Меню

Сравнение митохондрий с хлоропластами



Разница между митохондриями и хлоропластами

В клетках живых организмов обнаруживаются митохондрии и хлоропласты. Эти органоиды имеют немало одинаковых черт. Но вместе с тем существует и разница между ними. Произведем сравнение и выясним, чем отличаются митохондрии от хлоропластов.

Общие сведения

Объектом внимания служат органоиды, верхний слой которых представлен двойной мембраной. Немаловажным объединяющим признаком митохондрий и хлоропластов также является их относительно автономное существование в клетке. Оно выражается, во-первых, в том, что и те и другие имеют «персональные» рибосомы и РНК для синтеза белка.

Во-вторых, митохондриям и хлоропластам свойственно не образование из каких-либо клеточных структур, а размножение делением, происходящее в большинстве случаев по самостоятельному сценарию. Вся наследственная информация заключается опять-таки в собственных молекулах ДНК. Однако полностью независимыми обсуждаемые органоиды не являются, и в целом ими управляет главный клеточный аппарат.

Сравнение

Образования первого вида есть в клетках любого происхождения (растительного и животного), имеющих в своей структуре ядро. Так устроены митохондрии:

Строение митохондрии

Хлоропласты – необходимые элементы только растительных клеток. Это пластиды с зеленой окраской, обусловленной содержанием соответствующего пигмента.

Отличие митохондрий от хлоропластов заключается в их назначении. Первым из них отведена роль главных производителей АТФ – незаменимого источника энергии. Процесс синтеза связан с клеточным дыханием, за которое отвечают ферменты митохондрий. Хлоропласты тоже способны к производству энергетического материала. Но в первую очередь они нацелены на фотосинтез, сущность которого сводится к выработке органических веществ при действии света.

Как уже было упомянуто, рассматриваемые компоненты клетки обладают двухслойной мембраной. Но строение этой защитной оболочки у органоидов отличается. В чем разница между митохондриями и хлоропластами в данном отношении? Ее можно увидеть в особенностях организации внутреннего мембранного слоя (наружный в том и другом случае является ровным).

У митохондрий эта часть структуры образует направленные вглубь складки, иначе кристы. Собранный так внутренний слой имеет внушительную площадь поверхности. Это повышает эффективность биохимических процессов, ведь здесь размещено множество различных ферментов.

В свою очередь, у хлоропластов внутренними мембранными образованиями являются тилакоиды. Это дискообразные элементы, которые содержат вещества, ответственные за фотосинтез. Тилакоиды группируются в стопки. Каждый такой блок из нескольких прижатых друг к другу единиц называется граной.

Источник

Разница между хлоропластом и митохондриями

Хлоропласт и митохондрии — две органеллы, найденные в клетке. Хлоропласт является мембраносвязанной органеллой, встречающейся только в клетках водорослей и растений. Митохондрии встречаются в грибах,

Содержание:

Главное отличие — Хлоропласт против Митохондрии

Хлоропласт и митохондрии — две органеллы, найденные в клетке. Хлоропласт является мембраносвязанной органеллой, встречающейся только в клетках водорослей и растений. Митохондрии встречаются в грибах, растениях и животных, как эукариотические клетки. главное отличие между хлоропластами и митохондриями есть их функции; хлоропласты ответственны за производство сахаров с помощью солнечного света в процессе, называемом фотосинтезом, в то время как митохондрии являются движущей силой клетки, которая расщепляет сахар для захвата энергии в процессе, называемом клеточным дыханием.

Эта статья смотрит на,

1. Что такое хлоропласт
— структура и функции
2. Что такое Митохондрия
— структура и функции
3. В чем разница между хлоропластом и митохондриями

Что такое хлоропласт

Хлоропласты представляют собой тип пластид, встречающихся в клетках водорослей и растений. Они содержат хлорофилловые пигменты для проведения фотосинтеза. Хлоропласт состоит из собственной ДНК. Основная функция хлоропласта — производство органических молекул глюкозы из СО.2 и H2О с помощью солнечного света.

Состав

Хлоропласты идентифицируются как пигменты в форме линз зеленого цвета у растений. Они имеют диаметр 3-10 мкм и толщину около 1-3 мкм. Растительные клетки обрабатывают 10-100 хлоропластов на клетку. Различные формы хлоропластов можно найти в водорослях. Водорослевая клетка содержит один хлоропласт, который может иметь форму сетки, чашки или ленточной спирали.

Рисунок 1: Структура хлоропласта в растениях

Три мембранные системы могут быть идентифицированы в хлоропласте. Это наружная хлоропластовая мембрана, внутренняя хлоропластная мембрана и тилакоиды.

Наружная хлоропластная мембрана

Внешняя мембрана хлоропласта является полупористой, что позволяет небольшим молекулам легко диффундировать. Но большие белки не могут диффундировать. Следовательно, белки, необходимые для хлоропласта, транспортируются из цитоплазмы комплексом ТОС во внешней мембране.

Внутренняя хлоропластная мембрана

Внутренняя хлоропластная мембрана поддерживает постоянную среду в строме, регулируя прохождение веществ. После прохождения белков через комплекс TOC они транспортируются через комплекс TIC во внутренней мембране. Стромы — это выпячивания мембран хлоропластов в цитоплазму.

Читайте также:  Материалы для столешниц сравнение материалов

Строма хлоропласта — это жидкость, окруженная двумя мембранами хлоропласта. Тилакоиды, хлоропластная ДНК, рибосомы, крахмальные гранулы и многие белки плавают в строме. Рибосомы в хлоропластах имеют вид 70S и отвечают за трансляцию белков, кодируемых ДНК хлоропластов. ДНК хлоропласта называется ктДНК или кПДНК. Это единственная кольцевая ДНК, расположенная в нуклеоиде в хлоропласте. Размер ДНК хлоропласта составляет около 120-170 кб, содержит 4-150 генов и инвертированные повторы. ДНК хлоропласта реплицируется через блок двойного смещения (D-петля). Большая часть ДНК хлоропластов переносится в геном хозяина путем эндосимбиотического переноса генов. Расщепляемый транзитный пептид добавляется к N-концу к белкам, транслированным в цитоплазме, в качестве системы нацеливания для хлоропласта.

тилакоидов

Тилакоидная система состоит из тилакоидов, представляющих собой совокупность высокодинамичных мембранных мешков. Тилакоиды состоят из хлорофилла сине-зеленый пигмент, который отвечает за световую реакцию при фотосинтезе. Помимо хлорофиллов в растениях могут присутствовать два типа фотосинтетических пигментов: каротиноиды желто-оранжевого цвета и фикобилины красного цвета. Грана — это стеки, образованные расположением тилакоидов вместе. Различные граны связаны между собой стромальными тилакоидами. Хлоропласты С4 растения и некоторые водоросли состоят из свободно плавающих хлоропластов.

функция

Хлоропласты можно найти в листьях, кактусах и стеблях растений. Растительная клетка, состоящая из хлорофилла, упоминается как хлоренхима. Хлоропласты могут менять свою ориентацию в зависимости от наличия солнечного света. Хлоропласты способны продуцировать глюкозу, используя СО2 и H2O с помощью энергии света в процессе, называемом фотосинтезом. Фотосинтез протекает в два этапа: светлая реакция и темная реакция.

Свет реакции

Световая реакция происходит в тилакоидной мембране. Во время легкой реакции кислород образуется при расщеплении воды. Энергия света также сохраняется в NADPH и ATP от NADP. + восстановление и фотофосфорилирование соответственно. Таким образом, двумя энергоносителями для темной реакции являются АТФ и НАДФН. Подробная диаграмма световой реакции показана на фигура 2.

Рисунок 2: Легкая реакция

Темная реакция

Темная реакция также называется циклом Кальвина. Встречается в строме хлоропласта. Цикл Кальвина проходит три фазы: фиксация углерода, восстановление и регенерация рибулозы. Конечным продуктом цикла Кальвина является глицеральдегид-3-фосфат, который может быть удвоен с образованием глюкозы или фруктозы.

Рисунок 3: Цикл Кальвина

Хлоропласты также способны самостоятельно продуцировать все аминокислоты и азотистые основания клетки. Это исключает необходимость их экспорта из цитозоля. Хлоропласты также участвуют в иммунном ответе растения для защиты от патогенов.

Что такое Митохондрия

Митохондрия представляет собой мембраносвязанную органеллу, обнаруженную во всех эукариотических клетках. Химический источник энергии клетки, который является АТФ, генерируется в митохондриях. Митохондрии также содержат собственную ДНК внутри органеллы.

Состав

Митохондрия представляет собой бобоподобную структуру с диаметром от 0,75 до 3 мкм. Количество митохондрий, присутствующих в конкретной клетке, зависит от типа клетки, ткани и организма. Пять различных компонентов могут быть идентифицированы в структуре митохондрий. Структура митохондрии показана на рисунке 4.

Рисунок 4: Митохондрия

Митохондрия состоит из двух мембран — внутренней и наружной.

Наружная митохондриальная мембрана

Наружная митохондриальная мембрана содержит большое количество интегральных мембранных белков, называемых поринами. Транслоказа — это белок наружной мембраны. Связанная с транслоказой N-концевая сигнальная последовательность крупных белков позволяет белку проникать в митохондрии. Ассоциация митохондриальной наружной мембраны с эндоплазматическим ретикулумом образует структуру, называемую MAM (митохондриально-ассоциированная ER-мембрана). MAM позволяет транспорт липидов между митохондриями и ER через передачу сигналов кальция.

Внутренняя митохондриальная мембрана

Внутренняя митохондриальная мембрана состоит из более чем 151 различных типов белков, функционирующих во многих отношениях. Не хватает поринов; тип транслоказы во внутренней мембране называется комплексом TIC. Межмембранное пространство расположено между внутренней и наружной митохондриальными мембранами.

Пространство, окруженное двумя митохондриальными мембранами, называется матрицей. Митохондриальная ДНК и рибосомы с многочисленными ферментами суспендированы в матрице. Митохондриальная ДНК представляет собой круговую молекулу. Размер ДНК составляет около 16 кб, кодирующих 37 генов. Митохондрия может содержать 2-10 копий своей ДНК в органелле. Внутренняя митохондриальная мембрана образует складки в матрице, которые называются кристами. Кристы увеличивают площадь поверхности внутренней мембраны.

функция

Митохондрии производят химическую энергию в форме АТФ для использования в клеточных функциях в процессе, называемом дыханием. Реакции, вовлеченные в дыхание, все вместе называют циклом лимонной кислоты или циклом Кребса. Цикл лимонной кислоты происходит во внутренней мембране митохондрий. Он окисляет пируват и НАДН, образующиеся в цитозоле из глюкозы с помощью кислорода.

Читайте также:  Сравнение религий древнего востока

Рисунок 5: Цикл лимонной кислоты

NADH и FADH2 являются носителями окислительно-восстановительной энергии, вырабатываемой в цикле лимонной кислоты. NADH и FADH2 передать свою энергию O2 пройдя через цепь переноса электронов. Этот процесс называется окислительным фосфорилированием. Протоны, освобожденные от окислительного фосфорилирования, используются АТФ-синтазой для получения АТФ из АДФ. Схема цепи переноса электронов показана на Рисунок 6 Полученные АТФ проходят через мембрану с помощью поринов.

Рисунок 6: Электронная транспортная цепь

Функции митохондриальной внутренней мембраны

  • Выполнение окислительного фосфорилирования
  • Синтез АТФ
  • Проведение транспортных белков для регулирования прохождения веществ
  • Холдинг ТИЦ комплекс для перевозки
  • Вовлечение в деление и слияние митохондрий

Другие функции митохондрий

  • Регуляция обмена веществ в клетке
  • Синтез стероидов
  • Хранение кальция для передачи сигнала в клетке
  • Регулирование мембранного потенциала
  • Активные виды кислорода, используемые в сигнализации
  • Синтез порфирина в пути синтеза гема
  • Гормональная передача сигналов
  • Регуляция апоптоза

Разница между хлоропластом и митохондриями

Тип ячейки

хлоропласты: Хлоропласты обнаружены в растительных и водорослевых клетках.

Митохондрии: Митохондрии обнаруживаются во всех аэробных эукариотических клетках.

хлоропласты: Хлоропласты зеленого цвета.

Митохондрии: Митохондрии обычно бесцветные.

форма

хлоропласты: Хлоропласты имеют форму диска.

Митохондрии: Митохондрии имеют бобовидную форму.

Внутренняя мембрана

хлоропласты: Складки во внутренней мембране образуют стромулы.

Митохондрии: Складки во внутренней мембране образуют кристы.

Грана

хлоропластовТилакоиды образуют стопки дисков, которые называются гранами.

Митохондрии: Кристы не образуют граны.

Отсеки

хлоропласты: Можно выделить два отсека: тилакоиды и строма.

Митохондрии: Можно найти два отсека: кристы и матрицу.

Пигменты

хлоропласты: Хлорофилл и каротиноиды присутствуют в виде фотосинтетических пигментов в тилакоидной мембране.

Митохондрии: В митохондриях нет пигментов.

Преобразование энергии

хлоропласты: Хлоропласт накапливает солнечную энергию в химических связях глюкозы.

Митохондрии: Митохондрии превращают сахар в химическую энергию, которая является АТФ.

Сырье и конечные продукты

хлоропласты: Хлоропласты используют СО2 и H2О, чтобы накапливать глюкозу.

Митохондрии: Митохондрии расщепляют глюкозу на СО2 и H2О.

кислород

хлоропласты: Хлоропласты выделяют кислород.

Митохондрии: Митохондрии потребляют кислород.

Процессы

хлоропласты: Фотосинтез и фотодыхание происходят в хлоропласте.

Митохондрии: Митохондрии являются участком цепи переноса электронов, окислительного фосфорилирования, бета-окисления и фотодыхания.

Заключение

Хлоропласты и митохондрии являются мембраносвязанными органеллами, которые участвуют в преобразовании энергии. Хлоропласт накапливает энергию света в химических связях глюкозы в процессе, называемом фотосинтезом. Митохондрии преобразуют энергию света, запасенную в глюкозе, в химическую энергию в форме АТФ, которая может использоваться в клеточных процессах. Этот процесс называется клеточным дыханием. Обе органеллы используют CO2 и O2 в своих процессах. И хлоропласты, и митохондрии участвуют в клеточной дифференцировке, передаче сигналов и гибели клеток, помимо их основной функции. Кроме того, они контролируют рост клеток и клеточный цикл. Обе органеллы считаются возникшими в результате эндосимбиоза. Они содержат свою собственную ДНК. Но основное различие между хлоропластами и митохондриями заключается в их функции в клетке.

Источник

Сходства и различия хлоропластов и митохондрий

Сходства прежде всего заключаются в том, что это двомембранные полуавтономные органеллы. Почему полуавтономные? Потому что имеют, во-первых собственный белок-синтезирующий аппарат, т.е. кольцевую молекулу ДНК, все виды РНК и рибосомы, на которых осуществляется синтез белка. Во-вторых, они способны к делению пополам. Еще подобным является то, что эти органеллы сами синтезируют энергию в виде молекул АТФ. Конечно, первенство в этой функции предоставляется митохондриям, но и хлоропласты также способны к образованию энергетических молекул в ходе световой реакции фотосинтеза.

Отличие заключается в назначении этих органелл. В хлоропластах происходят процессы фотосинтеза (космическая роль зеленых растений), в митохондриях — клеточное дыхание (третий этап энергетического обмена).

Пора готовиться к ЗНО!
  • Биология
  • Химия
  • История Украины
  • Украинский язык

Набираем последние группы «Интенсив»

Лучшие курсы для подготовки к ЗНО в Киеве!
Начало занятий 16 февраля.

Источник

Строение и функции митохондрий. Сходства и различия с хлоропластом

Митохондрии — это микроскопические мембранные органоиды, которые обеспечивают клетку энергией. Поэтому их называют энергетическими станциями (аккумулятором) клеток.

Митохондрии отсутствуют в клетках простейших организмов, бактерий, энтамеб, которые живут без использования кислорода. Некоторые зеленые водоросли, трипаносомы содержат одну большую митохондрию, а клетки сердечной мышцы, мозга имеют от 100 до 1000 данных органелл.

Читайте также:  При сравнении объектов аналогов поправки могут быть

Особенности строения

Митохондрии относятся к двухмембранным органеллам, имеют внешнюю и внутреннюю оболочки, межмембранное пространство между ними и матрикс.

Внешняя мембрана. Она гладкая, не имеет складок, отграничивает внутреннее содержимое от цитоплазмы. Ширина ее равна 7нм, в составе находятся липиды и белки. Важную роль выполняет порин — белок, образующий каналы во внешней мембране. Они обеспечивают ионный и молекулярный обмен.

Межмембранное пространство. Величина межмембранного пространства около 20нм. Вещество, заполняющее его по составу сходно с цитоплазмой, за исключением крупных молекул, которые могут сюда проникнуть только путем активного транспорта.

Внутренняя мембрана. Построена в основном из белка, только треть отводится на липидные вещества. Большое количество белков являются транспортными, так как внутренняя мембрана лишена свободно проходимых пор. Она формирует много выростов – крист, которые выглядят, как приплюснутые гребни. Окисление органических соединений до CO2 в митохондриях происходит на мембранах крист. Этот процесс кислородзависимый и осуществляется под действием АТФ-синтетазы. Высвобожденная энергия сохраняется в виде молекул АТФ и используется по мере необходимости.

Матрикс – внутренняя среда митохондрий, имеет зернистую однородную структуру. В электронном микроскопе можно увидеть гранулы и нити в клубках, которые свободно лежат между кристами. В матриксе находится полуавтономная система синтеза белка – здесь расположены ДНК, все виды РНК, рибосомы. Но все же большая часть белков поставляется с ядра, поэтому митохондрии называют полуавтономными органеллами.

Расположение в клетке и деление

Хондриом – это группа митохондрий, которые сосредоточены в одной клетке. Они по-разному располагаются в цитоплазме, что зависит от специализации клеток. Размещение в цитоплазме также зависит от окружающих ее органелл и включений. В клетках растений они занимают периферию, так как к оболочке митохондрии отодвигаются центральной вакуолью. В клетках почечного эпителия мембрана образует выпячивания, между которыми находятся митохондрии.

В стволовых клетках, где энергия используется равномерно всеми органоидами, митохондрии размещены хаотично. В специализированных клетках они, в основном, сосредоточены в местах наибольшего потребления энергии. К примеру, в поперечно-полосатой мускулатуре они расположены возле миофибрилл. В сперматозоидах они спирально охватывают ось жгутика, так как для приведения его в движение и перемещения сперматозоида нужно много энергии. Простейшие, которые передвигаются при помощи ресничек, также содержат большое количество митохондрий у их основания.

Деление. Митохондрии способны к самостоятельному размножению, имея собственный геном. Органеллы делятся с помощью перетяжки или перегородок. Формирование новых митохондрий в разных клетках отличается периодичностью, например, в печеночной ткани они сменяются каждые 10 дней.

Функции в клетке

  1. Основная функция митохондрий – образование молекул АТФ.
  2. Депонирование ионов Кальция.
  3. Участие в обмене воды.
  4. Синтез предшественников стероидных гормонов.

Молекулярная биология – это наука, изучающая роль митохондрий в метаболизме. В них также идет превращение пирувата в ацетил-коэнзим А, бета-окисление жирных кислот.

Таблица: строение и функции митохондрий (кратко)
Структурные элементы Строение Функции
Наружная мембрана Гладкая оболочка, построена из липидов и белков Отграничивает внутреннее содержимое от цитоплазмы
Межмембранное пространство Находятся ионы водорода, белки, микромолекулы Создает протонный градиент
Внутренняя мембрана Образует выпячивания – кристы, содержит белковые транспортные системы Перенос макромолекул, поддержание протонного градиента
Матрикс Место расположения ферментов цикла Кребса, ДНК, РНК, рибосом Аэробное окисление с высвобождением энергии, превращение пирувата в ацетил-коэнзим А.
Рибосомы Объединённые две субъединицы Синтез белка

Сходство митохондрий и хлоропластов

Признаки сходства также заключаются в способности самостоятельно синтезировать белок. Эти органеллы имеют свое ДНК, РНК, рибосомы.

И митохондрии и хлоропласты могут делиться с помощью перетяжки.

Объединяет их также возможность продуцировать энергию, митохондрии более специализированы в этой функции, но хлоропласты во время фотосинтезирующих процессов тоже образуют молекулы АТФ. Так, растительные клетки имеют меньше митохондрий, чем животные, потому что частично функции за них выполняют хлоропласты.

Опишем кратко сходства и различия:

  • Являются двомембранными органеллами;
  • внутренняя мембрана образует выпячивания: для митохондрий характерны кристы, для хлоропластов – тиллакоиды;
  • обладают собственным геномом;
  • способны синтезировать белки и энергию.

Различаются данные органоиды своими функциями: митохондрии предназначены для синтеза энергии, здесь осуществляется клеточное дыхание, хлоропласты нужны растительным клеткам для фотосинтеза.

Источник