Меню

Схема для измерения высокого напряжения



Схема для измерения высокого напряжения

Измерение постоянных и переменных напряжений выше 1000 В является слабым местом многих ремонтных организаций и подавляющего числа индивидуалов. Это, по-видимому, объясняется тем, что производители электроизмерительной аппаратуры не желают брать на себя ответственность за потенциальный риск, связанный с повышенной опасностью подобных измерений.

Схемотехника высоковольтных измерений в принципе ничем не отличается от низковольтных при использовании обычных измерительных головок. Исключение составляют высоковольтные измерители конденсаторного типа, позволяющие измерять напряжения постоянного и переменного тока с достаточно высокой точностью (погрешность 0,2. 1,0%), но это достаточно громоздкие и дорогие приборы.

Главное отличие техники высоковольтных измерений заключается в конструкции приборов, обеспечивающей электробезопасность их использования и уменьшение зависимости погрешностей измерения от изменения состояния окружающей среды, в первую очередь — от влажности. Отсутствие, точнее, дефицит высоковольтных измерителей напряжения (ВИН) объясняется еще и широко распространенным мнением,что «киловольт туда-сюда ничего не меняет». В наиболее часто встречающейся ситуации с телевизорами и мониторами это действительно так, если бы не одно, но очень существенное, «НО»: уровень рентгеновского излучения сильно зависит от высокого напряжения на аноде кинескопа и резко возрастает (для кинескопов с диагональю 51. 64 см) при напряжениях выше 25,5 кВ. Для каждого типа кинескопа существует пороговое напряжение, при котором качество изображения и уровень рентгеновского излучения остаются в заданных пределах. Из этого следует, что при потере яркости свечения экрана нельзя добиваться ее увеличения путем повышения напряжения питания строчной развертки без контроля высокого напряжения. Особенно актуально это для мониторов из-за малого расстояния между экраном и оператором.

В схеме ВИНа (рис. 1) имеются два основных узла:

• измерительная головка (микроамперметр);
• высоковольтное добавочное сопротивление Rд

Эти узлы определяют метрологические и эксплуатационные характеристики ВИНа, являющегося автономным прибором.

В схеме ВИНа (рис. 2) также имеются два основных узла:

• измерительный прибор (тестер);
• высоковольтный делитель R1 R2.

Этот вариант ВИНа несколько менее удобен в работе, но более универсален, так как позволяет измерять постоянные напряжения любой полярности, а при использовании цифрового тестера обеспечивает более высокую точность и более широкий диапазон измеряемых напряжений.

Схема ВИНа (рис. 3) сочетает в себе преимущества обоих предыдущих вариантов. Поэтому более подробное описание и необходимые расчеты даны только для этой схемы.

В качестве высоковольтного звена делителя напряжения использован резистор R1 типа КЭВ-5 сопротивлением 430. 560 МОм. Низковольтное плечо образовано резисторами R2* (подбирают в пределах 0. 5,1 кОм) и R3 (СП5-2 или СП5-3 сопротивлением 47 кОм). Резистор R4* (0. 5.1 кОм) подбирают при регулировке.

Тумблер В1 со средним положением служит для выбора полярности измерения (крайние положения) или для отключения микроамперметра при использовании внешнего тестера (среднее положение).

Переключение полярности необходимо для измерений высокого напряжения в осциллографах, СВЧ-печах и других устройствах с высоким напряжением отрицательной полярности.

В качестве измерителя желательно использовать микроамперметр типа М42004 со шкалой 30 мкА, которая соответствует напряжению 30 кВ и не требует пересчета. Конденсатор С1 любого типа емкостью 10. 100 нФ.

Гнезда Г1, Г2 (телефонные гнезда) служат для подключения внешнего цифрового тестера с входным сопротивлением не менее 1 МОм.

Для регулировки ВИНа требуется либо заведомо исправный (эталонный) ВИН и источник высокого напряжения (любой исправный телевизор), либо измеритель сопротивлений до 1000 МОм с погрешностью не более 1%.

В качестве эталонного ВИНа может быть использован прибор С90 или С196, а в качестве измерителя сопротивлений — прибор Е6-21.

Регулировка по эталонному ВИНу:
• входы эталонного и проверяемого ВИНов подключите с соблюдением мер безопасности к присоске телевизора, отключенной от кинескопа. Перед отключением присоски ОБЯЗАТЕЛЬНО РАЗРЯДИТЕ кинескоп обесточенного телевизора отверткой, надежно соединенной с «землей» кинескопа;
• надежно заземлите вторые концы ВИНов;
• к гнездам Г1, Г2 подключите цифровой тестер, с которым впоследствии предполагаете использовать ВИН. Установите его в режим измерения постоянного напряжения величиной около 3 В;
• тумблер В1 поставьте в среднее положение;
• включите телевизор и зафиксируйте показания эталонного ВИНа и тестера. Показание тестера должно составлять 1/10 000 от показания эталонного ВИНа с погрешностью менее 1%. Так, если показания эталонного ВИНа равны 25 кВ, то показания тестера должны быть 2,5 В. Если погрешность более 1%, отключите телевизор, дождитесь снижения напряжения на «присоске» до значения менее 1 кВ и подберите величину резистора R2. Если даже при нулевом значении R2 показания тестера завышены, произведите регулировку подбором резистора R4*;
• поставьте тумблер В1 в положение «+».Отключите тестер от гнезд регулируемого ВИНа. Включите телевизор и зафиксируйте показания обоих ВИНов. Вращая движок переменного резистора R3, добейтесь минимальной (менее 1%) разницы в показаниях ВИНов. При невозможности получения точного совпадения поменяйте номинал резистора R4* и повторите подстройку с помощью R3.

Читайте также:  Правило измерения давления с высотой

Регулировка с использованием измерителя сопротивлений
сводится к измерению сопротивления одних и расчету и подбору других резисторов. Расчет производится в соответствии со схемой рис. 4.

На этой схеме сопротивление резистора R2 соответствует сумме сопротивлений R2* и верхней от движка (по схеме рис. 3) части R3, R3 — нижней части R3, Rn— сумме сопротивлений R4* и измерительной головки. Точка Д на схеме рис. 4 соответствует выводу движка переменного резистора. Если погрешность используемого прибора более 1%, то с помощью прибора класса не хуже 1 измерьте ток полного отклонения используемого прибора Iг по схеме рис. 5,

на котором: БП — источник напряжения 2. 4 В, ИП -используемый прибор, ЭП -эталонный прибор.

Измерьте сопротивления R1 и Rn=R4*+Rг, где Rг -сопротивление измерительной головки.

Рассчитайте ток через резистор R1 по формуле: I(мкА) = 30 000 / R1(MOм). Рассчитайте сопротивление резистора R3 по формуле: R3 (кОм) = 30 (мкА) • Rп (кОм) / [I — Iг] (мкА).

Переменный резистор установите в положение, при котором сопротивление его нижней (по схеме) части будет равно рассчитанному значению R3.

Рассчитайте сопротивление резистора R2 по формуле: R2 (кОм) = [3000 / I (мкА)] — R3 (кОм).

Подберите величину R2*, равную расчетному значению R2.

На этом регулировка ВИНа заканчивается.

Конструкция ВИНа
Эскизы основных деталей, входящих в ВИН, показаны на рис. 6—11.

В дальнейшем, в тексте и на эскизе общего вида (рис. 12), слово «рис» будет опущено.

Отсутствует эскиз задней крышки, а на эскизе корпуса 9 не показаны отверстия для клепки гаек-букс, тумблера В1, а также для установки и регулировки резистора R3.

Основные размеры корпуса даны для рекомендованного выше микроамперметра.

Самой ответственной деталью является изолятор 6, в котором размещен резистор R1 типа КЭВ-5 (КЭВ). Наиболее предпочтительным материалом для изолятора (с точки зрения качественной механической обработки) является фторопласт или плексиглас, далее следует эбонит и, на худой конец, текстолит. Механическую обработку заготовки изолятора следует производить с минимальной подачей и глубиной резания. После установки резистора R1 в изолятор его внутренний объем должен быть герметичен по отношению к внешней среде для исключения влияния влажности на погрешность ВИНа.

Порядок сборки изолятора следующий:
• КЭВ плотно вверните в гайку 7. К другому концу КЭВа коротким винтом М4 закрепите проводник из провода МГТФ сечением 0,05. 0,07 мм2 нужной длины с облуженным концом для последующей припайки в схему;
• наружную резьбу гайки 7 залейте парафином. КЭВ вставьте в изолятор, гайку 7 слегка подогрейте паяльником до размягчения парафина и вверните в изолятор до упора КЭВа в его нижнюю часть. Слегка натянув проводник, залейте парафин в отверстие нижней части изолятора до заполнения. Далее залейте парафином отверстие в гайке 7 так, чтобы свободной от заливки осталась резьба на длину резьбовой части винта 10.

К корпусу 11 приклепайте три гайки-буксы и установите тумблер В1, резистор R3, гнезда Г1, Г2, винт и гайку М5 для крепления ручки 9.

Далее закрепите на корпусе изолятор с помощью гайки 8 и, последним, микроамперметр. Произведите электрический монтаж ВИНа.

В отверстие винта 10 впаяйте кусок сапожной иглы длиной 30. 40 мм. Рекомендуется изготовить два винта 10 и один из них, без иглы, использовать с зажимом «крокодил». Винт 10 с иглой удобен для подключения ВИНа к аноду кинескопа без отсоединения присоски.

Под один из винтов задней крышки закрепите провод заземления с зажимом «крокодил».Заделка крепления, качество провода и зажима должны исключать случайное нарушение цепи заземления во время измерения. Ручка 9 изготавливается из любого материала, пригодного для изготовления изолятора 6, винт 10 — из латуни или бронзы, корпус 11 — из алюминия, гайки 7 и 8 — из любого металла.

Наверните ручку и винт 10, закрепите заднюю крышку с заземлителем и ВИН готов к калибровке и последующей эксплуатации. Для удобства при транспортировке ручку и винт с иглой можно снимать с ВИНа.

Источник

Техника и технологии высоких напряжений

www.gt-e.ru- электростатическое распыление, высоковольтные источники, дефектоскопия труб

  • Список форумовВысоковольтные источники питания (ВИП)Техника высоких напряжений
  • Изменить размер шрифта
  • Версия для печати
  • Новости
  • Блоги
  • Мой блог
  • FAQ
  • Регистрация
  • Вход

Способы измерения высоких напряжений.

Способы измерения высоких напряжений.

gt-e » 01 фев 2010, 20:09

Высокое напряжение недостаточно получить, его необходимо измерять. Методы измерений высоких напряжений несколько отличаются от традиционных, применяемых для низких напряжений.
Основные способы измерения высоких напряжений:
1. Измерительные разрядники
2. Электростатические вольтметры
3. Измерение высокого напряжения с использованием индукции зарядов
4. Измерение с помощью делителей напряжения
5. Измерение импульсных напряжений

Читайте также:  При измерении глюкометром разный результат

1. Измерительные разрядники

Такой способ измерений имеет очевидные недостатки, не позволяет производить измерения непрерывно. Условия, при которых достигается достаточно точная воспроизводимость пробоя, определяется, в первую очередь, формой электродов. Необходимо стремится к однородному или квазиоднородному полю в разрядном промежутке. Примером такого измерительного разрядника может служить шаровой разрядник, у которого разрядный промежуток много меньше диаметра шаров. Шаровые разрядники достаточно хорошо описаны в литературе. Для них можно найти таблицы пробивных значений, различные поправочные коэффициенты.

2. Электростатические вольтметры

Если между двумя металлическими электродами существует электрическое поле, то на электроды действует сила притяжения. Эта сила создает давление на поверхность электродов. Для плоского конденсатора эта сила пропорциональна квадрату напряженности электрического поля. Следовательно, измеряя эту силу, можно измерять высокое напряжение. Такие измерители называются электростатическими вольтметрами. Известны примеры изготовления электростатических вольтметров на напряжение до 1000 кВ с точностью до 0,1%. На напряжения до 100 кВ электростатические вольтметры производятся серийно. Примером может служить киловольтметр С196 предназначенный для измерения постоянного и переменного напряжения до 30 кВ при основной погрешности ± 1.0% от конечного значения диапазона измерений.

3. Измерение высокого напряжения с использованием индукции зарядов
4. Измерение высоких напряжений с помощью делителей напряжения

Делители для измерения высоких напряжений бывают резистивными, емкостными и комбинированными. Часто, они состоят из большого числа однотипных элементов. Общая схема замещения таких делителей представлена на рис.1

Она состоит из n числа продольно включенных элементов Zpr. Продольные элементы делителя Zpr, обычно, резисторы или (и) конденсаторы, к которым приложено высокое напряжение U1. В схеме учтены и паразитные параметры продольных элементов. В схеме равномерно распределены поперечные сопротивления Zpp, учитывающие, например, распределенную емкость делителя на землю и другие элементы конкретной конструкции делителя.
Выходное напряжение U2 много меньше входного напряжения U1 и снимается с последнего элемента этой схемы.
Коэффициент деления такого делителя определяется числом звеньев делителя.
В общем случае, коэффициент деления при измерениях N = U2/U1 не равен числу звеньев делителя n, так как в схеме могут присутствовать другие элементы измерительной системы.
Суммарное поперечное сопротивление такого делителя можно рассчитать по формуле

Но, приведенные формулы справедливы, если все звенья высоковольтного делителя напряжения одинаковы.
Очень часто, конструктивное исполнение высоковольтного плеча отличается от конструктивного исполнения низковольтного плеча. В результате расчет усложняется. Для расчета таких делителей удобно использовать программы для моделирования электронных схем, например, LTspice (SwCAD) — свободно распространяемую программу Linear Technology http://www.linear.com/designtools/software/ltspice.jsp .

При использовании делителей, если конструкция может позволить, целесообразно рассматривать не только стандартный вариант, когда измерительный резистор находится в низковольтной части. Возможен вариант, когда измерительный резистор делителя целесообразно размещать в высоковольтной части делителя напряжения для получения оптимальной частотной характеристики.

4.1 Омический делитель напряжения

Схема замещения омического делителя для измерения для измерения постоянного, переменного и импульсного напряжений показана на рис.2

Источник

Схема прибора для измерения напряжения до 25 кВ

Для измерения высокого напряжения в телевизорах, видеомагнитофонах, ионизаторах воздуха, электрорентгенографических аппаратах типа ЭРГА-МП и других устройствах можно воспользоваться киловольтметром, схема которого приведена на рис. 74, а. Он состоит из микроамперметра Р1 и добавочных резисторов R1—R3. Верхние пределы измерения киловольтметра 25, 10 и 5 кВ.

В киловольтметре применен микроамперметр типа М24 с током полного отклонения 50 мкА. Его внутреннее сопротивление 1731 Ом. Добавочные резисторы — КЭВ (композиционные эмалировадные высоковольтные). В приборе можно использовать и резисторы МЛ Т-2, но с таким расчетом, чтобы на каждый из них падало напряжение не более 1,5—2 кВ. Следует отметить, что при использовании микроамперметра с током полного отклонения, большим чем 100 мкА, происходит заметное шунтирование киловольтметром измеряемой цепи, что приводит к заниженным результатам измерения. Переключение пределов измерений осуществляется с помощью кабеля со штекером в гнездах .25, 10, 5 кВ.

Рис. 74. Прибор для измерения напряжения до 25 кВ

Все детали киловольтметра, в том числе и микроамперметр, размещены в корпусе размером 130 X 120X 25 мм (рис. 74, б), изготовленном из прозрачного органического стекла толщиной 5 мм. Для подключения прибора к высоковольтным устройствам используют Кабель ПРМПВ (рассчитан на напряжение 30 кВ) и монтажный провод МГШВ (для подключения к корпусу проверяемого устройства). Все резисторы размещены на плате из органического стекла и прикреплены к микроамперметру. Конденсатор С1 предназначен для прохождения переменных составляющих.

Читайте также:  Метролог реестр средств измерений

При измерениях киловольтметр следует подключать и отключать только при выключенных высоковольтных устройствах. Например: вывод корпуса подключают к телевизору первым, а отключают последним. Необходимо помнить, что на аноде кинескопа, даже после выключения телевизора, электрический заряд сохраняется длительное время.

Источник

Схема для измерения высокого напряжения

    Иногда, при изготовлении ламповых конструкций, особенно, мощных усилителей мощности передатчика, часто возникает потребность в измерении анодных напряжений. Сейчас народ в основном пользуется китайскими цифровыми мультиметрами (тесторами), но как известно, у всех этих приборов, верних предел измерений ограничивается величиной в 1000 вольт.

Кроме того, у дешевых выриантов (чаще всего китайского производства), весьма сомнительная изоляция для таких довольно высоких уже напряжений, что требует особой акуратности при работе с ними. А как быть, если анодное напряжение, скажем уже порядка 2 или 3 кV? Таким прибором уже не измеришь. Хотя раньше, лет 15 обратно, мне удавалось замерять анодное напряжение своего УСМ, соединив два индентичных мультиметра последовательно, когда знаешь уже заранее, что напряжение не превысит 2000вольт. Но для этого нужно иметь два тестора одной марки, у которых будет одно и то же входное сопротивление. Если высоковольное напряжение выше 2000 вольт, то померить его обычными приборами уже не представляется возможным.

Собственно эта проблема вынудила меня изготовить (наконец то!) самодельный вольтметр с верхним пределом измерений в 5000 вольт. Устройство по своей сути очень простое, но учитывая столь высокое напряжение уже требует определенного подхода при изготовлении, где главным аспектом, является изоляция. Изоляция корпуса, выносного кабеля, определенной конструкции рабочего щупа и т.д.

Изготовление такого киловольтметра начинать нужно с поиска подходящей измерительной головки. Обычно это микроамперметр с током отклонения в 100, а еще лучше в 50 мка, с линейной шкалой. Далее, подобрав стрелочный прибор, нужно изготовить щуп. Измерительный щуп в таком приборе, очень важная вещь! Это залог вашей безопасности в будущем, при работе с прибором.

Мой щуп устроен очень просто. Взят был деревянный кругляк от домашней щетки, диаметром 35мм, где внутри было просверлено отверстие, в котором размещены два резистора по 1.5Мом, мощностью в 2Вт, для ограничения поступающего тока к прибору. В качестве кабеля, использован коаксиал, в гибкой изоляции с экранирующей оплеткой, которая в свою очередь заведена на корпус прибора (общий провод). Экранка служит дополнительной гарантией от случайного поражения эл.током, в случае обрыва кабеля щупа. Соединяется щуп с прибором при помощи большого байонетного разъема, типа CP-75-54ПВ, имеющий достаточную дистанцию в своем размере, между центральной жилой и оплеткой кабеля. Сама деревянная рукоятка, после полного изготовленея щупа, хорошо пропитывается лаком НЦ и изолируется.

Схема прибора очень проста, потому накидал для наглядности просто от руки. Подобных схем, довольно много в сети. Это построение классического вольтметра на основе измерительной головки постоянного тока.

Сам вольтметр, это измерительная головка и набор последовательных сопротивлений, где самый близкий к стрелочному прибору вывод «+» , в процессе наладки, подбирается с особой точностью, выбирая погрешность прибора как можно ближе к нулю.

В моей конструкции, прибор двухдиапазонный. Первый диапазон, это измерение от 0. до 5000вольт. Второй диапазон, от 0. до 1000вольт. Для надежности, я не стал ставить переключатель по входу, а поступил проще, установил два раздельных входных разъёма, где от каждого к плюсовому контакту измерительной головки, тянется своя цепочка последовательных сопротивлений. Это и проще и с точки зрения изоляции и гораздо надежней. Для измерения до 5000 вольт, понадобилось 16 резисторов, общим сопротивлением порядка 92Мом! А для второго диапазона, до 1000вольт, необходимо было выполнить последовательную цепочку уже только из 5 резисторов, общим сопротивлением , порядка 18.8 Мом. (Все данные с учетом встроенного в щуп сопротиаления в 3.0 Мом). Величины сопротивлений, напрямую зависят от чувствительности вашей измерительной головки и подбираются в процессе настройки.

Таким образом, получился самодельный КИЛОвольтметр, с хорошей изоляцией по входу и большим входным сопротивлением. Погрешность измерений в моем приборе вышла порядка 50вольт, при замере на пределе до 5000в. На втором диапазоне, до 1000вольт, составила порядка 15-16 вольт. Более точно, я уже не настраивал, поскольку счел не нужным. Хватает вполне и такой точности.

Перед тем как окончательно закрыть крышку прибора, печатная плата, дважды была покрыта защитным лаком. Для удобства, вывел сбоку разъем для использования простых выносных, стандарных тесторных проводов, для использования их на нижнем пределе измерений , до 1000в. Просто на всякий случай. Вся конструкция киловольтметра, будет понятна из фотографий.

Источник

Сравнить или измерить © 2021
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.