модели измерений может быть получена из повторных показаний (оценивание неопределенности по типу А) [см. JCGM 100:2008 (GUM) (4.2), а также JCGM 200:2008 (VIM), словарную статью 2.28> или из обоснованных суждений на основе имеющихся данных о возможных значениях этой величины (оценивание неопределенности по типу В) [см. JCGM 100:2008 (GUM) (4.3). а также JCGM 200:2008 (VIM), словарную статью 2.29].

4.7 При оценивании неопределенности по типу A (JCGM 200:2008 (VIM), словарная статья 2.28) часто делают предположение, что распределение, наилучшим образом соответствующее входной величине X в условиях имеющихся повторных независимых показаний, это распределение Гаусса (ISO 3534-1:2006. словарная статья 2.50). В таком случаеХхарактеризуегся математическим ожиданием. наилучшей оценкой которого является среднее арифметическое показаний, и стандартным отклонением. равным стандартному отклонению среднего арифметического. Если неопределенность оценивают по малому числу показаний (являющихся мгновенными реализациями величины, распределенной по нормальному закону), то соответствующим распределением будет r-раслределение (ISO 3534-1:2006. словарная статья 2.53). На рисунке 1 показаны плотности вероятности для распределения Гаусса (сплошная линия) и Г-раслределения с четырьмя степенями свободы (пунктирная линия). Сказанное выше не будет справедливо, если показания нельзя рассматривать как независимые.

4.8 При оценивании неопределенности по типу В (JCGM 200:2008 (VIM), словарная статья 2.29) часто единственной доступной информацией является то. что X лежит в определенном интервале [а, б]. Информация такого вида может быть формализована в виде прямоугольного распределения вероятностей [см. JCGM 100:2008 (GUM)(4.3.7).a также ISO 3534-1:2006. слоеарнуюстатью2.60]с границами а S

и b (рисунок 2). Если бы о рассматриваемой величине была доступна информация иного рода, то рас* пределение вероятностей должно было быть согласовано с этой имеющейся информацией [26].

4.9 После того, как составлена модель измерения, и входные величины X. Хы описаны

через соответствующие распределения вероятностей, распределение вероятностей для измеряемой величины У полностью определено (см. также 3.19). Математическое ожидание У используется в качестве оценки измеряемой величины, а стандартное отклонение У—в качестве стандартной неопределенности, ассоциированной с этой оценкой.

Рисунок 1 — Распределение Гаусса (сплошная линия) и r-рвспределение с четырьмя степенями свободы (пунктирная линия) (для случайной переменной размерности О размерность плотности распределения будет О* 1 )

Рисунок 2— Прямоугольное распределение на интервале [-0.10:0.10]

(для случайной переменной размерности О размерность плотности распределения будет О’ 1 )

4.10 На рисунке 3 показано трансформирование двух разных прямоугольных распределений вероятностей для входных величин X, и Х2 в симметричное трапецеидальное распределение вероятностей для измеряемой величины У в случав аддитивной функции измерения У* X, + Х2.

Рисунок 3 — Трансформирование распределений для аддитивной функции измерения при прямоугольных распределениях вероятностей для входных величин

4.11 Часто необходимо знать интервал, содержащий Усзаданной вероятностью. Такой интервал, называемый интервалом охвата (JCGM 200:2008(VIM). словарная статья 2.36). может быть получен из распределения вероятностей для У. Заданную вероятность называют вероятностью охвата (JCGM 200:2008 (VIM). словарная статья 2.37).

4.12 Для установленной вероятности охвата существует множество интервалов охвата, среди которых различают:

a) вероятностно симметричный интврвап охвата [см. JCGM 101:2008 (3.15)], для которого вероятности (в сумме равные единице за вычетом вероятности охвата) расположения значения величины справа или слева от интервала равны:

b) наименьший интервал охвата [см. JCGM 101:2008 (3.16)]. протяженность которого является наименьшей из всех интервалов охвата, имеющих ту же вероятность охвата.

4.13 На рисунке 4 показано усеченное и масштабированное распределение Гаусса (в виде спадающей кривой) с граничными точками наименьшего (сплошные вертикальные линии) и вероятностно симметричного (пунктирные вертикальные линии)95%-ных интервалов охвата для величины, скоторой ассоциировано это распределение. Распределение асимметрично, поэтому указанные два интервала охвата различаются между собой (особенно заметно различие в граничных точках справа). Левая граничная точка наименьшего интервала охвата точно совпадает с нулем — наименьшим возможным значением для этой величины. Для данного примера вероятностно симметричный интервал охвата на 15 % протяженней наименьшего интервала охвата.

как на значение оценки у величины У будут влиять небольшие изменения в значениях оценок х. хн

входных величин X. Х,г Для функции измерения (1) с, равен частной производной первого порядка

от fno X, в точке X, — х,. Х2 — х2 и т. д. Если функция измерения линейна:

то при независимых X. Хн изменение значения х, на ц(х,) приведет к изменению значения уна

То же самое будет справедливо в некотором приближении для большинства моделей, описываемых формулами (1) и (2) (см. 7.2.4). Сравнение значений |с,|1ф0 для разных / позволяет оценить вклад каж-дой входной величины в стандартную неопределенность о(у), ассоциированную су.

4.15 Стандартную неопределенность и(у). ассоциированную со значением оценки у выходной величины У. получают суммированием не самих значений |cju(x,). а их квадратов, т. е.

Формула (4) будет справедлива в некотором приближении для большинства моделей измерения, определяемых формулами (1) и (2).

4.16 11 Если входные величины Х; взаимозависимы, то формулу (4) следует дополнить слагаемы» ми. содержащими ковариации [см. JCGM 100:2008 (GUM) (5.2.2)). которые могут увеличить или уменьшить значение ц(у).

5 Этапы оценивания неопределенности

5.1 Основные этапы оценивания неопределенности включают в себя формулировку измерительной задачи и вычисления. Последнее включает в себя трансформирование распределений вероятностей и получение окончательного результата.

5.2 Этап формулировки измерительной задачи (см. раздел в) включает в себя:

a) определение выходной величины У(измеряемой величины);

b) выявление входных величин, от которых зависит У;

c) составление модели измерения, определяющей соотношение Ус входными величинами;

d) приписывание распределений вероятностей (нормального, прямоугольного и т.д.) входным величинам (или совместного распределения вероятностей входным величинам, не являющимся независимыми) на основе имеющейся информации.

5.3 Этап вычислений (см. раздел 7) состоит из трансформирования поданной модели измерения распределений вероятностей для входных величин в распределение вероятностей для выходной величины У и использования этого распределения для получения:

a) математического ожидания У, принимаемого как значение оценки у величины У;

b) стандартного отклонения величины У. принимаемого как стандартная неопределенность и(у). ассоциированная су [см. JCGM 100:2008 (GUM) (Е.3.2)];

c) интервала охвата, содержащего Усзаданной вероятностью охвата.

6 Составление модели измерений

6.1 Этап формулировки измерительной задачи при оценивании неопределенности включает в себя разработку модели измерений, учет соответствующих поправок и других воздействий, если это необходимо. В некоторых областях измерений выполнение данного этапа может представлять сложность. Он также включает в себя использование доступной информации для описания входных величин модели через распределения вероятностей. В (6) приведено руководство по разработке и применению модели измерений. Приписывание распределений вероятностей входным величинам модели измерений рассмотрено в JCGM 101:2008 и в [5].

» Пункт 4.17. относящийся к использованию десятичного разделителя только а отношении англоязычной версии документа, исключен.

6.2 Вначале составляют модель, связывающую выходную величину с входными величинами. В некоторых задачах выходных величин может быть более одной (см. 6.5). Модельформируют на основе теоретических и/или эмпирических знаний с учетом специфики измерительной задачи (например, измерения электрических параметров, линейных размеров, температуры, массы). Затем модель дополняют другими входными величинами, посредством которых описывают эффекты случайного и систематического влияния на результат измерения. Руководство по учету дополнительных входных величин приведено в (6).

6.3 Класс моделей, рассматриваемых в (6), более широк, чем в GUM. и включает в себя классификацию последующим признакам.

a) по виду входящих в модель величин: действительные или комплексные;

b) по виду модели: в виде функции измерений [формула (1)] или в общем виде [формула (2)];

c) по числу выходных величин: одна или более (см. 6.5).

Комплексные величины, указанные в перечислении а), используются, главным образом, в измерениях электрических величин, вакустике иоптике. Для функции измерений, указанной влеречислении Ь). выходная величина выражается непосредственное виде формулы, в которую входят величины, в то время как модель измерения в общем виде представляет собой уравнение, которое необходимо решить относительной выходной величины (см. 6.5).

Читайте также:  Как измерить площадь андроидом

6.4 Разнообразные варианты применения [6] проиллюстрированы на примерах из разных областей метрологии. Кроме того, в этом документе приведено руководство по разным аспектам численного анализа есвяэисрассматриваемыми примерами. Документ также включает всебя рассмотрение вопросов замены переменных таким образом, чтобы устранить или уменьшить корреляцию входящих в модель величин.

6.5 В GUM и JCGM 101:2008 рассматриваются, в основном, модели измерений в виде функций

измерения, в которых есть только одна выходная величина У. Однако существует множество измерительных задач, в которых необходимо рассматривать несколько выходных величин У. Ут, завися

щих от одних и тех же входных величин. Приведенные в [6] примеры включают в себя случаи, когда а) выходная величина является комплексной и представлена в виде действительной и мнимой частей (или амплитуды и фазы); Ь) выходные величины представляют собой параметры калибровочной характеристики; с) выходные величины описывают геометрию ловерхностиобъекта. Хотя подобные вопросы затрагиваются в GUM при рассмотрении примеров одновременного измерения активного и реактивного сопротивления [JCGM 100:2008 (GUM) (раздел Н.2)] и калибровки термометра [JCGM 100:2008 (GUM) (раздел Н.З)), специальному анализу в GUM они не подвергаются.

6.6 Этап формулировки измерительной задачи при оценивании неопределенности для случая с более немодной измеряемой величиной малоотличается отаналогичногоэтапа для модели измерения с единственной измеряемой величиной. Он включает в себя разработку модели и приписывание распределений вероятностей входным величинам на основе доступной информации. Как и для модели измерений с одной выходной величиной, существует оценка каждой входной величины и стандартной неопределенности, ассоциированные с этой оценкой (и возможные ковариации, ассоциированные с парами оценок). Но так как в общем случае каждая выходная величина зависит от всех входных величин, то в дополнение к определению оценок этих выходных величин и ассоциированных с ними стандартных неопределенностей необходимо будет оценивать ковариации, ассоциированные со всеми парами выходных оценок.

6.7 Эквивалентом функции измерения (1) для произвольного числа таыходных величин являются формулы

для т функций /. fM. Схематично формула (5) изображена рисунком 5.

Рисунок 5 — Функция измерения с тремя входными величинами X,. Х2 и Xi и двумя выходными величинами У, и У2

6.8 В <6>рассматриваются также модели многоступенчатого измерения, е которых выходные величины предшествующих ступеней становятся входными величинами для последующих ступеней. Типичным примером модели многоступенчатого измерения может служить построение и применение калибровочной характеристики (JCGM 200:2008 (VIM). словарная статья 2.39) (см. рисунок6):

a) параметры калибровочной характеристики оценивают, сравнивая размеры единицы измерения. переданные от эталонов, с соответствующими показаниями измерительной системы. Стандартные неопределенности, ассоциированные с полученными значениями измеряемой величины и значениями показаний, являются источниками стандартных неопределенностей для значений оценок параметров калибровочной характеристики и. в общем случае, ковариаций для оценок этих параметров:

b) полученное измерительной системой показание по калибровочной характеристике преобразуют в значение измеряемой величины. Для этого используется функция, обратная калибровочной характеристике. Стандартные неопределенности и ковариации, ассоциированные со значениями оценок параметров калибровочной характеристики, вместе со стандартной неопределенностью, ассоциированной со значением очередного показания, являются источниками для расчета стандартной неопределенности, ассоциированной с полученным значением измеряемой величины.

7 Трансформирование распределений и вычисление значений оценок

7.1 Общие положения

7.1.1 Этап вычислений включает в себя процедуру, известную как трансформирование распре♦ делений [см. JCGM101:2008. (5.2)). которая может быть реализована следующими способами:

а) в виде используемого в GUM закона трансформирования неопределенностей с описанием случайной переменной, ассоциированной с выходной величиной У. распределением Гаусса или распределением (см. 7.2):

Рисунок 6 — Модель двухступенчатого измерения, включающего построение калибровочной характеристики

и ее применение к показаниям измерительной системы

b) в виде аналитического вывода формы распределения вероятностей для У методами математического анализа (см. 7.3);

c) с помощью метода Монте-Карло, в котором приближенную функцию распределения для У получают численным моделированием, генерируя случайные значения из распределений вероятностей для входных величин и преобразуя их в значения измеряемой величины посредством модели измерений (см. 7.4).

7.1.2 Для конкретной задачи оценивания неопределенности измерений может быть использован любой из способов, перечисленных в 7.1.1 (или какой-нибудь иной способ), причем способ а) является в большинстве случаев приближенным, способ Ь) — точным, а способ с) дает решение с числовой точностью, которую можно контролировать.

7.1.3 Применение способов а) и с) к функциям измерения для общеупотребительных моделей измерения с любым числом входных величин рассматривается в 7.5.

7.2 Способ расчета неопределенности по GUM

a) наилучшие значения оценок х, входных величин X/,

b) стандартные неопределенности и(х,). ассоциированные с х;,

c) коэффициенты чувствительности с, (см. 4.14).

7.2.2 Способ, указанный в 7.2.1. несколько видоизменяется [см. JCGM 100:2008 (GUM) (5.2)]. если входные величины являются взаимозависимыми (на рисунке 7 такая модификация не показана). Если случайная переменная, ассоциированная с выходной величиной У. имеет распределение Гаусса, то это позволяет построить интервал охвата для Ус заданной вероятностью охвата [см. JCGM 100:2008 (GUM) (раздел G.2)]. Если каждому и(х.) соответствует конечное число степеней свободы [ISO 3534*1:2006. словарная статья 2.54], то по ним можно рассчитать число эффективных степеней свободы для и(у). а выходную величину Уассоциировать с /-распределением.

7.2.3 Для многих измерительных ситуаций способ расчета неопределенности no GUM [см. JCGM 100:2008 (GUM) (раздел 5)] позволяет получить достоверные результаты. Если функция измерения линейна относительно входных величин и эти величины распределены по нормальному закону, то способ оценивания неопределенности no GUM дает точные результаты [см. JCGM 101:2006 (5.7)]. Но даже если указанные условия не соблюдаются, данный способ может достаточно хорошо работать на практике (см. JCGM 101:2008 (5.8)].

7.2.4 Однако существуют измерительные ситуации, при которых способ оценивания неопределенности по GUM нельзя считать удовлетворительным. Так будет, в том числе, если:

a) функция измерения нелинейна;

b) распределения вероятностей для входных величин асимметричны;

c) |с,|и(х,). |cju(xw), дающие вклад в неопределенность (см. 4.14), не являются величинами

приблизительно одного порядка [см. JCGM 100:2008 (GUM) (G.2.2)];

Рисунок 7 — Способ расчете неопределенности по CUM (левая часть рисунка, выделенная пунктирной линией, относится к получению значения оценки у и ассоциированной с ней стандартной неопределенности и(у).

остальная — к получению интервала охвате для У)

d) распределение вероятностей для выходной величины либо асимметрично, либо существенно отличается от нормального распределения или (-распределения.

Иногда заранее трудно решить, позволяет ли данная измерительная задача применять способ оценивания неопределенности по GUM.

7.2.5 Использование способа оценивания неопределенности по GUM усложняется при нахождении частных производных (или их численных приближений) для сложной модели измерений, что является необходимым для применения закона трансформирования неопределенностей, особенно, если необходимо рассчитывать производные высших порядков [см. JCGM 100:2008 (GUM) (раздел 5)]. 8 таких случаях более подходящим и удобным для применения является метод Монте-Карло (см. 7.4).

7.3 Аналитический вывод

7.3.1 Аналитические методы, с помощью которых может быть получена алгебраическая формула для распределения вероятностей выходной величины, не содержатникаких приближений, но могут быть применены только в сравнительно простых случаях. В [8], [12) показаны возможности применения таких методов. В число измерительных задач, для которых возможен аналитический вывод, входят те. где выходная величина является линейной функцией входных величин [см. формулу (3)). которые все распределены либо по нормальному закону, либо по прямоугольному закону в одних и тех же границах. Пример для двух входных величин

7.3.3 Преимуществом аналитического вывода является то. что он дает возможность понять суть измерения, показывая зависимость распределения вероятностей выходной величины от параметров распределений вероятностей входных величин.

7.4 Метод Монте-Карло

7.4.1 JCGM 101:2008 устанавливает подробное руководство по методу Монте-Карло как способу трансформирования распределений [см. JCGM 101:2008 (5.9)]. Для метода Монте-Карло существует меньше ограничений по применению, чем для способа оценивания неопределенности no GUM [см. JCGM 101:2008(5.10>). Схематично метод показан на рисунке 8. В JCGM 101:2008 приведены примеры сравнения метода Монте-Карло со способом оценивания неопределенности no GUM [см. JCGM:2008 101 (раздел 9)).

7.4.2 JCGM 101 устанавливает адаптивную процедуру для метода Монте-Карло, в которой число испытаний определяется автоматически с использованием меры сходимости всего процесса в целом [см. JCGM 101:2008(7.9)).

Рисунок 8 — Оценивание неопределенности методом Монте-Карло (левей честь рисунка, выделеннвй пунктирной линией, относится к получению значения оценки у и ассоциированной с ней стандартной неопределенности и(у). остальная — к получению интервала охвата для Y)

7.4.3 В JCGM 101:2008 показано, как метод Монте-Карло может быть применен, чтобы решить, приемлемо ли применение способа оценивания неопределенности по GUM для каждого конкретного случая [см. JCGM101:2008 (раздел 8)].

7.5 Модели измерения с произвольным числом выходных величин

7.5.1 В случае измерений с использованием моделей с произвольным числом выходных величин способы оценивания ассоциированных с ними неопределенностей и ковариаций, установленные как в GUM. таки в JCGM 101:2008. требуют соответствующего обобщения. Суть такой модификации показана в GUM на ряде примеров [см. JCGM 100:2008 (GUM) (F.1.2.3)].

7.5.2 В [5)усгановлено. чтозакон трансформирования неопределенностей, составляющий основное содержание способа оценивания неопределенности по GUM для модели измерения с одной выходной величиной, может быть кратко представлен в матричной форме. Преимущество матричного представления состоит в том, что оно удобно для программной реализации метода, а также легко допускает обобщение на другие модели измерения.

7.5.3 Указанное обобщение использовано в [5] для случая функции измерения с произвольным числом выходных величин. Аналогичное обобщение рассматривается в указанном документе и для случая модели измерения, представленной в общем виде (см. 3.16).

7.5.4 Документ [5] также рассматривает применение для модели измерения с произвольным числом выходных величин метода Монте-Карло. В нем дается вывод распределений вероятностей дискретного вида для выходных величин. На основе этих распределений получены формулы для значений оценок выходных величин, стандартных неопределенностей, ассоциированных с этими оценками, и ковариаций, ассоциированных с парами этих оценок.

7.5.5 Требования к представлению результата измерения могут включать в себя, помимо указания значений оценок выходных величин вместе с ассоциированными стандартными неопределенностями и ковариациями, указание области, содержащей выходные величины с заданной вероятностью (охвата). Такие области естественно было бы рассматривать как обобщения для вероятностно симметричного интервала охвата и наименьшего интервала охвата. Но если для наименьшего интервала охвата его пространственный аналог существует (хотя его построение и сопряжено со значительными трудностями), то этого нельзя сказать в отношении области, аналогичной вероятностно симметричному интервалу охвата, которая не может быть определена единственным образом.

7.5.6 В ряде случаев целесообразноуказыватьлрибт/женмуюобластьохвата. имеющую простую геометрическую форму. С этой точки зрения рассматриваются две формы области охвата. Первая вытекает из ассоциирования выходных величинссовместным распределением Гаусса, например, на основе использования центральной предельной теоремы [см. JCGM 100:2008 (GUM) (раздел G.2)]. Тогда наименьшая область охвата будет иметь вид многомерного эллипсоида. Другой формой является многомерный параллелепипед. 8 [5| приведены способы построения наименьших областей охвата указанных двух форм.

8 Применение неопределенности измерения при оценке соответствия

8.1 Оценка соответствия — важный аспект управления качеством производства, метрологического надзора, проверки соответствия требованиям безопасности и санитарным нормам. Так при контроле качества деталей на производстве принимают решения о соответствии деталей техническим условиям. Аналогичные вопросы возникают при проверке соответствия захонодательноустаноеленным нормативам (например, по выбросам, уровню радиации, содержанию химических веществ, наличию следов допинга). Руководство, в котором рассматриваются подобные вопросы, приведено в [7] (см. также [18]).

8.2 Измерение является неотъемлемой частью оценки соответствия, когда необходимо решить, соответствует ли выходная (измеряемая) величина установленному требованию. Для единственной величины такое требование обычно принимает вид границ, определяющих интервал допустимых значений величины. При отсутствии неопределенности полученное значение измеряемой величины, лежащее в пределах границ, считают соответствующим требованиям, в противном случае — не соответствующим. Наличие неопределенности измерения влияет на процедуру контроля и делает необходимым установление баланса рисков производителя и потребителя.

8.3 Возможные значения контролируемой величины Улредставляют распределением вероятностей. Можно рассчитать вероятность, скоторой /соответствует установленным требованиям приданном распределении вероятностей и заданных границах допустимых значений.

8.4 Из-за неполного знания величины /(чтоотражает ее распределение вероятностей) существует риск ошибочного решения при олределении соответствия установленным требованиям. Ошибочные решения бывают двух типов: когда значение величины признано соответствующим требованиям, но на самом деле им не является, и когда значение величины признано несоответствующим, но на самом деле установленным требованиям удовлетворяет. Связанные с этим риски относят, соответственно, к риску потребителя и риску производителя (см. [7]>.

Читайте также:  Единица измерения характеристики пластичности

8.5 Риски ошибочного решения в части соответствия или несоответствия установленным требованиям можно уравновесить, выбирая интервал приемки для полученных значений измеряемой величины таким образом, чтобы минимизировать потери, связанные с ошибочными решениями [19]. В [7] рассматривается задача вычисления вероятности соответствия и вероятностей ошибочных решений указанных двух типов для заданных распределений вероятностей и заданных границ интервала приемки. Выбор границ интервала приемки зависит от последствий принятия ошибочных решений.

8.6 Хотя сказанное в 8.3 и 8.5 справедливо для любых распределений вероятностей, в [7]. в основном. рассматривается случай нормального распределения как наиболее характерного для практики.

9 Применение метода наименьших квадратов

9.1 Руководство по применению метода наименьших квадратов (известного также как подгонка методом наименьших квадратов) для задач по оцениванию данных в метрологии представлено в [3]. 8 таких задачах часто используется некоторое теоретическое соотношение между независимой и зависимой переменными. Это соотношение составляет основу для подгонки кривой под имеющиеся данные посредством подбора параметров теоретической зависимости. Входные величины в соответствующей модели измерений — это зависимые и независимые переменные, для которых получены данные измерений. Выходные величины — это искомые параметры зависимости. Способ, которым выходные величины получают из входных величин посредством метода наименьших квадратов, определяет модель измерения.

9.2 Применительно к калибровке (см. 6.8) значение измеряемой величины независимой переменной в большинстве случаев получают от эталона. Значение зависимой переменной будет показанием, полученным измерительной системой для соответствующего значения независимой переменной. Установленная в [3] процедура подгонки кривой, частным случаем которой является калибровочная характеристика, получаемая в процессе калибровки, является обобщением обычного метода наименьших квадратов.

9.3 Измерительная задача состоит в том. чтобы оценить параметры (а иногда и число этих параметров) поданным, представляющим собой набор пар из полученного значения измеряемой величины и соответствующего показания. Эти пары вместес ассоциированными стандартными неопределенностями и. когда уместно, ковариациями, составляют исходные данные для процедуры подгонки.

9.4 Типичныеизмерительныеэадачи.ккоторым может быть применено руководство [3]. включают в себя: а) подгонку линейных и нелинейных зависимостей, включая случай неточно известных значений независимой переменной; Ь) выбор модели из некоторого класса для оценки параметров физического процесса. Применение [3] не ограничено в самом строгом смысле задачами подгонки кривой. Это руководство может также быть использовано для обработки данных, например, в задачах свертки [21]. согласования фундаментальных констант (22) и оценивания данных ключевых сличений [9].

9.5 Задачи, указанные в 9.4. перечисление а), предполагают, что после оценивания методом наименьших квадратов параметров калибровочной характеристики и ассоциированныхс ними стандартных неопределенностей и ковариаций измерительная система будет далее использоваться для проведения измерения, в ходе которого оценки параметров калибровочной характеристики вместе со значением полученного показания используют для оценивания измеряемой величины. Стандартную неопределенность. ассоциированную со значением оценки измеряемой величины, вычисляют с использованием стандартных неопределенностей и ковариаций для параметров калибровочной характеристики и стандартной неопределенностью, ассоциированной с показанием измерительной системы.

9.6 В [3] особо подчеркивается, что постановку и решение измерительной задачи методом наименьших квадратов следует осуществлять с учетом структуры неопределенности, т. е. с учетом стандартных неопределенностей для зависимых и независимых переменных и ковариаций для пар этих переменных.

9.7 Задачи, указанные в 9.4. перечисления а) и Ь). редко предполагают подгонку к значениям только одной выходной величины. Чаще случается так. что выходных величин несколько, поэтому соответствующие математические выражения удобнее представлять в матричной форме. В [3] матричный формализм использован максимально широко, что облегчает программирование алгоритма вычислений и соответствует потребностям практики измерений (см. также 7.5).

В таблице А.1 представлены сокращения, используемые в настоящем документе Таблица А.1

Международное бюро мер и весов

Руководство по выражению неопределенности измерения

Международная электротехническая комиссия

Международная федерация клинической химии и лабораторной медицины

Международное сотрудничество по аккредитации лабораторий

Международная организация по стандартизации

Международный союз теоретической и прикладной химии

Международный союз теоретической и прикладной физики

Объединенный комитет по руководствам в метрологии

Техническая консультативная группа по метрологии ИСО

Международный словарь по метрологии. Основные и общие понятия и связанные с ними термины

Сведения о соответствии ссылочных международных стандартов и документов межгосударственным стандартам

Обозначение ссылочного международного стандарта (документа)

Обозначение и наименование соответствующего мех государе таен ног о

ГОСТ 34.100.3—2017 «Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения»

ГОСТ 34.100.3.1—2017 «Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения. Дополнение 1. Трансформирование распределений с использованием метода Монте-Карло»

* Соответствующий межгосударственный стандарт отсутствует. До его принятий рекомендуется ислольэо-

вать перевод на русский язык данного международного стандарте (документе).

Примечание — В настоящей таблице использовано следующее условное обозначение степени соответствия стандартов:

• IDT — идентичные стандарты.

‘• 8 Российской Федерации данный международный стандарт был введен как Р 50.1.040—2002 «Статистические методы. Планирование экспериментов. Термины и определений».

Дополнительные замечания к межгосударственным стандартам, вводящим международные руководства в области неопределенности измерения

ДБ.1 Общие замечания к серии межгосударственных стандартов ГОСТ 34.100

ДБ.1.1 Серия межгосударственных стандартов ГОСТ 34.100 вводит документы, разрабатываемые рабочей группой JCGM/WG 1 «Рабочая группа по выражению неопределенности измерения», входящей в состав объединенного комитета JCGM «Объединенный комитет по руководствам в метрологии» при Международном бюро мер и весов (см. «Предисловие к международномудокументу ISO/IEC Guide 98.1:2009» настоящего стандарта).

ДБ.1.2 Документы, разрабатываемые JCGMSWG 1. устанавливают общий единообразный подход к оценке точности измерений через концепцию неопределенности измерений и включают в себя как методы вычисления неопределенности измерения в разных измерительных задачах, так и учет неопределенности измерения при применении результатов измерения.

ДБ.1.3 Концепция неопределенности измерения разработана для выражения качества результата измерения взамен концепции погрешностей измерений с целью придания методической корректности используемым теоретико-вероятностным моделям.

В концепции погрешностей измерений результат измерения представляют в виде суммы истинного значения и погрешности, которая, в свою очередь, является суммой систематической и случайной составляющих. При этом для оценки точности измерения обычно используют один из двух способов: консервативный (оценка сверху) и теоретико-вероятностный. Выбор того или иного способа оценивания определяется конкретной измерительной задачей и дальнейшим использованием результате измерения. Каждый из этих подходов имеет ограничения в применении.

ДБ.1.4 При консервативном способе оценивания границы суммарной погрешности определяются арифметическим суммированием границ ее составляющих. Главный недостаток консервативного способа — слишком широкие границы суммарной погрешности, особенно в случае большого числа составляющих. Консервативный подход может найти применение в измерительных задачах, где необходимо обеспечить нахождение истинного значения измеряемой величины в установленных границах наверняка

ДБ.1.8 При теоретико-вероятностном подходе для описания результата измерения используется случайная переменная, математическое ожидание которой совпадает с истинным значением измеряемой величины или смещено относительно него на величину систематической погрешности. Это дает возможность в условиях ограниченного числа повторных наблюдений измеряемой величины строить для нее точечные и интервальные оценки.

В теории погрешностей использована частотная интерпретация вероятности, наблюдения рассматриваются как выборка из заданной генеральной совокупности, оценки измеряемой величины и характеристик погрешности являются статистиками. В качестве интервальной оценки используется построенный на основе статистик доверительный интервал, соответствующий заданной доверительной вероятности.

Главным ограничением использования частотного подходе является невозможность его корректного распространения на задачу оценивания систематических погрешностей. Подход, основанный на «рандомизации» систематических погрешностей, применим лишь в отдельных случаях. 8 результате в рамках частотного подхода невозможно указать в общем виде правило построения доверительного интервала погрешности, особенно при наличии нескольких влияющих факторов, каждый из которых может описываться своей генеральной совокупностью и для которых могут быть получены свои выборки наблюдений. При отсутствии строгих математических методов метрологам часто приходилось обращаться к инженерным (эмпирическим) процедурам определения доверительных интервалов без оценки качества получаемых результатов 1 ‘.

ДБ.1.6 Введение в метрологическую практику концепции неопределенности измерения «Руководством по выражению неопределенности измерения (GUM)», опубликованным в 1993 г. (см. «Предисловие к международному документу ISO/1EC Guide 96.1:2009» настоящего стандарта), явилось попыткой дать математически строгий единый подход к оценке составляющих неопределенности, обусловленных как случайными, так и систематическими факторами, при заданных условиях измерительной задачи. Однако GUM не смог в полной мере решить эту задачу, он появился как внутренне противоречивый документ, использующий одновременно частотную и байесовскую концепции вероятности. Единая процедура вывода, наиболее корректно и последовательно олисвнная в JCGM 101:2008. основана на отказе от частотной интерпретации вероятности при оценке точности измерения в пользу субъективного представления о вероятности. Если а частотном подходе понятие случайной переменной

‘> Примером такой инженерной процедуры является способ оценивания доверительных границ погрешности в РМГ4Э—2001 «Применение «Руководства по выражению неопределенности измерений*.

использовано для описания реэультата/погрешности измерения, то в субъективном подходе случайная переменная использована для описания возможных значений измеряемой величины. При этом получение распределения вероятностей, ассоциированного с измеряемой величиной, осуществляется на основе:

• составления для денной измерительной задачи модели измерений, связывающей измеряемую величину (выходную величину) со всеми значимыми влияющими величинами (входными величинами модели):

• приписывания входным величинам распределений вероятностей (в общем случае, совместных), исходя из имеющейся информации об этих величинах и их наблюдений (при наличии):

• преобразования совместного распределения входных величин в распределение выходной величины согласно правилам преобразования случайных переменных.

в отличие от теории погрешностей (на основе частотного подхода) концепция неопределенности (на основе субъективной вероятности) не имеет принципиальных ограничений в получении окончательного результата измерения а виде функции распределения, ассоциированной с измеряемой величиной, что позволяет вычислить интервал вероятности (охвата) для любой заданной вероятности. Однако во многих измерительных задачах аналитическое решение задачи преобразования плотностей вероятностей невозможно. 8 этом случае точное решение (в пределах точности вычислений) всегда может быть получено числовым методом Монте-Карло (см. JCGM 101:2008).

ДБ.1.7 При наличии выборки наблюдений одной или нескольких входных величин (например, показываемой величины — см. JCGM 104:2009. пункт 3.2) входное распределение для этой величины получают применением теоремы Байеса. Поэтому переход от концепции погрешностей к концепции неопределенности может рассматриваться как переход от частотного (объективного) подхода в интерпретации вероятностей к байесовскому (субъективному).

Примечание — Существует широкий круг измерительных задач, в которых получают только одно наблюдение для входной величины. Однако и в этом случае возможно формальное применение теоремы Байеса, поэтому концепцию неопределенности измерения можно связывать с байесовским подходом без потери общности.

ДБ.1.8 важными характеристиками результатов измерений в обоих подходах являются интервальные оценки. которые, однако, имеют резное содержание. В частотном подходе это доверительный интервал, неявно предполагающий возможность проведения неограниченной серии измерений и гарантирующий накрытие истинного значения измеряемой величины в заданной доле р таких измерений. В байесовском подходе это интервал охвата, содержащий с вероятностью р значение измеряемой величины.

Примечание 1 — Часто, задавая р ■ р. пытаются провести количественное сопоставление получаемого доверительного интервала с интервалом охвате. Однако необходимо иметь в виду, что подобные попытки некорректны ввиду сопоставления разных величин.

Примечание 2 — встречающееся в литературе утверждение, что оба подхода дают одинаковые интервальные оценки, несмотря на их разную интерпретацию, в общем случае неверно. Равенство оценок имеет место только в отдельных измерительных задачах, хотя к ним. например, относится часто встречающийся случай, когда можно обоснованно предположить наличие одной доминирующей влияющей величины, распределенной по нормальному закону. Для данной задачи, действительно, доверительный интервал (наименьший) совпадет с интервалом охвата (наименьшим), поскольку центральная статистика, используемая для построения доверительного интервала. подчиняется тому же /-распределению, которое после операций сдвига и масштабирования дает апостериорное распределение для измеряемой величины (при условии задания неинформативных априорных распределений для математического ожидания и дисперсии нормального распределения) в байесовском подходе

ДБ. 1.9 Разница между частотным и байесовским подходами наглядно проявляется в том. насколько в рамках данного подхода легко получить ту или иную характеристику результата измерения. Частотный подход основан на получении оптимальных точечных оценок (статистик), по которым потом можно построить (не всегда) доверительный интервал. Распределение случайной погрешности, характеризующей качество измерений, может быть получено только в отдельных частных случаях. 8 байесовском подходе ситуация противоположная. В первую очередь, получают распределение вероятностей случайной величины, ассоциированной с измеряемой величиной, на его основе всегда есть возможность построить интервал охвата. Точечную оценку получают из распределения вероятностей после принятия каких-либо дополнительных допущений

Примечание — В зависимости от цепей измерений точечной оценкой могут служить разные параметры полученного распределения для измеряемой величины, такие как математическое ожидание, медиана или мода.

ДБ.1.10 Достоинством байесовского подхода, а значит и концепции неопределенности измерений, является наличие формализованной процедуры учете априорной информации разного рода (в том числе, о возможных или наиболее вероятных значениях измеряемой величины) при получении результата измерений.

Сопоставление концепций погрешности и неопределенности измерения проиллюстрировано на рисунке ДБ.1.

Источник