Меню

Сравнения дробей с одинаковыми знаменателями сравнение правильных



Сравнение дробей: правила, примеры, решения.

В центре внимания данной статьи стоит сравнение дробей. Мы уже знаем про равные и неравные дроби. Две неравные дроби подлежат дальнейшему сравнению для выяснения, какая дробь больше, а какая дробь меньше. Для сравнения двух дробей существует правило сравнения дробей, которое мы сформулируем ниже, а также разберем примеры применения этого правила при сравнении дробей с одинаковыми и разными знаменателями. В заключение покажем, как сравнить дроби с одинаковыми числителями, не приводя их к общему знаменателю, а также рассмотрим, как сравнить обыкновенную дробь с натуральным числом.

Навигация по странице.

Сравнение дробей с одинаковыми знаменателями

Сравнение дробей с одинаковыми знаменателями по сути является сравнением количества одинаковых долей. К примеру, обыкновенная дробь 3/7 определяет 3 доли 1/7 , а дробь 8/7 соответствует 8 долям 1/7 , поэтому сравнение дробей с одинаковыми знаменателями 3/7 и 8/7 сводится к сравнению чисел 3 и 8 , то есть, к сравнению числителей.

Из этих соображений вытекает правило сравнения дробей с одинаковыми знаменателями: из двух дробей с одинаковыми знаменателями больше та дробь, числитель которой больше, и меньше та дробь, числитель которой меньше.

Озвученное правило объясняет, как сравнить дроби с одинаковыми знаменателями. Рассмотрим пример применения правила сравнения дробей с одинаковыми знаменателями.

Какая дробь больше: 65/126 или 87/126 ?

Знаменатели сравниваемых обыкновенных дробей равны, а числитель 87 дроби 87/126 больше числителя 65 дроби 65/126 (при необходимости смотрите сравнение натуральных чисел). Поэтому, согласно правилу сравнения дробей с одинаковыми знаменателями, дробь 87/126 больше дроби 65/126 .

.

Сравнение дробей с разными знаменателями

Сравнение дробей с разными знаменателями можно свести к сравнению дробей с одинаковыми знаменателями. Для этого лишь нужно сравниваемые обыкновенные дроби привести к общему знаменателю.

Итак, чтобы сравнить две дроби с разными знаменателями, нужно

  • привести дроби к общему знаменателю;
  • сравнить полученные дроби с одинаковыми знаменателями.

Разберем решение примера.

Сравните дробь 5/12 с дробью 9/16 .

Сначала приведем данные дроби с разными знаменателями к общему знаменателю (смотрите правило и примеры приведения дробей к общему знаменателю). В качестве общего знаменателя возьмем наименьший общий знаменатель, равный НОК(12, 16)=48 . Тогда дополнительным множителем дроби 5/12 будет число 48:12=4 , а дополнительным множителем дроби 9/16 будет число 48:16=3 . Получаем и .

Сравнив полученные дроби, имеем . Следовательно, дробь 5/12 меньше, чем дробь 9/16 . На этом сравнение дробей с разными знаменателями завершено.

.

Получим еще один способ сравнения дробей с разными знаменателями, который позволит выполнять сравнение дробей без их приведения к общему знаменателю и всех сложностей, связанных с этим процессом.

Для сравнения дробей a/b и c/d , их можно привести к общему знаменателю b·d , равному произведению знаменателей сравниваемых дробей. В этом случае дополнительными множителями дробей a/b и c/d являются числа d и b соответственно, а исходные дроби приводятся к дробям и с общим знаменателем b·d . Вспомнив правило сравнения дробей с одинаковыми знаменателями, заключаем, что сравнение исходных дробей a/b и c/d свелось к сравнению произведений a·d и c·b .

Отсюда вытекает следующее правило сравнения дробей с разными знаменателями: если a·d>b·c , то , а если a·d , то .

Рассмотрим сравнение дробей с разными знаменателями этим способом.

Сравните обыкновенные дроби 5/18 и 23/86 .

В этом примере a=5 , b=18 , c=23 и d=86 . Вычислим произведения a·d и b·c . Имеем a·d=5·86=430 и b·c=18·23=414 . Так как 430>414 , то дробь 5/18 больше, чем дробь 23/86 .

.

Сравнение дробей с одинаковыми числителями

Дроби с одинаковыми числителями и разными знаменателями, несомненно, можно сравнивать с помощью правил, разобранных в предыдущем пункте. Однако, результат сравнения таких дробей легко получить, сравнив знаменатели этих дробей.

Читайте также:  Калькулятор для сравнения десятичных чисел

Существует такое правило сравнения дробей с одинаковыми числителями: из двух дробей с одинаковыми числителями больше та, у которой меньше знаменатель, и меньше та дробь, знаменатель которой больше.

Рассмотрим решение примера.

Сравните дроби 54/19 и 54/31 .

Так как числители сравниваемых дробей равны, а знаменатель 19 дроби 54/19 меньше знаменателя 31 дроби 54/31 , то 54/19 больше 54/31 .

.

В заключение этого пункта приведем пример, хорошо иллюстрирующий основную суть озвученного правила сравнения дробей с одинаковыми числителями. Пусть перед нами две тарелки, на одной из них 1/2 пирога, а на другой 1/16 этого же пирога. Понятно, что скушав половину пирога, мы будем куда больше сыты, чем съев 1/16 его часть.

Сравнение дроби с натуральным числом

Сравнение обыкновенной дроби с натуральным числом сводится к сравнению двух дробей, если число записать в виде дроби со знаменателем 1 (смотрите натуральное число как дробь со знаменателем 1). Рассмотрим решение примера.

Сравните дробь 63/8 и число 9 .

Число 9 можно представить как дробь 9/1 , этим сравнение дроби 63/8 и числа 9 сводится к сравнению дробей 63/8 и 9/1 . После их приведения к общему знаменателю 8 , получаем дроби с одинаковым знаменателем 63/8 и 72/8 . Так как 63 , то , следовательно, .

.

Источник

Сравнение дробей

1 Сравнение дробей с одинаковыми знаменателями

Из двух дробей с одинаковыми знаменателями, но разными числителями больше та дробь, у которой числитель больше, например:

2 Сравнение дробей с одинаковыми числителями

Из двух дробей с одинаковыми числителями, но разными знаменателями больше та дробь, у которой знаменатель меньше, например:

3 Сравнение смешанных и неправильных дробей с правильными дробями

Неправильная или смешанная дробь всегда больше правильной дроби, например:

Это правило исходит из того, что правильная дробь всегда меньше 1 , а смешанная или неправильная дробь (которую всегда можно перевести в смешанную, выделив целую часть), уже содержит одну или больше единиц (целых частей).

4 Сравнение двух смешанных дробей

При сравнении двух смешанных дробей больше та дробь, у которой целая часть больше, например:

Если целые части у смешанных дробей одинаковые, больше та дробь, у которой дробная часть больше, например:

5 Сравнение дробей с разными числителями и знаменателями

Сравнивать дроби с разными числителями и знаменателями без их преобразования нельзя. Сначала дроби нужно привести к одному знаменателю, а затем сравнить их числители. Больше та дробь, у которой числитель будет больше. Читайте статью «Как привести дроби к одному знаменателю».

Если у вас не открываются игры или тренажёры, читайте здесь .

Источник

Сравнение обыкновенных дробей

Сравнить две дроби — значит определить, какая из дробей больше, какая меньше или установить, что дроби равны.

Сравнение дробей с одинаковыми знаменателями

Из двух дробей с одинаковыми знаменателями больше та дробь, у которой числитель больше.

Пример. Дробь больше чем дробь , потому что доли в обеих дробях одинаковы, но в первой дроби их больше, чем во второй.

Если изобразим единицу отрезком и разделим его на 8 долей, то легко увидеть, что дробь больше :

Сравнение дробей с одинаковыми числителями

Из двух дробей с одинаковыми числителями больше та дробь, у которой знаменатель меньше.

Пример. Дробь больше чем дробь , потому что число долей в обеих дробях одинаково, но в первой дроби доли крупнее, чем во второй.

Читайте также:  Мр 353 или 356 сравнение

Изобразим две единицы в виде кругов, один разделим на 4 доли, второй на 6 долей. Теперь можно увидеть, что дробь больше :

Сравнение дробей с разными знаменателями и числителями

Чтобы сравнить дроби, у которых разные числители и знаменатели, нужно привести их к общему знаменателю. После этого их сравнивают по правилу сравнения дробей, у которых одинаковые знаменатели.

Пример. Сравните дроби: и .

Решение: приводим данные дроби к общему знаменателю:

Теперь сравниваем их по правилу сравнения дробей, у которых одинаковые знаменатели. Так как , значит .

Приведём ещё один способ сравнения дробей с разными знаменателями и числителями. Рассмотрим сначала числовой пример.

Пример. Сравним дроби и .

Решение: приводим данные дроби к общему знаменателю:

Решая данный пример можно заметить, что, после приведения дробей к общему знаменателю, задача сравнения свелась фактически к сравнению произведений

Так как 2 · 7 = 14, а 4 · 3 = 12, то

Значит, .

Теперь решим эту же задачу в общем виде, используя буквенную запись.

Пример. Пусть даны дроби и , где a и c — нуль или натуральные числа, b и d — натуральные числа. Приведём дроби к общему знаменателю:

  1. если a · d >c · b, то
  2. если a · d Пример.

Сравнение неправильной дроби с натуральным числом сводится к сравнению двух дробей.

Чтобы сравнить неправильную дробь с натуральным числом, нужно натуральное число представить в виде неправильной дроби со знаменателем 1, затем их можно сравнить одним из двух способов: используя перекрёстное правило, либо привести дроби к общему знаменателю. После этого их сравнивают по правилу сравнения дробей, у которых одинаковые знаменатели.

Пример. Сравните дробь с числом 5.

Решение: представим число 5 в виде дроби со знаменателем 1:

Приводим дроби к общему знаменателю:

Сравниваем числители, так как 11 Пример.

Онлайн калькулятор сравнения дробей

Данный калькулятор поможет вам сравнить обыкновенные дроби. Просто введите две дроби и нажмите кнопку Сравнить .

Источник

Сравнение дробей, как правильно

О чем эта статья:

Сравнение дробей с одинаковыми знаменателями

Как и при любом другом сравнении, суть сравнения дробей — в том, чтобы определить меньшую и большую дроби.

Нет ситуации более благоприятной для сравнения, чем дроби с одинаковыми знаменателями. Если вся разница между дробями только в числителях, пользуемся следующим правилом:

Из двух дробей с одинаковыми знаменателями больше дробь с большим числителем. А меньше будет та дробь, числитель которой меньше.

А теперь на примерах.

Пример 1. Сравните дроби:

  • Мы видим, что знаменатели дробей — равны. Значит сравниваем числители:
    8 8
  • Это значит, что 10
    1

Пример 3. Сравните дроби:

  • Знаменатели дробей снова равны. Сравниваем числители:
    3 > 1
    1

Как видите, нет ничего сложного в сравнении дробей, если знаменатели равны. Вся задача заключается в том, чтобы определить больший и меньший знаменатель.

Давайте разберем наглядный пример сравнения дробей:

Допустим, в торте 6 кусков. Если от целого торта отрезать один кусок — в торте останется 5 кусков.

  • Запишем в виде дробей: и
  • А теперь сравним полученные дроби: знаменатели — равны, сравниваем числители:
    6 > 5
    5

Понять, что целый торт больше, чем торт без одного куска, можно и без сравнения дробей. Но это же самое правило можно применить и при менее очевидных сравнениях, которые часто встречаются в повседневной жизни.

Сравнение дробей с одинаковыми числителями

Вы уже разобрались со сравнением дробей с одинаковыми знаменателями. Теперь задача чуть усложняется — научимся сравнивать дроби с разными знаменателями, но с одинаковыми числителями.

Если у двух дробей одинаковые числители, то больше будет та дробь, чей знаменатель меньше. А меньше будет дробь с большим знаменателем.

А теперь наши любимые примеры. Погнали!

Пример 1. Сравните дроби:

  • У дробей разные знаменатели и одинаковые числители. Значит, согласно правилу, нужно сравнить знаменатели:
    9 > 7
    7 10
  • Значит дробь с меньшим знаменателем — больше:

Пример 3. Сравните дроби:

    У дробей разные знаменатели и одинаковые числители. Значит, согласно правилу, нужно сравнить знаменатели:
    6 > 3
    3

Сравнение дробей с разными числителями и разными знаменателями

Нет ничего хитрого в сравнении дробей с одинаковыми числителями или знаменателями. Чуть больше усилий потребуется при сравнении дробей, в которых нет ничего одинакового.

Сначала вспомним, как привести дроби к общему знаменателю.
Рассмотрим пример дробей с разными знаменателями.

  • Нужно подобрать число, которое будет делиться на 7 и на 2 (найти наименьшее общее кратное НОК). В данном случае, НОК — 14. Проверим:
    14:7 = 2
    14 : 2 = 7
  • Первую дробь умножаем на дополнительный множитель 2:
  • Вторую дробь умножаем на дополнительный множитель 7:
  • Дроби приведены к общему знаменателю:

Давайте потренируемся в сравнении дробей.

Пример 1. Сравните дроби:

  • Приведем дроби к общему знаменателю. 30 делится на 15 и на 2.
    30 : 15 = 2
    30 : 2 = 15
  • Первую дробь умножаем на дополнительный множитель 2:
  • Вторую дробь умножаем на дополнительный множитель 15:
  • Дроби приведены к общему знаменателю:
  • Если две дроби имеют одинаковые знаменатели, то, согласно правилу, больше та дробь, чей числитель больше:

При сравнении неправильных дробей, помните, что неправильная дробь всегда больше правильной.

Пример 2: Сравните дроби:

  • 6/5 — неправильная дробь.
  • Выделим целую часть:
  • Значит, что

Вычитание смешанных чисел

Вычитание проходит гладко, когда уменьшаемое больше вычитаемого.

  • 12 — 7 = 6
    12 — уменьшаемое
    7 — вычитаемое
    5 — разность

В случае, если вычитаемое больше уменьшаемого, разность оказывается отрицательной. В этом нет ничего страшного. Но математика в 5 классе — «положительная», поэтому научимся находить разность смешанных чисел, не скатываясь «в минусы».

При вычитании дробей действует тот же самый принцип: вычитаемое должно быть больше уменьшаемого. Вот здесь то вам и пригодится навык сравнивать дроби.

Пример 1. Найдите разность:

Вычитаемая дробь меньше уменьшаемой

  • Выполняем вычитание:

Пример 2.Найдите разность:

  • Смешанные дроби превращаем в неправильные:
  • Чтобы сравнить дроби с разными числителями и знаменателями, нужно привести их к общему знаменателю:
  • Наименьшее общее кратное — 40
    40 : 8 = 5
    40 : 5 = 8
  • Умножаем первую дробь на дополнительный множитель 5:
  • Умножаем вторую дробь на дополнительный множитель 8:
  • Дроби приведены к общему знаменателю:

Если знаменатели одинаковые — больше та дробь, числитель которой больше.

  • Мы видим, что вычитаемое меньше уменьшаемого, значит можем без труда найти разность:

Примеры для самопроверки

Теория — это, конечно, хорошо. Но без практики — никуда. Пора потренироваться в решении примеров и закрепить тему сравнения дробей.

Пример 1. Сравните дроби:

Ответ: по правилу сравнения дробей с одинаковыми знаменателями, больше та дробь, у которой числитель больше. Это значит, что

Пример 2. Сравните дроби:

Ответ: по правилу сравнения дробей с разными знаменателями и одинаковыми числителями, больше та дробь, чей знаменатель меньше. Это значит, что

Пример 3. Сравните дроби:

Ответ:.

  • По правилу сравнения дробей с разными числителями и знаменателями, сначала нужно привести дроби к общему знаменателю:
  • Наименьшее общее кратное — 15:
    15 : 15 = 1
    15 : 5 = 3
  • Умножаем первую дробь на дополнительный множитель 1:
  • Умножаем вторую дробь на дополнительный множитель 3:
  • Дроби приведены к общему знаменателю:
  • Сравниваем числители получившихся дробей: 3

Источник