Меню

Сила разрыва единица измерения



Прочность на разрыв

Преде́л про́чности — механическое напряжение σ , выше которого происходит разрушение материала. Поскольку при оценке прочности время нагружения образцов часто не превышает нескольких секунд от начала нагружения до момента разрушения, то его также называют условно-мгновенным пределом прочности, или хрупко-кратковременным пределом прочности. (см. также Предел длительной прочности)

Мерами измерения прочности также являются предел текучести, предел усталости и др.

Значения предельных напряжений на растяжение и на сжатие обычно различаются. Для композитов предел прочности на растяжение обычно больше предела прочности на сжатие, для остальных материалов наоборот.

Некоторые значения прочности на растяжение, σ , в кгс/мм 2 (1 кгс/мм 2 =10 Мн/м 2 =10 МПа)

Материалы σ σ / E
Графит (нитевидный кристалл) 2400 0.024
Сапфир (нитевидный кристалл) 1500 0.028
Железо (нитевидный кристалл) 1300 0.044
Тянутая проволока из высокоуглеродистой стали 420 0.02
Тянутая проволока из вольфрама 380 0.009
Стекловолокно 360 0.035
Мягкая сталь 60 0.003
Нейлон 50

См. также

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое «Прочность на разрыв» в других словарях:

ПРОЧНОСТЬ НА РАЗРЫВ — (Tensile strength) см. Сопротивление на разрыв. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 … Морской словарь

ПРОЧНОСТЬ НА РАЗРЫВ — ПРОЧНОСТЬ НА РАЗРЫВ, сопротивление, которое материал оказывает на НАПРЯЖЕНИЕ растяжения. Оно определяется как наименьшее напряжение растяжения (сила, деленная на единицу площади поперечного разреза), требуемое, чтобы разрушить предмет … Научно-технический энциклопедический словарь

прочность на разрыв — Напряжение, при котором металл разрушается при гидростатическом давлении. [http://www.manual steel.ru/eng a.html] Тематики металлургия в целом EN disruptive strength … Справочник технического переводчика

прочность на разрыв — Термин прочность на разрыв Термин на английском tensile strength Синонимы Аббревиатуры Связанные термины Определение сопротивление, которое материал способен оказать растягивающему напряжению. Описание Прочность на разрыв определяется как… … Энциклопедический словарь нанотехнологий

прочность на разрыв — trūkstamasis stiprumas statusas T sritis fizika atitikmenys: angl. breaking strength; rupture strength vok. Bruchfestigkeit, f; Zerreißfestigkeit, f rus. прочность на разрыв, f; прочность при разрыве, f pranc. résistance à la rupture, f … Fizikos terminų žodynas

Прочность на разрыв — Disruptive strength Прочность на разрыв. Напряжение, при котором металл разрушается при гидростатическом давлении. (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО Профессионал , НПО Мир и семья ; Санкт Петербург, 2003… … Словарь металлургических терминов

прочность на разрыв — rus предел (м) прочности на растяжение или разрыв, прочность (ж) на разрыв; временное сопротивление (с) разрыву eng tensile strength fra résistance (f) à la traction deu Zugfestigkeit (f), Reißfestigkeit (f) spa resistencia (f) a la tracción … Безопасность и гигиена труда. Перевод на английский, французский, немецкий, испанский языки

прочность на разрыв надрезанного образца — Отношение приложенной нагрузки к первоначальной области минимального поперечного сечения при испытаниях на разрыв проточенного образца. [http://www.manual steel.ru/eng a.html] Тематики металлургия в целом EN notch rupture strenght … Справочник технического переводчика

прочность на разрыв и разрушение — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN tensile strength and collapse resistance … Справочник технического переводчика

Прочность на разрыв надрезанного образца — Notch rupture strenght Прочность на разрыв надрезанного образца. Отношение приложенной нагрузки к первоначальной области минимального поперечного сечения при Stress rupture test of a notched specimen Испытаниях на разрыв проточенного образца.… … Словарь металлургических терминов

Источник

Прочность на разрыв единица измерения

Содержание

Предел прочности при растяжении

Предел прочности при растяжении (сопротивление на разрыв) или временное сопротивление разрыву σв – механическое напряжение, выше которого происходит разрушение материала. Поскольку при оценке прочности время нагружения образцов часто не превышает нескольких секунд от начала нагружения до момента разрушения, то его также называют условно-мгновенным пределом прочности, или хрупко-кратковременным пределом прочности.

Предел прочности при растяжении измеряется:

1 кгс/мм 2 = 10 -6 кгс/м 2 = 9,8·10 6 Н/м 2 = 9,8·10 7 дин/см 2 = 9,81·10 6 Па = 9,81 МПа.

Преде́л про́чности — механическое напряжение σ B , выше которого происходит разрушение материала. Иначе говоря, это пороговая величина, превышая которую механическое напряжение разрушит некое тело из конкретного материала. Следует различать статический и динамический пределы прочности. Также различают пределы прочности на сжатие и растяжение.

Содержание

Величины предела прочности [ править | править код ]

Статический предел прочности [ править | править код ]

Статический предел прочности, также часто называемый просто пределом прочности есть пороговая величина постоянного механического напряжения, превышая который постоянное механическое напряжение разрушит некое тело из конкретного материала. Согласно ГОСТ 1497-84 «Методы испытаний на растяжение», более корректным термином является временное сопротивление разрушению — напряжение, соответствующее наибольшему усилию, предшествующему разрыву образца при (статических) механических испытаниях. Термин происходит от представления, по которому материал может бесконечно долго выдержать любую статическую нагрузку, если она создаёт напряжения, меньшие статического предела прочности, то есть не превышающие временное сопротивление. При нагрузке, соответствующей временному сопротивлению (или даже превышающей её — в реальных и квазистатических испытаниях), материал разрушится (произойдет дробление испытываемого образца на несколько частей) спустя какой-то конечный промежуток времени (возможно, что и практически сразу, — то есть не дольше чем за 10 с).

Читайте также:  Как измерить дверное полотно правильно

Динамический предел прочности [ править | править код ]

Динамический предел прочности есть пороговая величина переменного механического напряжения (например при ударном воздействии), превышая которую переменное механическое напряжение разрушит тело из конкретного материала. В случае динамического воздействия на это тело время его нагружения часто не превышает нескольких секунд от начала нагружения до момента разрушения. В такой ситуации соответствующая характеристика называется также условно-мгновенным пределом прочности, или хрупко-кратковременным пределом прочности.

Предел прочности на сжатие [ править | править код ]

Предел прочности на сжатие есть пороговая величина постоянного (для статического предела прочности) или, соответственно, переменного (для динамического предела прочности) механического напряжения, превышая который механическое напряжение в результате (за конечный достаточно короткий промежуток времени) сожмет тело из конкретного материала — тело разрушится или неприемлемо деформируется.

Предел прочности на растяжение [ править | править код ]

Предел прочности на растяжение есть пороговая величина постоянного (для статического предела прочности) или, соответственно, переменного (для динамического предела прочности) механического напряжения, превышая который механическое напряжение в результате (за конечный достаточно короткий промежуток времени) разорвет тело из конкретного материала. (На практике, для детали какой либо конструкции достаточно и неприемлемого истончения детали.)

Другие прочностные параметры [ править | править код ]

Мерами прочности также могут быть предел текучести, предел пропорциональности, предел упругости, предел выносливости, предел прочности на сдвиг и др. так как для выхода конкретной детали из строя (приведения детали в негодное к использованию состояние) часто достаточно и чрезмерно большого изменения размеров детали. При этом деталь может и не разрушиться, а лишь только деформироваться. Эти показатели практически никогда не подразумеваются под термином «предел прочности».

Прочностные особенности некоторых материалов [ править | править код ]

Значения предельных напряжений (пределов прочности) на растяжение и на сжатие у многих материалов обычно различаются.

У композитов предел прочности на растяжение обычно больше предела прочности на сжатие. Для керамики (и других хрупких материалов) — наоборот, характерно многократное превышение пределом прочности на сжатие предела прочности на растяжение. Для металлов, металлических сплавов, многих пластиков, как правило, характерно равенство предела прочности на сжатие и пределу прочности на растяжение. В большей степени это связано не с физикой материалов, а с особенностями нагружения, схемами напряженного состояния при испытаниях и с возможностью пластической деформации перед разрушением.

Прочность твёрдых тел обусловлена в конечном счёте силами взаимодействия между атомами, составляющими тело. При увеличении расстояния между атомами они начинают притягиваться, причем на критическом расстоянии сила притяжения по абсолютной величине максимальна. Напряжение, отвечающее этой силе, называется теоретической прочностью на растяжение и составляет σтеор ≈ 0,1E, где E — модуль Юнга . Однако на практике наблюдается разрушение материалов значительно раньше, это объясняется неоднородностями структуры тела, из-за которых нагрузка распределяется неравномерно.

Некоторые значения прочности на растяжение σ 0 > в МПа (1 кгс/мм² = 100 кгс/см² ≈ 10 МН/м² = 10 МПа) (1 МПа = 1 Н/мм² ≈ 10 кгс/см²) [1] :

Прочность металлических конструкций – один из важнейших параметров, определяющих их надежность и безопасность. Издревле вопросы прочности решались опытным путем — если какое-либо изделие ломалось — то следующее делали толще и массивнее. С 17 века ученые начали планомерное исследование проблемы, прочностные параметры материалов и конструкций из них можно рассчитать заранее, на этапе проектирования. Металлурги разработали добавки, влияющие на прочность стальных сплавов.

Предел прочности

Предел прочности — это максимальное значение напряжений, испытываемых материалом до того, как он начнет разрушаться. Его физический смысл определяет усилие растяжения, которое нужно приложить к стрежневидному образцу определенного сечения, чтобы разорвать его.

Каким образом производится испытание на прочность

Прочностные испытания на сопротивление разрыву проводятся на специальных испытательных стендах. В них неподвижно закрепляется один конец испытываемого образца, а к другому присоединяют крепление привода, электромеханического или гидравлического. Этот привод создает плавно увеличивающее усилие, действующее на разрыв образца, или же на его изгиб или скручивание.

Испытание на разрыв

Читайте также:  Чем измерить пять сантиметров

Электронная система контроля фиксирует усилие растяжения и относительное удлинение, и другие виды деформации образца.

Виды пределов прочности

Предел прочности — один из главных механических параметров стали, равно как и любого другого конструкционного материала.

Эта величина используется при прочностных расчетах деталей и конструкций, судя по ней, решают, применим ли данный материал в конкретной сфере или нужно подбирать более прочный.

Различают следующие виды предела прочности при:

  • сжатии — определяет способность материала сопротивляться давлению внешней силы;
  • изгибе — влияет на гибкость деталей;
  • кручении – показывает, насколько материал пригоден для нагруженных приводных валов, передающих крутящий момент;
  • растяжении.

Виды испытаний прочности материалов

Научное название параметра, используемое в стандартах и других официальных документах — временное сопротивление разрыву.

Предел прочности стали

На сегодняшний день сталь все еще является наиболее применяемым конструкционным материалом, понемногу уступая свои позиции различным пластмассам и композитным материалам. От корректного расчета пределов прочности металла зависит его долговечность, надежность и безопасность в эксплуатации.

Предел прочности стали зависит от ее марки и изменяется в пределах от 300 Мпа у обычной низкоуглеродистой конструкционной стали до 900 Мпа у специальных высоколегированных марок.

На значение параметра влияют:

  • химический состав сплава;
  • термические процедуры, способствующие упрочнению материалов: закалка, отпуск, отжиг и т.д.

Некоторые примеси снижают прочность, и от них стараются избавляться на этапе отливки и проката, другие, наоборот, повышают. Их специально добавляют в состав сплава.

Условный предел текучести

Кроме предела прочности, в инженерных расчетах широко применяется связанное с ним понятие-предел текучести, обозначаемый σт. Он равен величине напряжения сопротивления разрыву, которое необходимо создать в материале, для того, чтобы деформация продолжала расти без наращивания нагрузки. Это состояние материала непосредственно предшествует его разрушению.

На микроуровне при таких напряжениях начинают рваться межатомные связи в кристаллической решетке, а на оставшиеся связи увеличивается удельная нагрузка.

Общие сведения и характеристики сталей

С точки зрения конструктора, наибольшую важность для сплавов, работающих в обычных условиях, имеют физико-механические параметры стали. В отдельных случаях, когда изделию предстоит работать в условиях экстремально высоких или низких температур, высокого давления, повышенной влажности, под воздействием агрессивных сред — не меньшую важность приобретают и химические свойства стали. Как физико-механические, так и химические свойства сплавов во многом определяются их химическим составом.

Влияние содержание углерода на свойства сталей

По мере увеличения процентной доли углерода происходит снижение пластичности вещества с одновременным ростом прочности и твердости. Этот эффект наблюдается до приблизительно 1% доли, далее начинается снижение прочностных характеристик.

Повышение доли углерода также повышает порог хладоемкости, это используется при создании морозоустойчивых и криогенных марок.

Влияние углерода на механические свойства стали

Рост содержания С приводит к ухудшению литейных свойств, отрицательно влияет на способность материала к механической обработке.

Добавки марганца и кремния

Mn содержится в большинстве марок стали. Его применяют для вытеснения из расплава кислорода и серы. Рост содержания Mn до определенного предела (2%) улучшает такие параметры обрабатываемости, как ковкость и свариваемость. После этого предела дальнейшее увеличение содержания ведет к образованию трещин при термообработке.

Влияние кремния на свойства сталей

Si применяется в роли раскислителя, используемого при выплавке стальных сплавов и определяет тип стали. В спокойных высокоуглеродистых марках должно содержаться не более 0,6% кремния. Для полуспокойных марок этот предел еще ниже — 0,1 %.

При производстве ферритов кремний увеличивает их прочностные параметры, не понижая пластичности. Этот эффект сохраняется до порогового содержания в 0,4%.

Влияние легирующих добавок на свойства стали

В сочетании с Mn или Mo кремний способствует росту закаливаемости, а вместе с Сг и Ni повышает коррозионную устойчивость сплавов.

Азот и кислород в сплаве

Эти самые распространенные в земной атмосфере газы вредно влияют на прочностные свойства. Образуемые ими соединения в виде включений в кристаллическую структуру существенно снижают прочностные параметры и пластичность.

Легирующие добавки в составе сплавов

Это вещества, намеренно добавляемые в расплав для улучшения свойств сплава и доведения его параметров до требуемых. Одни из них добавляются в больших количествах (более процента), другие — в очень малых. Наиболее часто применяю следующие легирующие добавки:

  • Хром. Применяется для повышения прокаливаемости и твердости. Доля – 0,8-0,2%.
  • Бор. Улучшает хладноломкость и радиационную стойкость. Доля – 0,003%.
  • Титан. Добавляется для улучшения структуры Cr-Mn сплавов. Доля – 0,1%.
  • Молибден. Повышает прочностные характеристики и коррозионную стойкость, снижает хрупкость. Доля – 0,15-0,45%.
  • Ванадий. Улучшает прочностные параметры и упругость. Доля – 0,1-0,3%.
  • Никель. Способствует росту прочностных характеристик и прокаливаемости, однако при этом ведет к увеличению хрупкости. Этот эффект компенсируют одновременным добавлением молибдена.
Читайте также:  Что значит предел измерения прибора

Металлурги используют и более сложные комбинации легирующих добавок, добиваясь получения уникальных сочетаний физико-механических свойств стали. Стоимость таких марок в несколько раз (а то и десятков раз) превышает стоимость обычных низкоуглеродистых сталей. Применяются они для особо ответственных конструкций и узлов.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

Предел прочности на растяжение — Ultimate tensile strength

Предел прочности при растяжении ( UTS ), часто сокращаемый до предела прочности на разрыв ( TS ), предела прочности или в уравнениях, представляет собой максимальное напряжение, которое материал может выдержать при растяжении или растяжении перед разрушением. В хрупких материалах предел прочности на разрыв близок к пределу текучести , тогда как в пластичных материалах предел прочности может быть выше. F ту <\ displaystyle F _ <\ text >>

Предел прочности при растяжении обычно определяется путем проведения испытания на растяжение и регистрации зависимости инженерного напряжения от деформации . Наивысшая точка кривой напряжение-деформация — это предел прочности при растяжении и имеет единицы измерения напряжения.

Предел прочности на растяжение редко используется при проектировании пластичных элементов, но он важен для хрупких элементов. Они сведены в таблицу для обычных материалов, таких как сплавы , композитные материалы , керамика , пластмассы и дерево.

СОДЕРЖАНИЕ

Определение

Предел прочности материала при растяжении — это интенсивное свойство ; поэтому его значение не зависит от размера испытуемого образца. Однако, в зависимости от материала, это может зависеть от других факторов, таких как подготовка образца, наличие или отсутствие поверхностных дефектов, а также температура окружающей среды и материала для испытаний.

Некоторые материалы ломаются очень резко, без пластической деформации , что называется хрупким разрушением. Другие, которые являются более пластичным, включая большинство металлов, испытывают некоторую пластическую деформацию и , возможно , сужения до того перелома.

Прочность на растяжение определяется как напряжение, которое измеряется как сила на единицу площади. Для некоторых неоднородных материалов (или для собранных компонентов) это может быть выражено как сила или как сила на единицу ширины. В Международной системе единиц (СИ) единицей измерения является паскаль (Па) (или кратное ему, часто мегапаскали (МПа), с использованием префикса СИ мега ); или, что эквивалентно паскалям, ньютонам на квадратный метр (Н / м 2 ). Обычная единица измерения в Соединенных Штатах — фунты на квадратный дюйм (фунт / дюйм 2 или фунт / кв. Дюйм). Килофунды на квадратный дюйм (ksi, или иногда kpsi) равны 1000 psi и обычно используются в Соединенных Штатах при измерении прочности на разрыв.

Пластичные материалы

  • 1: Абсолютная сила
  • 2: Предел текучести (предел текучести)
  • 3: Разрыв
  • 4: Область деформационного упрочнения
  • 5: область шеи
  • A: Видимое напряжение ( F / A )
  • B: Фактическое напряжение ( F / A )

Многие материалы могут демонстрировать линейное упругое поведение , определяемое линейной зависимостью напряжения от деформации , как показано на рисунке 1 до точки 3. Упругое поведение материалов часто распространяется в нелинейную область, представленную на рисунке 1 точкой 2 ( «предел текучести»), до которого деформации полностью восстанавливаются при снятии нагрузки; то есть образец, нагруженный упруго при растяжении , удлиняется, но при разгрузке возвращается к своей первоначальной форме и размеру. За пределами этой упругой области для пластичных материалов, таких как сталь, деформации пластичны . Пластически деформированный образец не возвращается полностью к своим первоначальным размерам и форме при разгрузке. Для многих приложений пластическая деформация неприемлема и используется в качестве конструктивного ограничения.

После предела текучести пластичные металлы проходят период деформационного упрочнения, при котором напряжение снова увеличивается с увеличением деформации, и они начинают сужаться , поскольку площадь поперечного сечения образца уменьшается из-за пластического течения. В достаточно пластичном материале, когда образование шейки становится значительным, это вызывает изменение инженерной кривой напряжения-деформации (кривая A, рисунок 2); это связано с тем, что инженерное напряжение рассчитывается исходя из исходной площади поперечного сечения до образования шейки. Точка разворота — это максимальное напряжение на инженерной кривой «напряжение – деформация», а координата инженерного напряжения этой точки — это предел прочности на растяжение, определяемый точкой 1.

Предел прочности на растяжение не используется при проектировании пластичных статических элементов, поскольку методы проектирования диктуют использование предела текучести . Однако он используется для контроля качества из-за простоты тестирования. Он также используется для приблизительного определения типов материалов для неизвестных образцов.

Предел прочности на растяжение является обычным инженерным параметром при проектировании элементов из хрупкого материала, поскольку такие материалы не имеют предела текучести .

Источник