Меню

Способы измерения расстояний во вселенной



Как измеряют расстояния во Вселенной?

Как астрономы узнают расстояния до космических объектов?

Ответ

Для определения расстояний в космосе используют около двадцати методов, сменяющих один другой по мере перехода ко всё более удалённым объектам. Мы рассмотрим основные методы.

1. Исторически самым первым способом измерения расстояний до космических тел был метод, который уже давно применялся для измерения расстояний до недоступных объектов на поверхности Земли — метод тригонометрического параллакса. Заключается он в том, что измеряется расстояние между двумя точками на земной поверхности. Полученный отрезок называется базисом. На нём, как на основании (базис), строится треугольник, третьей вершиной которого является тот недоступный объект, расстояние до которого нам нужно узнать. С помощью угломерного инструмента измеряются два угла треугольника при базисе. Если известны сторона и два прилежащих угла треугольника, то, как мы помним из школьного курса геометрии (тема «Решение треугольников»), можно найти все остальные элементы треугольника. Таким образом можно определить расстояние до недоступного объекта.

Наши два глаза при оценке расстояний работают точно так же: два луча зрения на предмет образуют угол, который тем меньше, чем дальше расположен рассматриваемый объект. При рассматривании близких объектов глаза больше скошены, а при рассматривании очень далёких объектов глаза смотрят почти параллельно. Если поочерёдно закрывать глаза, то положение рассматриваемого объекта будет смещаться на фоне более далёких объектов. Чем ближе объект, тем смещение больше, чем дальше — тем меньше. Так как расстояния до космических объектов очень большие, то угол, называемый параллаксом (угол, под которым с далёкого объекта виден базис), будет очень маленьким. Чтобы его увеличить, нужно взять базис как можно больше. Для измерения расстояний до планет Солнечной системы за базис берут радиус Земли. Угол, под которым с небесного тела виден радиус Земли, перпендикулярный лучу зрения, называется горизонтальным параллаксом. Для близких звёзд за базис берут средний радиус орбиты Земли (астрономическая единица) и параллакс называется годичным параллаксом, он составляет всего лишь доли секунды (градус делится на 60 угловых минут, а минута на 60 угловых секунд). Если годичный параллакс некоторой звезды равен 1 секунде (то есть радиус земной орбиты виден с неё под углом, равным 1 секунде), то такое расстояние называется парсеком. До ближайшей звезды Проксима Центавра чуть больше одного парсека или 4,22 светового года. Таким методом с Земли можно измерить расстояния вплоть до 100 парсеков.

С помощью внеатмосферных наблюдений со спутников (спутник HIPPARCOS/Гиппарх, запущенный в 1989 году) можно измерить углы до 0.001″, что соответствует расстоянию в 1000 парсеков. В 2013 году был запущен спутник Gaia/Гея, который способен измерять параллаксы с точностью ещё в сто раз большей, что позволит определить расстояния до миллиарда звёзд нашей галактики (0,5% всех звёзд Галактики) на расстоянии до 40000 парсеков. Для более далёких звёзд метод параллакса не работает, т. к. невозможно измерить ещё более малые параллаксы, величина их много меньше точности измерительных приборов.

2. Методы радиолокации и лазерной локации. На космический объект с помощью радиопередатчика посылается мощный узконаправленный радиосигнал в виде кратковременного импульса. После отражения космическим объектом сигнал в ослабленном виде возвращается на Землю и принимается приёмником. По величине запаздывания вычисляется расстояние до объекта. Таким методом измеряются расстояния в Солнечной системе (Меркурий, Венера, Марс, Сатурн и Юпитер со спутниками, астероиды, кометы, корона Солнца) с точностью до нескольких километров. Для дальних планет метод не работает, т. к. сигнал сильно рассеивается (энергия принятого радиоэха обратно-пропорциональна четвёртой степени расстояния), трудно получить достаточно узко направленный пучок радиоволн, нужны очень мощные передатчики, огромные антенны и сверхчувствительные приёмники. Для Луны осуществлена лазерная локация, для этого на неё были доставлены оптические отражатели. Точность лазерной локации составляет 1 см.

3. Метод стандартной свечи. Мы знаем, что освещённость, создаваемая источником света, убывает обратно пропорционально квадрату расстояния до него (если лампочку отодвинуть в два раза дальше от стены, то освещённость стены уменьшится в 4 раза, если удалить в три раза, то освещённость уменьшится в девять раз и т. д.).

Чем меньше приходит на Землю света от звезды, тем, значит, она дальше. Если известна мощность источника света (в астрономии это светимость звезды), то по величине освещённости (в астрономии — видимый блеск звезды) можно вычислить расстояние до него по закону обратных квадратов. Например, мы хорошо знаем светимость Солнца. Если мы обнаружим такую же по физическим характеристикам звезду, как наше Солнце, то по её видимой звёздной величине (освещённости, создаваемой ею на Земле) мы легко вычислим расстояние до неё — звезда во столько раз находится дальше, чем Солнце, во сколько раз в квадрате её яркость меньше яркости Солнца. За стандартную свечу, кроме Солнца, можно брать любую другую звезду, расстояние до которой ранее измерено методом тригонометрического параллакса.

3′. Метод цефеид. За стандартную свечу можно взять цефеиду — пульсирующую звезду. Светимость и, соответственно, видимый блеск цефеиды периодически меняется. Известен закон, связывающий светимость цефеиды и период её пульсаций. Период и видимый блеск цефеид легко измерить, а отсюда легко вычислить и расстояние до неё. Цефеиды называют «маяками Вселенной». Если в какой-либо галактике обнаружена цефеида, то мы, вычислив расстояние до цефеиды, тем самым находим и расстояние до этой галактики.

3». Метод сверхновых. Точно так же за стандартную свечу можно взять некоторые типы сверхновых звёзд, то есть взрывающихся звёзд. Известно, сколько энергии выделяет сверхновая при взрыве. Сравнивая видимый блеск сверхновой с её истинной светимостью, мы определяем, на каком расстоянии от нас она находится, а, соответственно, и той далёкой галактики, которой она принадлежит.

Источник

Измерение расстояний во Вселенной.

Методы определения расстояний до звёзд делятся на две группы: геометрические и фотометрические . К числу геометрических методов относится непосредственное измерение так называемого тригонометрического (или годичного) параллакса, то есть параллактического смещения звезды на небесной сфере, обусловленного орбитальным движением Земли вокруг Солнца . Классическими фотографическими методами параллакс (обозначаемый греческой буквой π и измеряемый в угловых секундах) определяется со средней точностью порядка 0,02»–0,05». Это означает, что лишь для ближайших звёзд (в пределах 20–30 пк) расстояния известны с точностью не хуже 50%. Космический аппарат HIPPARCOS расширил эту сферу примерно до 300–500 пк. Для практических целей (исследования строения Галактики, например) требуется значительно более высокая точность — не хуже 5–10%, поэтому прямое измерение межзвёздных расстояний возможно лишь в небольшой по галактическим меркам окрестности Солнца. Для того чтобы изучать строение Галактики и тем более мир галактик, мы должны уметь переносить локальную шкалу расстояний на галактические масштабы.

Читайте также:  Wimu pro измерение физической активности

Для этой цели используется информация о светимостях звёзд. Зная светимость (или, что одно и то же, абсолютную звёздную величину 3 ), видимый блеск и величину поглощения света (для этого достаточно определить видимый блеск звезды с помощью фотометрии в трёх цветовых полосах), можно рассчитать расстояние до звезды по простой формуле

m – M = 5lgR – 5 + A,

где A — поглощение света, а расстояние R измеряется в парсеках. Разность видимой и абсолютной величин (m – M) принято называть модулем расстояния. Абсолютную величину для многих типов звёзд определяют по известным параллаксам подобных звёзд, населяющих солнечную окрестность. Очевидно, это один из возможных способов установления шкалы расстояний. Найденные по этой формуле расстояния (или параллаксы) часто называют фотометрическими, чтобы подчеркнуть метод их измерения.

Однако среди звёзд солнечной окрестности с параллаксами, измеряемыми тригонометрическим методом, подавляющее большинство составляют звёзды-карлики, то есть звёзды, находящиеся на той же стадии эволюции, что и Солнце. Они принадлежат к числу сравнительно слабых звёзд Галактики. Звёзд — красных гигантов, которые в 100 раз ярче Солнца, в ближайшей окрестности довольно мало. Ещё более ярких звёзд уж совсем единицы. Речь идёт о самых молодых и горячих звёздах и сверхгигантах, превосходящих Солнце по светимости в тысячи и десятки тысяч раз. Причиной их малого числа является общая тенденция резкого падения числа ярких звёзд с ростом светимости.

Диаграмма Герцшпрунга–Рессела (цвет — звёздная величина) для рассеянного звёздного скопления Плеяды. По горизонтальной оси отложен наблюдаемый показатель цвета B–V, по вертикальной: слева — видимая величина в жёлтой полосе V, справа — абсолютная величина MV. Звёзды концентрируются к главной последовательности (звёзд-карликов). (B–V)0 — истинный показатель цвета.

Стандартной линейкой для измерения расстояний между скоплениями служит хорошо известное скопление Гиады (расположенное вблизи Альдебарана — ярчайшей звезды созвездия Тельца). Оно обладает одним совершенно уникальным свойством, благодаря которому мы можем определить расстояние до него независимым способом с использованием другого геометрического метода — метода группового или статистического параллакса . Суть метода в следующем. Гиады — близкое скопление, имеющее заметную скорость движения относительно Солнца. По закону перспективы все входящие в него звёзды будут смещаться по большим кругам небесной сферы, пересекающимся в одной точке, называемой радиантом скопления . Положение радианта легко определяется по собственным движениям звёзд 6 , а скорость скопления — по лучевым скоростям (измеряемым на основании эффекта Доплера). Пусть λ — угол между направлением на звезду и „антирадиант“ скопления, V — вектор относительной скорости скопления, Vr и Vt — соответственно лучевая и тангенциальная скорости (в км/с), а m — собственное движение звезды (выраженное в угловых секундах в год). Нетрудно понять, что все эти величины связаны между собой формулой 4,738μr = Vrtgλ. По этой формуле можно рассчитать расстояние до каждой звезды движущегося скопления и, следовательно, среднее для всего скопления. Найденное таким методом расстояние до Гиад оказалось равным 45 ± 1 пк, что недавно было подтверждено результатами, полученными со спутника HIPPARCOS. Таким образом, вплоть до последнего времени шкала расстояний рассеянных скоплений фактически опиралась на единственное скопление — Гиады. Сейчас HIPPARCOS измерил расстояние ещё до одного из ближайших скоплений — Плеяд, оно равно 120 пк. Опираясь на расстояния рассеянных скоплений, можно сделать ещё один важный шаг на пути создания астрономической шкалы расстояний

Модели строения Вселенной.

В классической науке существовала так называемая теория стационарного состояния Вселенной, согласно которой Вселенная всегда была почти такой же, как сейчас.

Современные космологические модели Вселенной основываются на общей теории относительности А. Эйнштейна, согласно которой метрика пространства и времени определяется распределением гравитационных масс во Вселенной. Ее свойства как целого обусловлены средней плотностью материи и другими конкретно-физическими факторами.

Современная релятивистская космология строит модели Вселенной, отталкиваясь от основного уравнения тяготения, введенного А. Эйнштейном в общей теории относительности. Уравнение тяготения Эйнштейна имеет не одно, а множество решений, чем и обусловлено наличие многих космологических моделей Вселенной. Первая модель была разработана самим А. Эйнштейном в 1917 г. Он отбросил постулаты ньютоновской космологии об абсолютности и бесконечности пространства и времени. В соответствии с космологической моделью Вселенной А. Эйнштейна мировое пространство однородно и изотропно, материя в среднем распределена в ней равномерно, гравитационное притяжение масс компенсируется универсальным космологическим отталкиванием.

Эта модель казалась в то время вполне удовлетворительной, поскольку она согласовывалась со всеми известными фактами. Но новые идеи, выдвинутые А. Эйнштейном, стимулировали дальнейшее исследование, и вскоре подход к проблеме решительно изменился.

В том же 1917 г. голландский астроном Виллем де Ситтер предложил другую модель, представляющую собой также решение уравнений тяготения. Это решение имело то свойство, что оно существовало бы даже в случае «пустой» Вселенной, свободной oт материи. Если же в такой Вселенной появлялись массы, то решение переставало быть стационарным: возникало некоторого рода космическое отталкивание между массами, стремящееся удалить их друг от друга и растворить всю систему. Тенденция к расширению, по В. де Ситтеру, становилась заметной лишь на очень больших расстояниях.

В 1922 г. российский математик и геофизик Л. А. Фридман (бросил постулат классической космологии о стационарности Вселенной и дал принятое в настоящее время решение космологической проблемы).

Решение уравнений А. А. Фридмана, допускает три возможности. Если средняя плотность вещества и излучения во Вселенной равна некоторой критической величине, мировое пространство оказывается евклидовым и Вселенная неограниченно расширяется от первоначального точечного состояния. Если плотность меньше критической, пространство обладает геометрией Лобачевского и так же неограниченно расширяется. И, наконец, если плотность больше критической, пространство Вселенной оказывается римановым, расширение на некотором этапе сменяется сжатием, которое продолжается вплоть до первоначального точечного состояния. По современным данным, средняя плотность материи во Вселенной меньше критической, так что более вероятной считается модель Лобачевского, т. е. пространственно бесконечная расширяющаяся Вселенная. Не исключено, что некоторые виды материи, которые имеют большое значение для величины средней плотности, пока остаются неучтенными. В связи с этим делать окончательные выводы о конечности или бесконечности Вселенной пока преждевременно.

Читайте также:  Входной импеданс средства измерения

Расширение Вселенной считается научно установленным фактом. Первым к поискам данных о движении спиральных галактик обратился В. де Ситтер. Обнаружение эффекта Доплера, свидетельствовавшего об удалении галактик, дало толчок дальнейшим теоретическим исследованиям и новым улучшенным измерениям расстояний и скоростей спиральных туманностей.

В 1929 г. американский астроном Э. П. Хаббл обнаружил существование странной зависимости между расстоянием и скоростью галактик: все галактики движутся от нас, причем со скоростью, которая возрастает пропорционально расстоянию,— система галактик расширяется.

44. Модели образования Вселенной

Модель горячей Вселенной — космологическая модель, в которой эволюция Вселенной начинается с состояния плотной горячей плазмы, состоящей из элементарных частиц, и протекает при дальнейшем адиабатическом космологическом расширении.

Впервые модель горячей вселенной рассматривалась в 1947 году Г. А. Гамовым. Наиболее существенное наблюдательное предсказание, вытекающее из модели горячей Вселенной — наличие реликтового излучения со спектром, очень близким к спектру абсолютно чёрного тела, возникшего в момент рекомбинации ионов (в основном, водорода и гелия) и электронов в нейтральные атомы.

Возникновение крупномасштабной структуры Вселенной в рамках модели происходит вследствие роста начальных неоднородностей из-за гравитационной неустойчивости. Основной проблемой модели горячей Вселенной в этом аспекте является начальный спектр неоднородностей, который в ней не объясняется, а постулируется либо берётся из измерений. Естественные же предположения о его форме (пуассоновское распределение) предсказывают возникновение на ранних стадиях масштабных неоднородностей[источник не указан 918 дней] и, соответственно, существенной анизотропии реликтового излучения, что противоречит наблюдаемым данным.

Происхождение элементарных частиц в модели горячей Вселенной с конца 1970-х годов описывают с помощью спонтанного нарушения симметрии.

Многие недостатки модели горячей вселенной были решены в 1980-х годах в результате построения инфляционной модели вселенной.

Также важно отметить независимость данной теории от теории Большого взрыва.

Большой взрыв (англ. Big Bang) — космологическая модель, описывающая раннее развитие Вселенной, а именно — начало расширения Вселенной, перед которым Вселенная находилась в сингулярном состоянии.

По современным представлениям, наблюдаемая нами сейчас Вселенная возникла 13,7 ± 0,13 млрд лет назад из некоторого начального «сингулярного» состояния и с тех пор непрерывно расширяется и охлаждается. Согласно известным ограничениям по применимости современных физических теорий, наиболее ранним моментом, допускающим описание, считается момент Планковской эпохи с температурой примерно 1032 К (Планковская температура) и плотностью около 1093 г/см³ (Планковская плотность). Ранняя Вселенная представляла собой высокооднородную и изотропную среду с необычайно высокой плотностью энергии, температурой и давлением. В результате расширения и охлаждения во Вселенной произошли фазовые переходы, аналогичные конденсации жидкости из газа, но применительно к элементарным частицам.

Приблизительно через 10−35 секунд после наступления Планковской эпохи (Планковское время — 10−43 секунд после Большого взрыва, в это время гравитационное взаимодействие отделилось от остальных фундаментальных взаимодействий) фазовый переход вызвал экспоненциальное расширение Вселенной. Данный период получил название Космической инфляции. После окончания этого периода строительный материал Вселенной представлял собой кварк-глюонную плазму. По прошествии времени температура упала до значений, при которых стал возможен следующий фазовый переход, называемый бариогенезисом. На этом этапе кварки и глюоны объединились в барионы, такие как протоны и нейтроны. При этом одновременно происходило асимметричное образование как материи, которая превалировала, так и антиматерии, которые взаимно аннигилировали, превращаясь в излучение.

Дальнейшее падение температуры привело к следующему фазовому переходу — образованию физических сил и элементарных частиц в их современной форме. После чего наступила эпоха нуклеосинтеза, при которой протоны, объединяясь с нейтронами, образовали ядра дейтерия, гелия-4 и ещё нескольких лёгких изотопов. После дальнейшего падения температуры и расширения Вселенной наступил следующий переходный момент, при котором гравитация стала доминирующей силой. Через 380 тысяч лет после Большого взрыва температура снизилась настолько, что стало возможным существование атомов водорода (до этого процессы ионизации и рекомбинации протонов с электронами находились в равновесии).

После эры рекомбинации материя стала прозрачной для излучения, которое, свободно распространяясь в пространстве, дошло до нас в виде реликтового излучения.

Обычно сейчас автоматически сочетают теорию Большого взрыва и модель горячей Вселенной, но эти концепции независимы и исторически существовало также представление о холодной начальной Вселенной вблизи Большого взрыва.

Галактики.

Гала́ктика (др.-греч. Γαλαξίας — молочный, млечный) — гигантская, гравитационно-связанная система из звёзд и звёздных скоплений, межзвёздного газа и пыли, и тёмной материи. Все объекты в составе галактик участвуют в движении относительно общего центра масс. Галактики — чрезвычайно далёкие объекты. Расстояние до ближайших из них принято измерять в мегапарсеках, а до далёких — в единицах красного смещения z. Именно из-за удалённости различить на небе невооружённым глазом можно всего лишь три из них: туманность Андромеды (видна в северном полушарии), Большое и Малое Магеллановы Облака (видны в южном). Разрешить изображение галактик до отдельных звёзд не удавалось вплоть до начала XX века. К началу 1990-х годов насчитывалось не более 30 галактик, в которых удалось увидеть отдельные звёзды, и все они входили в Местную группу. После запуска космического телескопа «Хаббл» и ввода в строй 10-метровых наземных телескопов число галактик, в которых удалось различить отдельные звёзды, резко возросло.

Галактики отличаются большим разнообразием: среди них можно выделить сфероподобные эллиптические галактики, дисковые спиральные галактики, галактики с перемычкой (баром), карликовые, неправильные и т. д. Если же говорить о числовых значениях, то, к примеру, их масса варьируется от 107 до 1012 масс Солнца, для сравнения — масса нашей галактики Млечный Путь равна 3·1012 масс Солнца. Диаметр галактик — от 5 до 250 килопарсек[4] (16—800 тысяч световых лет), для сравнения — диаметр нашей галактики Млечный Путь около 100 000 световых лет. Самая большая известная на 2012 год галактика IC 1101 имеет диаметр более 600 килопарсек[5].

Читайте также:  Как измерить для себя приклад

Одной из нерешённых проблем строения галактик является тёмная материя, проявляющая себя только в гравитационном взаимодействии. Она может составлять до 90 % от общей массы галактики, а может и полностью отсутствовать, как в некоторых карликовых галактиках[6].

В пространстве галактики распределены неравномерно: в одной области можно обнаружить целую группу близких галактик, а можно не обнаружить ни одной, даже самой маленькой галактики (так называемые войды). Точное количество галактик в наблюдаемой части Вселенной неизвестно, но, по всей видимости, их порядка ста миллиардов

Звёзды. Эволюция звёзд.

Звезда́ — небесное тело, в котором идут, шли или будут идти термоядерные реакции. Но чаще всего звездой называют небесное тело, в котором идут в данный момент термоядерные реакции[1]. Солнце — типичная звезда спектрального класса G. Звёзды представляют собой массивные светящиеся газовые (плазменные) шары. Образуются из газово-пылевой среды (главным образом из водорода и гелия) в результате гравитационного сжатия. Температура вещества в недрах звёзд измеряется миллионами кельвинов, а на их поверхности — тысячами кельвинов. Энергия подавляющего большинства звёзд выделяется в результате термоядерных реакций превращения водорода в гелий, происходящих при высоких температурах во внутренних областях. Звёзды часто называют главными телами Вселенной, поскольку в них заключена основная масса светящегося вещества в природе. Примечательно и то, что звёзды имеют отрицательную теплоёмкость.

Жизненный цикл звезд зависит от их массы: звезды с низкой массой в конечном итоге превращаются в белых карликов, в то время как жизнь звезд с большой массой заканчивается взрывом сверхновых.

Начало конденсироваться облако межзвёздной газопылевой среды. Из этого облака образуется довольно плотный газовый шар. Давление внутри шара пока не в силах уравновесить силы притяжения, поэтому он будет сжиматься (возможно в это время вокруг звезды образуются сгустки с меньшей массой, которые в итоге превращаются в планеты). При сжатии температура повышается. Таким образом, звёзда постепенно садится на главную последовательность. Затем давление газа внутри звезды уравновешивает притяжение и протозвёзда превращается в звезду.

Ранняя стадия эволюции звёзды очень не велика и звезда в это время погружена в туманность, поэтому протозвезду очень тяжело обнаружить.

Превращение водорода в гелий происходит только в центральных областях звезды. В наружных слоях содержание водорода остаётся практически неизменным. Так как количество водорода ограничено, рано или поздно он выгорает. Выделение энергии в центре звезды прекращается и ядро звёзды начинает сжиматься, а оболочка разбухать. Далее если звезда меньше 1,2 массы солнца, она сбрасывает наружный слой (образование планетарной туманности).

После того, как от звёзды отделяется оболочка, открываются её внутренние очень горячие слои, а оболочка тем временем отходит всё дальше. Через несколько десятков тысяч лет оболочка распадётся и останется только очень горячая и плотная звезда, постепенно остывая она превратится в белый карлик. Постепенно остывая они превращаются в невидимые чёрные карлики. Чёрные карлики – это очень плотные и холодные звёзды, размером чуть больше Земли, но имеющие массу сравнимую с массой солнца. Процесс остывания белых карликов длится несколько сотен миллионов лет.

Если масса звезды от 1,2 до 2,5 солнечной, то такая звёзда взорвётся. Этот взрыв называется вспышкой сверхновой. Вспыхнувшая звезда за несколько секунд увеличивает свою светимость в сотни миллионов раз. Такие вспышки происходят крайне редко. В нашей Галактике взрыв сверхновой происходит, примерно, раз в сто лет. После подобной вспышки остаётся туманность, которая имеет большое радиоизлучение, а также очень быстро разлетается, и так называемая нейтронная звезда (об этом чуть позже). Помимо огромного радиоизлучения такая туманность будет ещё источником рентгеновского излучения, но это излучение поглощается атмосферой земли, поэтому может наблюдаться лишь из космоса.

Существует несколько гипотез о причине взрывов звёзд (сверхновых), однако общепризнанной теории пока нет. Есть предположение, что это происходит из-за слишком быстрого спада внутренних слоёв звезды к центру. Звезда быстро сжимается до катастрофически маленького размера порядка 10км, а плотность её в таком состоянии составляет 1017 кг/м3, что близко к плотности атомного ядра. Эта звезда состоит из нейтронов (при этом электроны, как бы вдавливаются в протоны), именно поэтому она называется «НЕЙТРОННОЙ». Её начальная температура около миллиарда кельвинов, но в дальнейшем она будет быстро остывать.

Эта звезда из-за её маленького размера и быстрого остывания долгое время считалась невозможной для наблюдения. Но через некоторое время были обнаружены пульсары. Эти пульсары и оказались нейтронными звёздами. Названы они так из-за кратковременного излучения радиоимпульсов. Т.е. звезда как бы «мигает». Это открытие было сделано совершенно случайно и не так давно, а именно в 1967 году. Эти периодичные импульсы обусловлены тем, что при очень быстром вращении мимо нашего взгляда постоянно мелькает конус магнитной оси, которая образует угол с осью вращения.

Пульсар может быть обнаружен только для нас условиях ориентирования магнитной оси, а это примерно 5% из их общего количества. Часть пульсаров не находится в радио туманностях, так как туманности сравнительно быстро рассеиваются. Через сотню тысяч лет эти туманности перестают быть видимыми, а возраст пульсаров исчисляется десятками миллионов лет.

Если масса звезды превышает 2,5 солнечные, то в конце своего существования она как бы обрушится в себя и будет раздавлена собственным весом. В считанные секунды она превратится в точку. Это явление получило название «гравитационный коллапс», а также этот объект стали называть «чёрной дырой».

Из всего выше сказанного видно, что финальная стадия эволюции звезды зависит от её массы, но при этом необходимо ещё учитывать неизбежную ею потерю этой самой массы и вращение.

Источник