Меню

Системы защит автоматики управления сигнализации измерения



Устройства релейной защиты, автоматики и сигнализации.

Устройства релейной защиты, которыми снабжены силовые трансформаторы, должны реагировать на две группы событий: повреждение трансформатора и аварийные режимы работы.
К повреждениям, вызывающим срабатывание релейной защиты, относятся межфазные и однофазные замыкания в обмотках и на выводах, витковые замыкания в обмотках, частичный пробой изоляции вводов, а также повреждения, связанные с выделением газа и повышением давления в баке трансформатора и регулировочного устройства.
К аварийным режимам, на которые должны реагировать защиты трансформаторов, относятся появление сверхтоков, обусловленных внешними КЗ, либо перегрузками, а также понижение уровня масла. Устройства релейной защиты устанавливаются на специальных панелях, в том же помещении, в котором находится щит управления. Для защиты трансформатора от повреждений в зависимости от мощности и характера установки применяются следующие виды защит:
— дифференциальная защита, которая является основной защитой мощных силовых трансформаторов от внутренних повреждений и срабатывает при КЗ внутри зоны, ограниченной двумя комплектами трансформаторов тока (принцип действия основан на сравнении значений и направления токов);
— токовая отсечка без выдержки времени, которая устанавливается на трансформаторах небольшой мощности и является самой простой быстродействующей защитой от внутренних повреждений;
— защита от сверхтоков внешних КЗ (наиболее простой защитой этого вида является максимальная токовая защита);
— защита от перегрузки, которая выполняется с действием на сигнал и состоит из реле тока и реле времени.
Широкое распространение получила газовая защита благодаря своей относительной простоте и чувствительности к большому числу внутренних повреждений масляного трансформатора и его переключающего устройства. Внутренние повреждения трансформатора, как правило, сопровождаются разложением масла и других изоляционных материалов с образованием летучих газов. Газы поднимаются к крышке трансформатора и попадают в расширитель через газовое реле, установленное на маслопроводе, соединяющем расширитель с баком. Существует несколько типов реле, устанавливаемых на трансформаторах в зависимости от их мощности.
Рассмотрим конструкцию газового реле на примере реле типа BF80/Q (рис. 12.3). Основой реле является корпус 1, в верхней части которого скапливаются попавшие в реле пузырьки газа. Корпус снабжен двумя смотровыми застекленными окнами, позволяющими определить наличие газа и его приблизительный объем (по рискам на стекле). На крышке корпуса имеется кран для выпуска газа, а в днище — отверстие для слива масла и шлама, закрытое вывинчивающейся пробкой. Внутри корпуса на крышке закреплена выемная часть реле, состоящая из трех реагирующих элементов 2, 3 и 4 , связанных с ними постоянных магнитов и управляемых этими магнитами герметичных контактов (герконов). Цепи герконов присоединены к выводам реле и специальным кабелем введены в релейную схему газовой защиты трансформатора. Реагирующие элементы — шарообразные пластмассовые пустотелые поплавки 2 и 4 — эксцентрично насажены на горизонтальную ось 5 и свободно вращаются на ней. Третий реагирующий элемент 3 имеет форму лопасти, которая также свободно вращается на горизонтальной оси и размещается рядом с нижним поплавком.


Рис. 12.3. Газовое реле:
1 — корпус; 2, 3 и 4 — реагирующие элементы; 5 — горизонтальная ось;
6 — полость реле


&При медленном выделении газа, характерном для небольших повреждений, происходит постепенное вытеснение масла из полости реле 6. При достижении определенного объема газа (250. 300 см 3 ) верхний поплавок опускается и связанный с ним магнит замыкает соответствующий геркон. При полном уходе масла из реле аналогичным образом срабатывает нижний поплавок (например, при значительной течи из бака). При значительном повреждении, сопровождающемся бурным выделением газов, лопасть под давлением струи масла (показана стрелкой) или газомасляной смеси отклоняется на определенный угол, воздействуя на тот же контакт, что и нижний поплавок.
Таким образом, газовое реле способно различать степень повреждения трансформатора: геркон верхнего поплавка используется в качестве датчика сигнала, а геркон нижних элементов — для подачи команды на отключение.
О причинах срабатывания газовой защиты и о характере повреждения можно судить на основании исследования скопившегося в реле газа, определяя его количество, цвет и химический состав.

Дата добавления: 2016-06-02 ; просмотров: 1633 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Системы автоматики: системы автоматического контроля, управления и регулирования

Все элементы автоматики по характеру и объему выполняемых операций подразделяют на системы: автоматического контроля, автоматического управления, автоматического регулирования.

Система автоматического контроля (рис. 1) предназначена для контроля за ходом какого-либо процесса. Такая система включает датчик В, усилитель А, принимающий сигнал от датчика и передающий его после усиления на специальный элемент Р, который реализует заключительную операцию автоматического контроля — представление контролируемой величины в форме, удобной для наблюдения или регистрации.

В частном случае в качестве исполнительного элемента Р могут служить сигнальные лампы или звуковые сигнализаторы. Систему с такими элементами называют системой сигнализации .

Рис. 1. Система автоматического контроля

В систему автоматического контроля кроме указанных на рис. 1, а могут входить и другие элементы — стабилизаторы, источники питания, распределители (при наличии нескольких точек контроля или нескольких датчиков в одном исполнительном элементе Р) и т. д.

Независимо от количества элементов системы автоматического контроля являются разомкнутыми и сигнал в них проходит только в одном направлении — от объекта контроля Е к исполнительному элементу Р.

Система автоматического управления предназначена для частичного или полного (без участия человека) управления объектом либо технологическим процессом. Эти системы широко применяют для автоматизации, например, процессов пуска, регулирования частоты вращения и реверсирования электродвигателей в электроприводах всех назначений.

Необходимо указать на такую важную разновидность систем автоматического управления, как системы автоматической защиты , которые не допускают аварийного или предельного режима, прерывая в критический момент контролируемый процесс.

Система автоматического регулирования поддерживает регулируемую величину в заданных пределах. Это наиболее сложные системы автоматики, объединяющие функции автоматического контроля и управления. Составная часть этих систем — регулятор .

Если системы выполняют только одну задачу — поддерживают постоянной регулируемую величину, их называют системами автоматической стабилизации. Однако существуют такие процессы, для которых необходимо изменять во времени регулируемую величину по определенному закону, обеспечивая ее стабильность на отдельных участках. В этом случае автоматическую систему называют системой программного регулирования .

Для обеспечения постоянства регулируемой величины можно использовать один из принципов регулирования — по отклонению, возмущению или комбинированный, которые будут рассмотрены применительно к системам регулирования напряжения генераторов постоянного тока.

Читайте также:  Ремонт прибора для измерения давления microlife

При регулировании по отклонению (рис. 2 и 3) элемент сравнения UN сравнивает фактическое напряжение U ф с заданным Uз, определяемым задающим элементом EN. После сравнения на выходе элемента UN появляется сигнал Δ U=Uз — U ф, пропорциональный отклонению напряжения от заданного. Этот сигнал усиливается усилителем А и поступает на рабочий орган L. Изменение напряжения на рабочем органе L, которым является обмотка возбуждения генератора G, приводит к изменению фактического напряжения генератора, устраняющего его отклонение от заданного.

Усилитель А, не изменяющий принципа действия системы, необходим для ее практической реализации, когда мощность сигнала, поступающего от элемента сравнения UN, недостаточна для воздействия на рабочий орган L.

Рис. 2. Система автоматического регулирования

Рис. 3. Автоматическое регулирование по отклонению

Наряду с задающим воздействием на систему могут влиять различные дестабилизирующие факторы Q, которые вызывают отклонение регулируемой величины от заданной. Воздействия дестабилизирующих факторов, один из которых условно обозначен на рисунке буквой Q, могут проявляться в различных местах системы и, как принято говорить, поступать по различным каналам. Так, например, изменение температуры окружающей среды приводит к изменению сопротивления в цепи обмотки возбуждения, что в свою очередь влияет на напряжение генератора.

Однако где бы ни возникали воздействия Q (со стороны потребителя — ток нагрузки, вследствие изменения параметров цепи возбуждения), система регулирования будет реагировать на вызванное ими отклонение регулируемой величины от заданной.

Наряду с рассмотренным принципом регулирования используют регулирование по возмущению , при котором в системе предусматривают специальные элементы, измеряющие воздействия Q и влияющие на рабочий орган.

В системе, использующей только такой принцип регулирования (рис. 4 и 5), фактическое значение регулируемой величины не учитывается. Принимают во внимание только одно возмущающее воздействие — ток нагрузки I н. В соответствии с изменением тока нагрузки происходит изменение магнитодвижущей силы (мдс) обмотки возбуждения L2, являющейся измерительным элементом данной системы. Изменение мдс этой обмотки приводит к соответствующему изменению напряжения на выводах генератора.

Рис. 4. Автоматическое регулирование по возмущению

Рис. 5. Принципиальная схема системы автоматики

Система, осуществляющая комбинированное регулирование (по отклонению и возмущению), может быть получена объединением ранее рассмотренных систем в одну (рис. 6)

Рис. 6. Система автоматики комбинированного регулирования

В системе автоматического регулирования задающий элемент представлял собой эталон напряжения, с которым сравнивалась регулируемая величина U ф. Значение U p принято называть уставкой регулятора. В общем случае регулируемую величину обозначают буквой Y , а ее уставку Yo .

Если уставку Yo в заданных пределах оператор изменяет вручную, а регулируемой величиной является Y , система работает в режиме стабилизации. Если уставка регулятора изменяется произвольно во времени, система автоматики, поддерживая значение Δ Y = Yo — Y = 0, будет работать в следящем режиме, т. е. следить за изменением Yo .

И наконец, если уставку Yo изменять не произвольно, а по заранее известному закону (программе), система будет работать в режиме программного управления. Такие системы называют системами программного регулирования .

замкнутойтой не имеет замкнутой цепи воздействия по регулируемой величине, поэтому ее называют разомкнутой.

Системы автоматики по принципу действия подразделяют на статические и астатические. В статических системах регулируемая величина не имеет строго постоянного значения и с увеличением нагрузки изменяется на некоторую величину, называемую ошибкой регулирования.

Рассмотренные системы (рис. 1 — 6) являются примерами простейших статических систем. Наличие ошибки регулирования в них обусловлено тем, что для обеспечения большего тока возбуждения необходимо большее отклонение напряжения.

Рис. 7. Внешние характеристики систем автоматики: а — статической, б — астатисческой

Зависимость напряжения генератора от тока нагрузки в виде прямой наклонной линии показана на рис. 7, а. Наибольшее относительное отклонение напряжения от заданного называют статизмом системы по напряжению: Δ = = (Um a x — Umin)/Um a x, где (Um a x, Umin — напряжения генератора на холостом ходу и под нагрузкой. Обобщая сделанное заключение для любой статической системы, можно записать: Δ = ( Y m a x — Y min)/ Y m a x, где Y — регулируемая величина.

Иногда статизм определяют по другой формуле: Δ = ( Y m a x — Y min)/ Y ср, причем Y ср = 0,5( Y m a x + Y min) — среднерегулируемая величина Y . Статизм называют положительным, если с ростом нагрузки значение Y уменьшается, и отрицательным, если значение Y увеличивается.

В астатических системах статизм равен нулю и поэтому зависимость регулируемой величины от нагрузки представляет собой линию, параллельную оси нагрузки (рис. 7,6).

Рассмотрим, например, астатическую систему автоматики (см. рис. 8), в которой напряжение генератора регулируется изменением сопротивления реостата R , включенного в цепь обмотки возбуждения L.

Рис. 8. Астатическая система автоматики

Серводвигатель М начинает вращаться и перемещать ползунок реостата R всякий раз, когда на входе усилителя А появляется сигнал Δ16; U об отклонении напряжения генератора U ср от заданного значения U p . Ползунок реостата перемещается до тех пор, пока сигнал об отклонении не станет равным нулю. Такая система отличается от другой системы тем, что для поддержания нового значения тока возбуждения не требуется сигнала на выходе усилителя А. Это отличие и позволяет избавиться от статизма.

Во всех ранее приведенных примерах предполагалось, что воздействие на рабочий орган производилось непрерывно в течение всего промежутка времени, пока существует отклонение регулируемой величины от заданной. Такое управление называется непрерывным , а системы — системами непрерывного действия .

Однако существуют системы, называемые дискретными, в которых воздействие на рабочий орган осуществляется с перерывами, например система регулирования температуры подошвы утюга, в которой регулирующее воздействие может принимать только одно из двух фиксированных значений при непрерывном изменении регулируемой величины — температуры.

В этой системе регулирование температуры осуществляется включением и отключением нагревательного элемента R по сигналу датчика температуры (смотрите — Базовые элементы автоматики). При увеличении температуры сверх уставки датчик размыкает свой контакт и отключает нагревательный элемент. При снижении температуры ниже уставки нагревательные элементы включаются. Эта система не имеет устойчивого промежуточного состояния рабочего органа, а он занимает лишь два положения — включено в сторону «больше» или включено в сторону «меньше».

Читайте также:  Оптико механические средства измерения длин

Для обеспечения необходимого качества процесса регулирования в системе могут быть предусмотрены специальные устройства, называемые обратными связями . Эти устройства отличаются от других тем, что сигнал в них имеет направление, обратное основному управляющему сигналу.

Для примера на рис. 8 изображена обратная связь Е по отклонению регулируемой величины Δ U , соединяющая выход усилителя А со входом элемента сравнения UN. При положительной обратной связи Е на выходе элемента сравнения UN получается сумма величин Δ U и Z, а при отрицательной — их разность.

Рис. 9. Структурная схема системы телемеханики

Рассмотренные системы автоматики предполагают непосредственную связь всех входящих в них элементов. Если элементы системы автоматики расположены на значительном удалении друг от друга, для их соединения используют передатчики, каналы связи и приемники. Такие системы называют телемеханическими .

Телемеханическая система состоит из пункта управления, где находится оператор, управляющий работой системы, одного или нескольких контролируемых пунктов, на которых расположены объекты контроля A 1 — An, линий связи L1A — LnA (каналы передачи данных), соединяющих пункт управления Е1М с контролируемыми пунктами Е2А — Еn (рис. 9). В телемеханической системе по линиям связи можно передавать как все, так и некоторые виды контрольной и управляющей информации.

При передаче информации только о параметрах ОК телемеханическую систему называют с истемой телеизмерения , в которой сигналы с выходов датчиков (измерительных преобразователей, установленных на ОК) передаются на пункт управления Е1М и воспроизводятся в виде показаний стрелочных или цифровых измерительных приборов. Информация может передаваться как непрерывно, так и периодически, в том числе и по команде оператора.

Если на пункт управления передается только информация о состоянии, в котором находится тот или иной объект контроля («включен», «выключен», «исправен», «неисправен»), такую систему называют системой телесигнализации .

Телесигнализация, как и телеизмерение, выдает оператору исходные данные для принятия решения по управлению ОК или служит для выработки управляющих воздействий в системах телеуправления и телерегулировки. Основное отличие этих систем от предыдущих заключается в том, что в первой из них используются дискретные сигналы типа «включить», «выключить», а во второй — непрерывные, подобно обычным системам регулирования.

Источник

11. Управление, измерение, сигнализация, противоаварийная автоматика, оперативный ток

11.1. Для энергоемких промышленных предприятий следует, как правило, предусматривать централизованное (диспетчерское) управление системой электроснабжения с применением средств телемеханики и вычислительной техники.

Автоматизированную систему управления электроснабжением (АСУ-электро) рекомендуется создавать в составе автоматизированной системы управления энергохозяйством предприятия (АСУ-Э), осуществляющей управление и контроль всех видов энергоносителей (электроэнергия, газ, вода, воздухо- и теплоснабжение).

11.2. При проектировании АСУ-Э следует предусматривать возможность включения ее в будущем в автоматизированную систему управления производством.

11.3. Объем телемеханизации системы электроснабжения должен определяться задачами диспетчерского управления и контроля с учетом предусматриваемого уровня автоматики на подстанциях (устройства АВР, АПВ, АЧР). Объем телемеханизации должен быть обоснован в проекте.

11.4. Применение средств телемеханики и вычислительной техники должно обеспечивать:

— отображение на диспетчерском пункте (ДП) состояния и положения основных элементов системы электроснабжения и передачу на ДП предупредительных и аварийных сигналов;

— возможность оперативного управления системой;

— установление наиболее рациональных эксплуатационных режимов;

— скорейшую локализацию последствий аварий;

— сокращение количества обслуживающего персонала;

— сбор и передачу информации в систему автоматизированного учета электроэнергии.

11.5. Телеуправление (ТУ) следует осуществлять:

— выключателями на питающих линиях и линиях связи при необходимости частых (3 раза в сутки и более) оперативных включениях;

— вводными и секционными выключателями подстанций при отсутствии АВР;

— выключателями на линиях, питающих секции шин с электроприемниками III категории;

— выключателями на линиях, питающих электроприемники значительной мощности, если принято решение о целесообразности их отключения в часы максимальных нагрузок энергосистемы в целях регулирования электропотребления.

11.6. Телесигнализация (ТС) должна указывать состояние:

— всех телеуправляемых объектов;

— вводных, секционных, шиносоединительных и обходных выключателей подстанций предприятия;

— выключателей, питающих электроприемники значительной мощности и ответственные механизмы, агрегаты, технологические линии;

— трансформаторов с высшим напряжением 35 кВ и выше;

— отделителей на вводах напряжением 35 кВ и выше.

Кроме того, как правило, должны предусматриваться следующие сигналы с контролируемого пункта (КП):

а) общий сигнал с каждого КП:

об аварийном отключении любого выключателя;

о замыкании на землю в сетях высокого напряжения каждой подстанции;

о неисправностях на КП, в том числе о недопустимом изменении температуры в отапливаемых помещениях, замыкании на землю и исчезновении напряжения в цепях оперативного тока, повреждении в цепях трансформаторов напряжения, переключении питания цепей телемеханики на резервный источник и т. п.;

б) о неисправности трансформаторов ГПП, ПГВ, крупных преобразовательных агрегатов;

в) о возникновении пожара (появлении дыма) на КП.

11.7. Телеизмерения (ТИ) должны отображать:

— значения напряжений на питающих линиях, других источников питания и на сборных шинах подстанций 6 кВ и выше;

— значения токов и мощностей в точках сети, позволяющие осуществлять систематический контроль технологического процесса и оборудования, судить о перетоках активной, реактивной и полной мощности в системе электроснабжения в нормальном и послеаварийном режимах;

— значения показателей качества электроэнергии в расчетной точке и, при необходимости, в отдельных узлах питания.

11.8. Преобразование измеряемых электрических величин (напряжения, тока, мощности, частоты) в унифицированный выходной сигнал следует осуществлять с помощью измерительных преобразователей различного назначения. Применение на промышленных предприятиях измерительно-вычислительных комплексов и информационных измерительных систем должно быть обосновано в проекте.

11.9. Для регистрации изменяющихся во времени электрических процессов следует применять самопишущие в том числе быстродействующие, приборы, светолучевые и электронные осциллографы, магнитографы.

11.10. При проектировании диспетчерского щита и пульта, определении размеров диспетчерского помещения следует учитывать возможное развитие системы электроснабжения.

11.11. Мнемосхема диспетчерского щита и объем информации, отражающейся на дисплеях, должны, как правило, показывать все связи 6-10 кВ и выше между подстанциями, пунктами приема электроэнергии и другими источниками питания. Выключатели и другие аппараты, не включенные в объем телемеханизации, могут отражаться на мнемосхеме с помощью символов, переставляемых вручную.

11.12. На энергоемких промышленных предприятиях рекомендуется предусматривать автоматизированный учет электроэнергии в целях:

Читайте также:  Класс точности измерения времени

— определения количества электроэнергии, получаемой предприятием от энергоснабжающей организации;

— фиксирования получасового максимума нагрузки в часы максимальных и минимальных нагрузок энергосистемы;

— производства внутризаводского межцехового расчета за электроэнергию;

— осуществления контроля за потреблением и выработкой реактивной энергии по предприятию в целом и отдельным потребителям значительной мощности;

— определения средневзвешенного коэффициента мощности.

Системы учета электроэнергии на промышленных предприятиях должны отвечать требованиям гл.1.5 ПУЭ «Учет электроэнергии».

11.13. Автоматический контроль изоляции, действующий на сигнал при снижении сопротивления изоляции ниже нормируемого уровня, должен выполняться в сетях переменного тока напряжением выше 1 кВ с изолированной или заземленной через дугогасящий реактор нейтралью, в сетях переменного тока до 1 кВ с изолированной нейтралью и в сетях постоянного тока с изолированными полюсами или с изолированной средней точкой.

11.14. Для фиксации аварийных режимов и последующего их анализа на подстанциях 110 кВ и выше рекомендуется предусматривать установку автоматических осциллографов и самопишущих приборов с ускоренной записью при авариях, а для крупных УРП и ГПП — систему диагностики неисправностей в составе АСУ-электро.

11.15. Система управление, измерения и сигнализации на подстанции должна обеспечивать:

безошибочное и рациональное ведение эксплуатации;

контроль режима работы электрооборудования и основных технологических агрегатов;

быструю ориентировку обслуживающего персонала при аварийных режимах.

На телемеханизированных и автоматизированных объектах электроснабжения необходимо предусматривать местное управление для осмотра и ревизии электрооборудования.

11.16. Управление электрооборудованием подстанции производится:

— со щита управления общеподстанционного пункта управления (ОПУ);

— из распределительных устройств 6-10 кВ (из коридора управления);

— из шкафов наружной установки на территории ОРУ.

Здание ОПУ (отдельное или сблокированное с ЗРУ 6-10 кВ) следует сооружать на подстанциях:

— для которых требуется постоянное дежурство персонала на щите управления;

— с ЗРУ-35 кВ и выше;

— при необходимости установки устройств зашиты ВЛ, блоков питания, выпрямительных и других устройств, не размещаемых в шкафах наружной установки.

На остальных подстанциях здания ОПУ не сооружаются, панели управления и защиты должны размещаться в шкафах наружной установки на территории подстанции.

11.17. Релейная защита и автоматика (РЗА) подстанций промышленных предприятий должна быть согласована с устройствами РЗА системы внешнего электроснабжения. Выбор принимаемых видов РЗА должен выполняться в соответствии с техническими условиями на присоединение, выданными энергоснабжающей организацией, и требованиями соответствующих глав ПУЭ. При проектировании РЗА рекомендуется учитывать разработки специализированных электротехнических проектных и научно-исследовательских институтов, касающиеся выбора и расчетов уставок РЗА.

Для подстанций промышленных предприятий рекомендуется применять комплектные устройства РЗА, выполненные на интегральных микросхемах.

11.1.8. На подстанциях промышленных предприятий могут предусматриваться следующие виды автоматических устройств:

— автоматическое включение резервного питания (АВР) на секционных выключателях всех распределительных устройств 6-10 кВ и выше при раздельной работе секций, на стороне низшего напряжения цеховых ТП при питании электроприемников I и II категорий. При этом должен обеспечиваться запрет АВР при коротких замыканиях на шинах;

— автоматическое повторное включение (АПВ) воздушных линий, шин 110 кВ и выше с возможностью автоматического восстановления доаварийной схемы подстанции, шин 6-35 кВ для однотрансформаторных подстанций;

— осуществляющие автоматическое восстановление питания потребителей после ликвидации аварии или отключения аварийного участка сети путем включения резервного оборудования и связей, ресинхронизации синхронного электродвигателя и т. п.

— осуществляющие автоматическое отделение электростанции предприятия от энергосистемы при аварийном снижении частоты в результате системных аварий;

— осуществляющие бесперебойное питание электроприемников особой группы I категории;

— автоматическая частотная разгрузка (АЧР), отключающая электроприемники III категории до действия АПВ;

— автоматическое управление средствами КРМ;

— автоматическое регулирование напряжения под нагрузкой трансформаторов;

— осуществляющие управление работой вспомогательных устройств (обогрев приводов выключателей, разъединителей, шкафов КРУ, включение и отключение охлаждающих устройств трансформаторов, системы пожаротушения и др.).

11.19. На подстанциях может выполняться сигнализация в следующем объеме:

— световая сигнализация положения объектов с дистанционным управлением;

— индивидуальная световая сигнализация аварийного отключения (аварийная сигнализация);

— предупредительная сигнализация отклонения от нормального режима работы электрооборудования и нарушения исправности цепей управления;

— центральная звуковая сигнализация, обеспечивающая привлечение внимания персонала при действии предупредительной и аварийной сигнализации.

При отсутствии ОПУ панель сигнализации устанавливается в помещении РУ 6-10 кВ, а сигналы предупредительной и аварийной сигнализации выводятся к дежурному персоналу.

11.20. Постоянный оперативный ток, в основном, следует применять:

на подстанциях с высшим напряжением 330 кВ;

на подстанциях 110-220 кВ со сборными шинами этих напряжений;

на подстанциях 35-220 кВ с воздушными выключателями;

на подстанциях 110-220 кВ с числом масляных выключателей 110 или 220 кВ три и более.

11.21. Переменный оперативный ток следует, в основном, применять на подстанциях 35/6-10 кВ с масляными выключателями 35 кВ, на подстанциях 35-220/6-10 и 110-220/35/6-10 кВ без выключателей на стороне высшего напряжения, когда выключатели 6-10- 35 кВ оснащены пружинными приводами. При оснащении выключателей 6-10- 35 кВ электромагнитными приводами на указанных подстанциях следует применять выпрямленный оперативный ток. Также рекомендуется его применение на подстанциях 110-220 кВ с малым числом масляных выключателей 110 или 220 кВ.

11.22. Выбор типа привода выключателей напряжением 6-10 кВ необходимо производить с учетом коммутационной способности последних, значения тока короткого замыкания и выдержки времени релейной защиты в данной точке сети, степени ответственности питаемых электроприемников и режимов их работы.

11.23. На подстанциях промышленных предприятий может применяться смешанная система оперативного тока (одновременное использование в разных сочетаниях постоянного, переменного, выпрямленного тока). Выбор системы оперативного тока следует обосновывать в проекте.

11.24. На подстанциях 110-330 кВ с постоянным оперативным током должна устанавливаться одна аккумуляторная батарея 220 кВ, как правило, типа СК, без элементного коммутатора, работающая в режиме постоянного подзаряда. При проектировании необходимо определять категорию помещения аккумуляторной батареи по взрывопожарной опасности и класс взрывоопасной зоны [23]. Рекомендуется, если имеется возможность, взамен батарей типа СК устанавливать закрытые никель-кадмиевые аккумуляторные батареи.

11.25. Для выпрямления переменного тока следует использовать блоки питания стабилизированные и нестабилизированные, силовые выпрямительные устройства с индуктивным накопителем или без него.

Источник