Меню

Сформулируйте определение ремонтопригодности средств измерений



Межповерочные интервалы

Метрологическая надежность и

Средств измерений в процессе эксплуатации

Изменение метрологических характеристик

Метрологические характеристики СИ могут изменяться в процессе эксплуатации. В дальнейшем будем говорить о изменениях погрешности A(t), подразумевая, что вместо нее может быть аналогичным образом рассмотрена любая другая MX.

Следует отметить, что не все составляющие погрешности подвержены изменению во времени. Например, методические погрешности зависят только от используемой методики измерения. Среди инструментальных погрешностей есть много составляющих, практически не подверженных старению [5], например, размер кванта в цифровых приборах и определяемая им погрешность квантования.

Изменение MX средств измерений во времени обусловлено процессами старения в его узлах и элементах, вызванными взаимодействием с внешней окружающей средой. Эти процессы протекают в основном на молекулярном уровне и не зависят от того, находится ли СИ в эксплуатации или хранится на консервации. Следовательно, основным фактором, определяющим старение СИ, является календарное время, прошедшее с момента их изготовления, т.е. возраст. Скорость старения зависит прежде всего от используемых материалов и технологий.

Одной из основных форм поддержания СИ в метрологически исправном состоянии является его периодическая поверка, Она проводится метрологическими службами согласно правилам, изложенным в специальной нормативно-технической документации. Периодичность поверки должна быть согласована с требованиями к надежности СИ. Поверку необходимо проводить через оптимально выбранные интервалы времени, называемые межповерочными интервалами (МПИ).

Момент наступления метрологического отказа может выявить только поверка СИ, результаты которой позволят утверждать, что отказ произошел в период времени между двумя последними поверками. Величина МПИ должна быть оптимальной, поскольку частые поверки приводят к материальным и трудовым затратам на их организацию и проведение, а редкие — могут привести к повышению погрешности измерений из-за метрологических отказов.

Межповерочные интервалы устанавливаются в календарном времени для СИ, изменение метрологических характеристик которых обусловлено старением и не зависит от интенсивности эксплуатации. Значения МПИ рекомендуется выбирать из следующего ряда: 0,25; 0,5; 1; 2; 3; 4; 5; 6; 9; 12; 6К месяцев, где К — целое положительное число. Для СИ, у которых изменение MX является следствием износа его элементов, зависящего от интенсивности эксплуатации, МПИ назначаются в значениях наработки.

При нахождении МПИ выбирается MX, определяющая состояние метрологической исправности средства измерений. В качестве таких характеристик, как правило, используются основная погрешность, СКО случайной составляющей погрешности и некоторые другие. Если состояние метрологической исправности определяют несколько MX, то из них выбирается та, по которой обеспечивается наибольший процент брака при поверках.

Вопросу обоснованного выбора продолжительности МПИ посвящено большое число работ. В настоящее время существуют три основных пути их определения:

• на основе статистики отказов;

• на основе экономического критерия;

• произвольное назначение первоначального МПИ с последующей корректировкой в течение всего срока службы СИ.

Выбор конкретного метода определения продолжительности МПИ зависит от наличия исходной информации о надежности и стабильности СИ. Первый способ является эффективным при условии, что известны показатели метрологической надежности. Наиболее полная информация такого рода содержится в моделях, описывающих изменение во времени MX средств измерений. Эти модели рассмотрены в разд. 13.3. При известных параметрах моделей МПИ определяется моментом выхода погрешности за нормируемый для данного СИ допуск. Однако большой разброс параметров и характеристик процессов старения СИ приводит к большой погрешности расчета МПИ с помощью таких моделей.

Применение методов расчета МПИ, основанных на статистике скрытых и явных отказов, требует наличия большого количества экспериментальных данных по процессам изменения во времени MX средств измерений различных типов. Такого рода исследования весьма трудоемки.

Определение межповерочного интервала по экономическому критерию состоит в решении задачи по выбору такого интервала, при котором можно минимизировать расходы на эксплуатацию СИ и устранять последствия от возможных ошибок, вызванных погрешностями измерения. Исходной информацией для определения МПИ служат данные о стоимости поверки и ремонта СИ, а также об ущербе от изъятия его из эксплуатации и от использования метрологически неисправного прибора. Основная сложность применения этого метода состоит в следующем. Затраты на ремонт и поверку СИ достаточно легко определяются по нормативным документам, В отличие от них потери из-за использования приборов со скрытым метрологическим отказом на практике, как правило, неизвестны. Приходится прибегать к приближенным моделям» описывающим затраты на эксплуатацию СИ со скрытыми метрологическими отказами в виде функции потерь того или иного вида.

Читайте также:  Штангенциркуль измерение точность измерений погрешность

Наиболее универсальным является метод, состоящий в произвольном назначении МПИ с последующей корректировкой его величины. В этом случае при минимальной исходной информации назначается первоначальный интервал, а результаты последующих поверок являются исходными данными для его корректировки.

1. Что такое отказ? Чем отличается метрологический отказ от неметрологического?

2. Сформулируйте определение метрологической исправности средства измерений.

3. Что такое метрологическая надежность средства измерений?

4. Сформулируйте определение стабильности, безотказности, долговечности, ремонтопригодности и сохраняемости средств измерений.

5. Чем вызвано изменение во времени метрологических характеристик средств измерений? Каким образом могут быть математически описаны эти изменения?

6. Что такое линейная модель изменения погрешности во времени?

7. Что такое экспоненциальная модель изменения погрешности во времени?

8. Что такое логистическая модель изменения погрешности во времени?

9. Назовите основные показатели безотказности, долговечности, ремонтопригодности и сохраняемости средств измерений.

10. Что называется межповерочным интервалом?

11. Какие способы выбора межповерочных интервалов существуют?

12. Назовите нормативные документы, в которых рассматриваются вопросы выбора межповерочных интервалов.

Источник

Ремонтопригодность

Любое техническое устройство, узел или агрегат должны обладать возможностями по их быстрому и качественному ремонту. Ремонтопригодность является тем показателем, который характеризует степень возможности восстановления работоспособности устройства. В теории надёжности это понятие имеет более широкий смысл. Ремонтопригодность оборудования должна не только характеризовать способность устройства к быстрому и качественному ремонту, но и обладать способностью к проведению быстрой диагностики и определению причин возникшей неисправности.

Показатели ремонтопригодности влияют на параметры, определяющие надёжность, долговечность, межповерочные интервалы, время наработки на отказ. Ремонтопригодность — это комплексное понятие, которое включает следующие характеристики:

  • возможность быстрого и необходимого контроля технического состояния устройства (контролепригодность);
  • доступность и простота регулярного обслуживания (подразумевается лёгкость разборки и извлечения отдельных элементов);
  • простота регулировки устройства после завершения ремонта;
  • унификация (взаимная заменяемость аналогичных деталей и устройств);
  • блочность конструкции;
  • эргономичность.

В это понятие входит способность к проведению планового периодического обслуживания.

Показатели ремонтопригодности

Для оценки эффективности применяют следующие показатели ремонтопригодности:

  • усреднённое время восстановления устройства;
  • характеристики вероятности восстановления за отведенный промежуток времени;
  • интенсивность потока восстановления;
  • средняя трудоёмкость.

Все параметры определяются на основе вероятностных подходов оценки непрерывных случайных величин. Первый параметр рассчитывается как математическое ожидание времени восстановления работоспособности на основе полученных экспериментальных данных. Он учитывает количество полученных отказов (возникших неисправностей) за определённый временной интервал. С его помощью определят вынужденное (нерегламентированное) время простоя оборудования. Проведенный анализ показал, что вероятность восстановления соответствует нормальному закону распределения.

Второй параметр позволяет определить исследуемые показатели с учётом допустимого количества отказов за исследуемый интервал времени. Этот параметр позволяет определить количество отказов степень восстанавливаемости системы.

Интенсивность потока восстановления показывает среднее количество восстановлений за единицу времени.

С его помощью определяют способность ремонтных организаций своевременно восстанавливать вышедшую из строя систему.

Средняя трудоёмкость восстановления технических систем определяется как усредненный временной показатель, характеризующий необходимое время на восстановление рассматриваемой системы при возникновении неисправности среднего уровня.

Для оценки перечисленных показателей применяют основные параметры, характеризующие вероятность случайной величины. К ним относятся: математическое ожидание, дисперсия, среднее квадратическое отклонение. Статистическая оценка параметров проводится одним из методов математической статистически. Наиболее целесообразными в теории надёжности считаются: корреляционно-регрессионный, дисперсионный, кластерный, факторный. Полученные показатели позволяют определить работоспособность в оставшийся срок службы.

Ремонтопригодность оценивается с помощью коэффициентов. Они перечислены в соответствующем стандарте и называются:

  • доступность к любому узлу или агрегату;
  • взаимозаменяемость аналогичных элементов;
  • легкосъёмность каждой из деталей;
  • унификации в соответствие с установленными стандартами и техническими условиями;
  • стандартизации согласно существующих требований.

На ремонтопригодность влияют факторы:

  • конструктивные;
  • производственно-технические;
  • организационно-производственные;
  • эксплуатационные.

Эти факторы напрямую или опосредованно влияют на различные показатели ремонтопригодности. Степень влияния зависит от вида разрабатываемых машин и механизмов, а также от условий их эксплуатации.

Читайте также:  Прибор для измерения световой чувствительности глаза

Например, для выпускаемых гидроцилиндров в широком диапазоне требуемых усилий используются только стандартизированные материалы и технологии. Учитываются все факторы, влияющие на потребительские свойства изделий.

Нормативные документы

Рассматриваемое понятие, его основные показатели и способы обеспечения определены утверждёнными нормативными документами. К ним относятся:

  1. Межгосударственный стандарт (ГОСТ 27.002-89), в котором утверждены наиболее используемые понятия, характеризующие надежность различных устройств.
  2. Государственный стандарт 23660-79. Определяет правила создания системы обслуживания и ремонта техники.
  3. Государственный стандарт 3.1109-82. В нём систематизированы понятия и термины, применяемые при разработке технологической документации (ЕСТД).
  4. В стандарте 21623-76 приведены показатели для оценки ремонтопригодности, утверждена система обслуживания и ремонта.

В первом документе приводятся понятия и характеристики, применяемые для оценки работоспособности механических, электрических, гидравлических устройств.

Перечисленные термины обязательны для применения в технической документации, используемой при проектировании устройств и их компонентов. Их применяют совместно со стандартом ГОСТ 18322.

Требования к ремонтопригодности задаются, начиная с этапа проектирования. Они включают:

  1. Цели повышения ремонтопригодности и решаемые основные задачи.
  2. Методы повышения ремонтопригодности на этом этапе и последующей модернизации разрабатываемого технического объекта. Предложенные методы должны обеспечивать установленные показатели надёжности.
  3. Задачи, решаемые при проверке показателей во время испытаний.
  4. Параметры, требующие периодического контроля. В этот перечень включены показатели надёжности, продолжительности ремонта и эксплуатации, технологической целесообразности.
  5. Порядок выбора номенклатуры комплектующих элементов, показатели работоспособности.
  6. Последовательность и правила разработки устройства. Они осуществляются совместно с разработкой системы периодического обслуживания.

Утверждённые требования к ремонтопригодности по ГОСТ 23660-79 объединяют основные принципы разработки необходимых показателей. С их помощью создаётся система контроля работоспособности.

Обеспечение ремонтопригодности

Основные положения, определяющие порядок обеспечения требуемых характеристик, задаются Государственным стандартом 23660-79. В нём указаны правила создания обеспечивающей системы. К этим правилам относятся:

  • снижение необходимого времени ремонта отдельных узлов (агрегатов) и технической системы в целом;
  • уменьшение необходимых трудозатрат во время проведения ремонта;
  • эффективное использование материальных и финансовых ресурсов для восстановления вышедших из строя узлов и агрегатов;
  • устойчивость к возникновению постоянных прыжков показателей внешних воздействий, влияющих на ремонтопригодность.

Оценка установленных показателей производится по одному из приведенных методов:

  • последовательно выявленных зависимостей и связей;
  • так называемый пооперационный метод поэтапного контроля.

В первом применяют последовательную проверку и последующий анализ группы показателей, влияющих на итоговые характеристики ремонтопригодности. К ним относятся: габаритные размеры, полная масса изделия, температурный режим, потребляемая мощность. То есть полный набор показателей, характеризующих конкретное устройство или отдельный агрегат.

Во втором методе применяется учёт и поэтапный анализ операций проводимых во время планового обслуживания и ремонта. Этот метод позволяет точно установить последовательность проведения таких операций и разработать перечень работ по техническому обслуживанию. С его помощью определяют рациональную последовательность необходимых проверочных операций и измеряемых показателей. Это позволяет вычислить суммарную стоимость необходимую для реализации качественного ремонта и обслуживания конкретного устройства. Порядок проведения такого расчёта определён ГОСТ 22952-78. С учётом современных цен получают общую стоимость на реализацию требуемых показателей.

Обеспечение ремонтопригодности осуществляется на всех этапах:

  • проектирования системы и её последующая модификация;
  • изготовление готовых узлов и агрегатов;
  • сборка всей системы;
  • испытания и последующая эксплуатация;
  • при проведении ремонтно-восстановительных работ.

На этапе разработки задания и последующего проектирования производится разработка конструкции технического устройства с учётом его дальнейшей ремонтопригодности. С этой целью применяют следующие принципы конструирования:

  1. Устройство разбивают на отдельные узлы и агрегаты с учётом простоты сборки и доступности к каждому из них.
  2. Каждый элемент агрегата стараются создать достаточно простым и унифицированным (без потери характеристик, приведенных в техническом задании).
  3. Системы крепления и соединения отдельных элементов разрабатывают с условием обеспечения надёжности, но в то же время, обеспечивающим простоту демонтажа и последующей обратной сборки.
  4. Количество устройств контроля основных параметров и их расположение в конструкции разрабатываемого механизма устанавливается на основании полноты и доступности информации.
  5. Обеспечение простоты проведения регламентных и ремонтных работ.
  6. Простоты условий после ремонтной проверки и тестирования.

Выполнение перечисленных принципов (в соответствие со стандартом) позволяет добиться снижения необходимых количеств ТО, материальных и трудовых затрат при проведении работ и улучшить ремонтопригодность всего устройства. Окончательный результат повышения ремонтопригодности зависит от технологичности производства.

Читайте также:  Самый точный термометр для измерения температуры тела у детей

Источник

Определения и показатели метрологической надежности средств измерений: стабильность, безотказность, срок службы СИ, сохраняемость, ремонтопригодность.

В процессе эксплуатации метрологические характеристики и параметры средства измерений претерпевают изменения. Эти изменения носят случайный монотонный или флуктуирующий характер и приводят к отказам, т.е. к невозможности СИ выполнять свои функции. Отказы делятся на неметрологические и метрологические.Неметрологическим называется отказ, обусловленный причинами, не связанными с изменением MX средства измерений. Они носят главным образом явный характер, проявляются внезапно и могут быть обнаружены без проведения поверки.Метрологическим называется отказ, вызванный выходом MX из установленных допустимых границ. Как показывают проведенные исследования,метрологические отказы происходят значительно чаще, чем неметрологические. Это обуславливает необходимость разработки специальных методов их прогнозирования и обнаружения. Метрологические отказы подразделяются на внезапные и постепенные.

Внезапным называется отказ, характеризующийся скачкообразным изменением одной или нескольких MX. Эти отказы в силу их случайности невозможно прогнозировать. Их последствия (сбой показаний, потеря чувствительности и т.п.) легко обнаруживаются в ходе эксплуатации прибора, т.е. по характеру проявления они являются явными. Особенностью внезапных отказов является постоянство во времени их интенсивности. Это дает возможность применять для анализа этих отказов классическую теорию надежности. В связи с этим в дальнейшем отказы такого рода не рассматриваются.Постепенным называется отказ, характеризующийся монотонным изменением одной или нескольких MX. По характеру проявления постепенные отказы являются скрытыми и могут быть выявлены только по результатам периодического контроля СИ. В дальнейшем рассматриваются именно такие отказы.С понятием «метрологический отказ» тесно связано понятие метрологической исправности средства измерений. Под ней понимается состояние СИ, при котором все нормируемые MX соответствуют установленным требованиям. Способность СИ сохранять установленные значения метрологических характеристик в течение заданного времени при определенных режимах и условиях эксплуатации называется метрологической надежностью. Надежность СИ характеризует его поведение с течением времени и является обобщенным понятием, включающим в себя стабильность, безотказность, долговечность, ремонтопригодность (для восстанавливаемых СИ) и сохраняемость.

Стабильность СИ является качественной характеристикой, отражающей неизменность во времени его MX. Она описывается временными зависимостями параметров закона распределения погрешности. Метрологические надежность и стабильность являются различными свойствами одного и того процесса старения СИ. Стабильность несет больше информации о постоянстве метрологических свойств средства измерений. Это как бы его «внутреннее» свойство. Надежность, наоборот, является «внешним» свойством, поскольку зависит как от стабильности, так и от точности измерений и значений используемых допусков.

Безотказностью называется свойство СИ непрерывно сохранять работоспособное состояние в течение некоторого времени. Она характеризуется двумя состояниями: работоспособным и неработоспособным. Отказ является случайным событием, связанным с нарушением или прекращением работоспособности СИ. Долговечностью называется свойство СИ сохранять свое работоспособное состояние до наступления предельного состояния. Работоспособное состояние — это такое состояние СИ, при котором все его MX соответствуют нормированным значениям. Предельным называется состояние СИ, при котором его применение недопустимо.После метрологического отказа характеристики СИ путем соответствующих регулировок могут быть возвращены в допустимые диапазоны. Процесс проведения регулировок может быть более или менее длительным в зависимости от характера метрологического отказа, конструкции СИ и ряда других причин. Поэтому в характеристику надежности введено понятие «ремонтопригодность». Ремонтопригодность — свойство СИ, заключающееся в приспособленности к предупреждению и обнаружению причин возникновения отказов, восстановлению и поддержанию его работоспособного состояния путем технического обслуживания и ремонта. Оно характеризуется затратами времени и средств на восстановление СИ после метрологического отказа и поддержание его в работоспособном состоянии.

Свойство СИ сохранять значения показателей безотказности, долговечности и ремонтопригодности в течение и после хранения и транспортирования называется его сохраняемостью.

Поможем написать любую работу на аналогичную тему

Определения и показатели метрологической надежности средств измерений: стабильность, безотказность, срок службы СИ, сохраняемость, ремонтопригодность.

Определения и показатели метрологической надежности средств измерений: стабильность, безотказность, срок службы СИ, сохраняемость, ремонтопригодность.

Определения и показатели метрологической надежности средств измерений: стабильность, безотказность, срок службы СИ, сохраняемость, ремонтопригодность.

Источник