Меню

Сравнение моделей представления знаний



Персональный сайт Охрименко Кристины Сергеевны

Авторы: В.А. Крисилов, С.М. Побережник, Р.А. Тарасенко

В.А. Крісілов, С.М. Побережник, Р.О. Тарасенко. Порівняльний аналіз моделей подання знань в інтелектуальних системах. Розглянуто базові моделі подання знань в інтелектуальних системах. Запропоновано кілька формальних критеріїв для їх порівняння та класифікації. Коротко описано застосування різних моделей на практиці.

V.A. Krisilov, S.M. Poberezhnik, R.A. Tarasenko. Comparative analysis of the knowledge re-presentation models in artificial intelligence systems. The paper presents the basic models of knowledge representation. Some formal nriteries for comparison and classification are proposed. Practical application of different models is briefly described.

В настоящее время известно значительное количество программных систем, используемых для решения таких сложных задач, как оценка ситуации и выбор решения при управлении сложными процессами; оценка и выбор оптимальных проектных решений; техническая и медицинская диагностика; оценка кредитных и инвестиционных рисков; прогнозирование финансово-экономических параметров: доходности предприятия, курсов валют, биржевых цен и т.п. В силу интеллектуального характера решаемых задач, а также того, что самим системам присущи способность достигать высокого качества формируемых решений, а также обучаться и объяснять свои решения, такие системы называются интеллектуальными и объединяют достаточно широкий круг программных продуктов. К ним относятся и экспертные системы (expert systems), системы для численного обоснования принятия решения (decision support systems), системы для распознавания образов (текстов, изображения, речи) и некоторые другие.

В программировании в целом наметилась быстро развивающаяся тенденция к интеллектуализации. Так, сейчас практически все популярные программные продукты в большей или меньшей степени приобрели черты интеллектуальности. Запоминание действий пользователя, подсказки и рекомендации по оптимальному использованию соответствующих режимов самих программ, сложные ассоциативные поиски, оптимизация кода при программировании, сложные механизмы обеспечения корректности данных при вводе и хранении — вот неполный перечень признаков «поумнения» современных программных средств. А это, в свою очередь, является немаловажной предпосылкой дальнейшего прогресса в разработке интеллектуальных систем (ИС).

Одной из основных проблем при создании ИС является выбор модели представления знаний [1]. Именно модель представления знаний определяет архитектуру, возможности и свойства системы, а также методы приобретения знаний ИС. В настоящее время известен ряд базовых моделей представления знаний и их модификаций — это представление с помощью фактов и правил, исчисления предикатов, нейронные сети, семантические сети, фреймы. Каждая из моделей позволяет получить интеллектуальную систему с некоторыми преимуществами, делая ее более эффективной в конкретных условиях, облегчая ее понимание и требуемые модификации. Таким образом, почти всегда перед разработчиком возникает задача, на базе какой модели представления знаний строить данную интеллектуальную систему применительно к данной конкретной задаче.

С учетом данных, встречающихся в различных источниках, можно предложить следующий перечень критериев оценки моделей представления знаний: уровень сложности (абстрактности) элемента знаний, с которыми работает модель; универсальность представления знаний — возможность описания знаний из различных предметных областей; естественность и наглядность представления знаний при использовании; способность модели к обучению и формированию новых, непротиворечивых знаний; размерность модели по объему памяти, необходимому для хранения элемента модели; удобство разработки системы на основе модели.

Проведем анализ современных моделей представления знаний по указанным критериям.

Модель представления знаний с помощью фактов и правил построена на использовании выражений вида ЕСЛИ (условие) — ТО (действие).

Если текущая ситуация (факты) в задаче удовлетворяет или согласуется с частью правила ЕСЛИ, то выполняется действие, определяемое частью ТО [2]. Это действие может оказаться воздействием на окружающий мир или же повлиять на управление программой (например, вызвать проверку и запуск некоторого набора других правил), или может сводиться к указанию системе добавить новый факт или гипотезу в базу данных.

Сопоставление частей ЕСЛИ правил с фактами может породить так называемую цепочку выводов — дерево решений [3]. Один из главных недостатков метода представления знаний с помощью правил — значительные затраты времени на построение цепочки вывода. При частом использовании какого-либо дерева решений система редуцирует («сжимает») дерево решений до нового правила и вводит его в базу знаний. Это действие называют продукцией правил. Правило такого рода имеет значительно большую размерность, чем исходные правила. Системы, построенные на основе продукционных моделей, более эффективны по затратам памяти и по быстродействию, чем системы, основанные просто на правилах.

По уровню абстрактности элемента знаний модель работает с простейшими составляющими знания — фактами и правилами. Модель направлена на решение простых, однородных задач и приводит к резкому падению эффективности решения таких проблем, которые состоят из нескольких разнородных задач. Серьезнейшим недостатком является невозможность эффективно описать правила с исключениями. Объем памяти, необходимый для хранения элемента знаний модели — конструкции ЕСЛИ — ТО, мал в силу его простоты. Однако база знаний, описывающая реальную, даже не очень сложную задачу, должна содержать сотни и тысячи правил [4].

Одной из первых была система DENDRAL, созданная для формирования заключения о структурах химических соединений на основании масс-спектрометрии. Не менее известными экспертными системами, основанными на описанной модели, являются: MYCIN — система для диагностирования бактериальных инфекций; INTERNIST (позже — CADUCEUS) — система-консультант в области общей терапии.

Эффективность этих ИС объясняется довольно просто. Продукционная модель накладывает ряд ограничений на решаемую задачу, объем знаний и некоторые другие параметры ИС. Создатели первых подобных систем строили их в рамках этих ограничений и получили эффективные и удобные решения. Каждая из перечисленных ИС охватывает узкую и сравнительно хорошо определенную предметную область. Разработанные системы настолько понравились пользователям, что были предприняты попытки применения данного подхода к другим областям знаний с аналогичными свойствами. Из системы MYCIN извлечена проблемно-независимая часть в форме «пустой» системы MYCIN, названной EMYCIN. Последняя использована, например, при создании систем PUFF (обеспечение активной медицинской помощи при респираторных заболеваниях), SACOM (расчеты механических структур), CLOT (измерение состава крови) и т.д.

Модель представления знаний с помощью логики предикатов использует в своей основе математический аппарат одного из разделов математической логики, называемый символьной логикой [5]. Основными формализмами представления предикатов являются «терм», устанавливающий соответствие знаковых символов описываемому объекту, и предикат для описания отношения сущностей в виде реляционной формулы, содержащей в себе термы. Когда говорится «предикат», то обычно имеется в виду, что в него входит терм-переменная. Например, таким предикатом является ОТЕЦ (X,Y). Пусть «Иван», «Василий» — это термы. Когда же между ними имеется отношение «отец» и «ребенок», то это отношение описывается как ОТЕЦ (ИВАН, ВАСИЛИЙ).

Предикат, все термы которого являются термами-константами, называется высказыванием.

По уровню абстрактности элемента знаний эта модель, как и предыдущая, работает с простейшими составляющими знания — фактами и правилами. Модель универсальна, однако, также, как и модель представления знаний с помощью фактов и правил, не может быть использована для создания ИС, которые должны одновременно манипулировать специальными знаниями из разных предметных областей.

Способности модели к обучению находятся на среднем уровне. С помощью логики предикатов можно, определяя произвольным образом знания, выяснить, имеются или отсутствуют противоречия между новыми и уже существующими знаниями. Объем памяти, необходимый для хранения элемента знаний — предиката или предикатной формулы, мал в силу его простоты. Однако, база знаний, описывающая реальную, даже не очень сложную предметную область, должна содержать значительное количество указанных элементов.

Модель привлекает разработчиков высокой модульностью, легкостью внесения в систему дополнений и изменений, простотой механизма логического вывода и часто применяется в промышленных ИС.

Одна из первых эффективных ИС была создана Хаммондом и Серготом. В этой системе устройство Query-the-User комбинируется с оболочкой экспертных систем (APES), предусмотрены также средства для структурирования запросов на естественном языке. Система реализована на микро-Прологе, а очень гибкий инструмент, называемый APE-the-User, предназначен для построения экспертных систем. Она с успехом использована для создания юридических экспертных систем.

Начало современным моделям представления знаний с помощью сетей нейронов положено в работе Маккаллока и Питтса [6], где авторы сделали первую попытку эмулировать человеческие способности классифицировать и распознавать образы. В их формализме нейроны имеют состояния <0, 1>и пороговую логику перехода из состояния в состояние. Каждый нейрон определяет взвешенную сумму состояний остальных нейронов и сравнивает ее с порогом, чтобы определить свое собственное состояние. Дальнейшее развитие этого направления связано с тем, что Розенблат ввел в модель нейрона способность связей к модификации, что сделало ее обучаемой. Эта модель названа персептроном [7].

Читайте также:  Древнее двуречье таблица сравнения с древнем египтом

Новый виток быстрого развития моделей нейронных сетей, который начался 9-10 лет тому назад, связан с работами Карпентера и Гроссберга [8], и, в особенности, Хопфилда [9], а также под влиянием многообещающих успехов оптических технологий и зрелой фазы развития СБИС для реализации новых архитектур.

В основу искусственных нейронных сетей положены следующие черты живых нейронных сетей, позволяющие им хорошо справляться с нерегулярными задачами: простой обрабатывающий элемент — нейрон; очень большое число нейронов участвует в обработке информации; один нейрон связан с большим числом других нейронов; изменяющиеся по весу связи между нейронами; массированная параллельность обработки информации.

По структуре связей сети делятся на два больших класса: однослойные и многослойные. Подходы к обучению однослойных и многослойных сетей различны. В однослойных часто удается выразить веса связей через параметры задачи (так обстоит дело с моделью Хопфилда и однослойной машиной Больцмана). Обучение многослойных сетей состоит в том, что на основе набора примеров <входное состояние ® выходное состояние>итеративно подбираются веса всех связей так, чтобы каждое входное состояние вызывало соответствующее выходное.

Итак, в рамках данного подхода элементом знания является состояние сети — вектор состояний всех нейронов сети, что можно считать средним уровнем абстрактности представления знаний. Для решения конкретной задачи необходимо организовывать сети со значительным числом нейронов. Небольшой объем памяти, необходимый для хранения нейрона, позволяет эффективно пользоваться такими сетями.

Основными преимуществами нейросетей является их высокая адаптивность, а также их способность к обработке зашумленной и неполной информации. Однако переобучение или дообучение сети затрагивает только значения весовых коэффициентов на межнейронных соединениях. Создание же алгоритма обучения так же, как и проектирование структуры сети, являются творческими задачами, выполняемыми специалистами высокой квалификации для конкретных задач. Еще один недостаток нейронных сетей — ненаглядность представления знания: образы, запомненные сетью при обучении, закодированы в виде состояний всех нейронов, а процесс принятия решения не может быть представлен в виде наглядных конструкций ЕСЛИ — ТО.

Модель может применяться для решения задач распознавания образов практически в любой предметной области, например, при решении задач прогнозирования сложных процессов. Так, по заказу Chemical Bank фирма Logica (США) разработала и внедрила систему для прогнозирования динамики биржевых курсов. Был достигнут высокий процент достоверности прогноза — около 60 %. Mellon equity Associates — подразделение Mellon Bank в Питсбурге внедрила у себя систему Neural-Works Professional II /Plus 5.0 фирмы Neural-Ware. Основные решаемые задачи: распределение фондов и специальная селекция акций.

Нейронные сети могут быть реализованы как программно, так и аппаратно. В настоящий момент на компьютерном рынке предлагается широкий спектр аппаратных средств, обладающих различными функциями, возможностями и, естественно, ценой [10]. Среди нейроБИС, которых насчитывается несколько десятков типов, выделяются модели фирмы Adaptive Solutions (США) и Hitachi (Япония).

Большинство сегодняшних нейрокомпьютеров представляют собой просто персональный компьютер или рабочую станцию, в состав которых входит дополнительная нейроплата. К их числу относятся, например, компьютеры серии FMR фирмы Fujitsu. Однако наибольший интерес представляют специализированные нейрокомпьютеры, непосредственно реализующие принципы нейронных сетей. Типичными представителями таких систем являются компьютеры семейства Mark фирмы TRW (первая реализация персептрона, разработанная Розенблатом, называлась Mark I). Другой интересной моделью является нейрокомпьютер NETSIM, созданный фирмой Texas Instruments на базе разработок Кембриджского университета. Его топология представляет собой трехмерную решетку стандартных вычислительных узлов на базе процессоров 80188.

Модель представления знаний с помощью семантических сетей состоит из вершин, называемых узлами, соответствующих объектам, концепциям или событиям, и связывающих их дуг, описывающих отношения между рассматриваемыми объектами [11]. Дуги могут быть определены разными методами. Обычно для представления иерархии используются дуги типа IS-A (отношение «является») и HAS-PART (отношение «имеет часть»). Они также устанавливают иерархию наследования в сети, т.е. элементы более низкого уровня в сети могут наследовать свойства элементов более высокого уровня, что экономит память, поскольку информацию о наследуемых свойствах не нужно повторять в каждом узле сети.

Выводы на семантических сетях реализуются через отношения между элементами, однако, они таят в себе угрозу возникновения противоречий.

Модель универсальна и легко настраивается. Характерная особенность семантической сети — наглядность знаний как системы.

Семантические сети применены в системе CASNET (Caysal Associational NETwork). Целью разработки были исследования стратегий медицинской диагностики, в основу которых положены психологические и функциональные модели болезней. На основе семантических сетей также разработана известная система PROSPECTOR, предназначенная для оказания помощи геологам-изыскателям и способная давать три типа «советов»: оценку местности на предмет существования определенных залежей, оценку геологических ресурсов региона и выбор участков местности, наиболее благоприятных для бурения. Программа создана компанией SRI International (совместно с консультантами по геологии) и организацией U.S. Geological Survey.

Серьезным недостатком систем CASNET и PROSPECTOR является их неудовлетворительная способность объяснить свои решения.

Модель представления знаний с помощью фреймов предложена Марвином Минским, который описывает их следующим образом [12]: «Фрейм — это структура данных, представляющая стереотипную ситуацию, вроде нахождения внутри некоторого рода жилой комнаты или сбора на вечеринку по поводу рождения ребенка. Каждому фрейму присоединяются несколько видов информации. Часть этой информации — о том, как использовать фрейм. Часть о том, чего можно ожидать далее. Часть о том, что следует делать, если эти ожидания не подтвердятся».

Фреймовая модель по своей организации во многом похожа на семантическую сеть. Она является сетью узлов и отношений, организованных иерархически: верхние узлы представляют общие понятия, а подчиненные им узлы — частные случаи этих понятий. В системе, основанной на фреймах, понятие в каждом узле определяется набором атрибутов-слотов (например, имя, цвет, размер) и значениями этих атрибутов (например, «Запорожец», красный, маленький). Каждый слот может быть связан со специальными процедурами, которые выполняются, когда информация в слотах (значения атрибутов) меняется. С каждым слотом можно связать любое число процедур.

Описание некоторой предметной области в виде фреймов обладает высоким уровнем абстрактности. Фреймовая система не только описывает знания, но и позволяет человеку описывать метазнания, т.е. правила и процедуры обработки знаний, выбора стратегий, приобретения и формирования новых знаний. Модель является универсальной, поскольку существуют не только фреймы для обозначения объектов и понятий, но и фреймы-роли (отец, начальник, пешеход), фреймы-ситуации (тревога, рабочий режим устройства) и др.

Обучение фреймовых систем затруднено. Приобретение новых знаний возможно только в системах со сложной структурой фреймов. Создание таких систем требует серьезных затрат времени и средств, но они позволяют формировать новые знания на уровне понятий. При этом проблема устранения противоречивых знаний должна решаться самой системой. Для хранения элемента модели требуются значительные объемы памяти, определяемые сложностью конкретного фрейма.

Одной из наиболее известных ИС, построенных на основе фреймов, является система MOLGEN, предназначенная для планирования экспериментов в области молекулярной генетики. Необходимо отметить, что речь идет о планировании, а не о решении аналитических задач, т.е. невозможно полностью описать цель задачи перед началом ее решения. При такой постановке вопроса редуцировать пространство поиска с помощью простых методов не представляется возможным.

В настоящее время концепция фреймов быстро развивается и расширяется, благодаря развитию методов объектно-ориентированного программирования [13]. Практически во всех современных языках программирования появились специальные структурно-функциональные единицы (объекты, классы), обладающие основными признаками фреймов.

Итак, сделаем некоторые выводы. Каждая из известных моделей представления знаний обладает как минимум тремя недостатками из приведенного списка: недостаточный универсализм, сложность получения новых знаний, возможность получения противоречивых знаний; сложность наращивания модели, значительная размерность модели, отсутствие наглядности в представлении знаний.

Именно поэтому в последнее время значительное внимание в инженерии знаний уделяется сочетанию разных моделей. Все больше создается ИС, основанных на таких, казалось бы, несовместимых подходах, как нейронные сети и фреймы, семантические сети и логика предикатов и т.п. Учитывая все сказанное, можно сделать вывод о высокой актуальности исследований в этой области, а также о необходимости разработки новых подходов в изучении моделей представления знаний в интеллектуальных системах.

Читайте также:  По сравнению со специальной теории относительности

Источник

Модели представления знаний

физико-математические науки

  • Бочкова Елена Геннадиевна , студент
  • Васильев Сергей Станиславович , студент
  • Уфимский государственный авиационный технический университет
  • СЕТЕВАЯ МОДЕЛЬ ЗНАНИЙ
  • ЛОГИЧЕСКАЯ МОДЕЛЬ ЗНАНИЙ
  • ПРОДУКЦИОННАЯ МОДЕЛЬ ЗНАНИЙ
  • СВЯЗНОСТЬ
  • СТРУКТУРИРОВАННОСТЬ
  • ИНТЕРПЕТИРУЕМОСТЬ
  • ИНФОРМАЦИЯ
  • ЗНАНИЯ
  • ФРЕЙМОВАЯ МОДЕЛЬ ЗНАНИЙ

Похожие материалы

Информация, с которой имеют дело ЭВМ, разделяется на процедурную и декларативную. Процедурная информация овеществлена в программах, которые выполняются в процессе решения задач, декларативная – в данных с которыми эти программы работают. Стандартной формой представления информации в ЭВМ является машинное слово, состоящее из определенного для данного типа ЭВМ числа двоичных разрядов – битов. Однако в ряде случаев машинные слова разбиваются на группы по восемь двоичных разрядов которые называются байтами.

Параллельно с развитием структуры ЭВМ происходило развитие информационных структур для представления данных. Появились способы описания данных в виде векторов и матриц, возникли списочные структуры, иерархические структуры. В настоящее время в языках программирования высокого уровня используются абстрактные типы данных, структура которых задается программистом. Появление баз данных (БД) знаменовало собой еще один шаг на пути организации работы с декларативной информацией. В базах данных могут одновременно хранится большие обьемы информации, а специальные средства образующие систему управления базами данных (СУБД), позволяют эффективно манипулировать с данными, по необходимости извлекать их из базы данных и записывать их в нужном порядке в базу.

По мере развития исследований в области ИС возникла концепция знаний, которая объединила в себе многие черты процедурной и декларативной информации.

Итак, что же такое представление информации? В рамках этого направления решаются задачи, связанные с формализацией и представлением знаний в памяти интеллектуальной системы (ИС). Для этого разрабатываются специальные модели представления знаний, выделяются различные типы знаний. Изучаются источники, из которых ИС может черпать знания, и создаются процедуры и приемы с помощью которых возможно приобретение знаний для ИС. Проблема представления знаний для ИС чрезвычайно актуальна, так как ИС — это система, функционирование которой опирается на знания о предметной области, которые хранятся в её памяти.

Представление знаний – это одно из направлений в исследованиях по искусственному интеллекту. Другие направления это – манипулирование знаниями, общение, восприятие, обучение и поведение.

Особенности знаний

Существует ряд особенностей, присущих различным формам представления знаний в ЭВМ.

Внутренняя интерпретируемость

Каждая информационная единица должна иметь уникальное имя, по которому ИС находит её, а также отвечает на запросы, в которых это имя упомянуто. Когда данные, хранящиеся в памяти, были лишены имен, то отсутствовала возможность их идентификации системой. Данные могла идентифицировать лишь программа, извлекающая их из памяти по указанию программиста, написавшего программу. Что скрывается за тем или иным двоичным кодом машинного слова, системе было неизвестно.

Структурированность

Информационные единицы должны были обладать гибкой структурой. Для них должен выполняться “принцип матрешки”, т.е. рекурсивная вложенность одних информационных единиц в другие. Каждая информационная единица может быть включена в состав любой другой, и из каждой единицы можно выделить некоторые её составляющие. Другими словами должна существовать возможность произвольного установления между отдельными информационными единицами отношений типа “часть – целое”,” род – вид” или “элемент – класс”.

Связность

В информационной базе между информационными единицами должна быть предусмотрена возможность установления связей различного типа. Прежде всего эти связи могут характеризовать отношения между информационными единицами. Например: две или более информационные единицы могут быть связаны отношением «одновременно», две информационные единицы — отношением «причина – следствие» или отношением «быть рядом». Приведенные отношения характеризуют декларативные знания. Если между двумя информационными единицами установлено отношение «аргумент – функция», то он характеризует процедурное знание, связанное с вычислением определенных функций. Существуют — отношения структуризации, функциональные отношения, каузальные отношения и семантические отношения. С помощью первых задаются иерархии информационных единиц, вторые несут процедурную информацию, позволяющие вычислять (находить) одни информационные единицы через другие, третьи задают причинно следственные связи, четвертые соответствуют всем остальным отношениям.

Перечисленные три особенности знаний позволяют ввести общую модель представления знаний, которую можно назвать семантической сетью, представляющей собой иерархическую сеть в вершинах которой находятся информационные единицы.

Семантическая метрика

На множестве информационных единиц в некоторых случаях полезно задавать отношение, характеризующее информационную близость информационных единиц, т.е. силу ассоциативной связи между информационными единицами. Его можно было бы назвать отношением релевантности для информационных единиц. Такое отношение дает возможность выделять в информационной базе некоторые типовые ситуации (например «покупка», «регулирование движения»). Отношение релевантности при работе с информационными единицами позволяет находить знания близкие к уже найденным.

Активность

С момента появления ЭВМ и разделения используемых в ней информационных единиц на данные и команды создалась ситуация, при которой данные пассивны, а команды активны. Все процессы, протекающие в ЭВМ, инициируются командами, а данные используются этими командами лишь в случае необходимости. Для ИС эта ситуация неприемлема. Как и у человека, в ИС актуализации тех или иных действий способствуют знания, имеющиеся в системе. Таким образом, выполнение программ в ИС должно инициироваться текущим состоянием информационной базы. Появление в базе фактов или описание событий, установление связей может стать источником активности системы.

Перечисленные пять особенностей информационных единиц определяют ту грань, за которой данные превращаются в знания, а базы данных перерастают в базы знаний (БЗ). Совокупность средств, обеспечивающих работу со знаниями, образуют систему управления базой знаний (СУБЗ). В настоящее время не существует баз знаний, в которых в полной мере были бы реализованы перечисленные выше особенности [1].

Модели представления знаний

Во многих случаях для принятия решений в той или иной области человеческой деятельности неизвестен алгоритм решения, т.е. отсутствует четкая последовательность действий, заведомо приводящих к необходимому результату. Например:

  • проектирование развития тяжелой промышленности;
  • оптимальное размещение персонала внутри здания;
  • лечение больного человека.

При принятии решения в таких случаях необходимо иметь некоторую сумму знаний о самой этой области. Например: при выборе наилучшего хода в конкретной шахматной позиции необходимы знания о правилах игры, силе шахматных фигур, стратегии и тактике и многое другое. Под знаниями понимается то, что стало известно после изучения. Совокупность знаний, нужных для принятия решений, принято называть предметной областью или знаниями о предметной области.

В любой предметной области есть свои понятия и связи между ними, своя терминология, свои законы, связывающие между собой объекты данных предметной области, свои процессы и события. Кроме того, каждая предметная область имеет свои методы решения задач.

Решая задачи такого вида на ЭВМ используют ИС, ядром которых являются базы знаний, содержащие основные характеристики предметных областей [2].

При построении баз знаний традиционные языки, основанные на численном представлении данных, являются неэффективными. Для этого используются специальные языки представления знаний, основанные на символьном представлении данных. Они делятся на типы по формальным моделям представления знаний. Различные авторы по-разному эти модели классифицируют. Основные модели знаний представлены на рисунке 1.

Рисунок 1. Основные модели знаний

Продукционная модель знаний

Продукционные модели можно считать наиболее распространенными моделями представления знаний. Продукционная модель – это модель, основанная на правилах, позволяющая представить знание в виде предложений типа:

«ЕСЛИ условие, ТО действие»

Продукционная модель обладает тем недостатком, что при накоплении достаточно большого числа (порядка нескольких сотен) продукций они начинают противоречить друг другу.

Системы обработки знаний, использующие продукционную модель получили название «продукционных систем». В состав экспертных систем продукционного типа входят база правил (знаний), рабочая память и интерпретатор правил (решатель), реализующий определенный механизм логического вывода. Любое продукционное правило, содержащееся в базе знаний, состоит из двух частей: антецендента и консеквента. Антецедент представляет собой посылку правила (условную часть) и состоит из элементарных предложений, соединенных логическими связками «и», «или». Консеквент (заключение) включает одно или несколько предложений, которые выражают либо некоторый факт, либо указание на определенное действие, подлежащее исполнению. Продукционные правила принято записывать в виде антецедент-консеквент.

Примеры продукционных правил:

ЕСЛИ «двигатель не заводится» И «стартер двигателя не работает»

Читайте также:  Кайрон или трейлблейзер сравнить

ТО «неполадки в системе электропитания стартера»

Основные достоинства систем, основанных на продукционных моделях:

  • простота представления знаний и организации логического вывода.

К недостаткам таких систем можно отнести следующее:

  • отличие от структур знаний, свойственных человеку;
  • неясность взаимных отношений правил;
  • сложность оценки целостного образа знаний;
  • низкая эффективность обработки знаний.

При разработке небольших систем (десятки правил) проявляются в основном положительные стороны продукционных моделей знаний, однако при увеличении объёма знаний более заметными становятся слабые стороны.

Логическая модель знаний

Основная идея при построении логических моделей знаний заключается в следующем – вся информация, необходимая для решения прикладных задач, рассматривается как совокупность фактов и утверждений, которые представляются как формулы в некоторой логике. Знания отображаются совокупностью таких формул, а получение новых знаний сводится к реализации процедур логического вывода.

Основные достоинства логических моделей знаний:

  • в качестве «фундамента» здесь используется классический аппарат математической логики, методы которой достаточно хорошо изучены и формально обоснованы;
  • существуют достаточно эффективные процедуры вывода, в том числе реализованные в языке логического программирования «Пролог»;
  • в базах знаний можно хранить лишь множество аксиом, а все остальные знания получать из них по правилам вывода.

В логических моделях знаний слова, описывающие сущности предметной области, называются термами (константы, переменные, функции), а слова, описывающие отношения сущностей – предикатами.

Предикат – логическая N-арная пропозициональная функция, определенная для предметной области и принимающая значения либо истинности, либо ложности. Пропозициональной называется функция, которая ставит в соответствие объектам из области определения одно из истинностных значений («истина», «ложь»). Предикат принимает значения «истина» или «ложь» в зависимости от значений входящих в него термов [3].

Способ описания предметной области, используемый в логических моделях знаний, приводит к потере некоторых нюансов, свойственных естественному восприятию человека, и поэтому снижает описательную возможность таких моделей.

Сложности возникают при описании «многосортных» миров, когда объекты не являются однородными. Так, высказывания:

«Москва – столица России»

имеют одно и то же значение «истина», но разный смысл. С целью преодоления сложностей и расширения описательных возможностей логических моделей знаний разрабатываются псевдофизические логики, т.е. логики, оперирующие с нечеткостями, обеспечивающие индуктивные (от частного к общему), дедуктивные (от общего к частному) и традуктивные (на одном уровне общности) выводы. Такие расширенные модели, объединяющие возможности логического и лингвистического подходов, принято называть логико-лингвистическими моделями предметной области.

Сетевая модель знаний

Однозначное определение семантической сети (сетевой модели знаний) в настоящее время отсутствует. В инженерии знаний под ней подразумевается граф, отображающий смысл целостного образа. Узлы графа соответствуют понятиям и объектам, а дуги – отношениям между объектами.

Семантическая сеть как модель наиболее часто используется для представления декларативных знаний. С помощью этой модели реализуются такие свойства системы знаний, как интерпретируемость и связность. За счет этих свойств семантическая сеть позволяет снизить объем хранимых данных, обеспечивает вывод умозаключений по ассоциативным связям.

Одной из первых известных моделей, основанных на семантической сети, является TLC-модель (Teachaple Languge Comprehender – доступный механизм понимания языка), разработанная в 1968 году. Модель использовалась для представления семантических отношений между концептами (словами) с целью описания структуры долговременной памяти человека в психологии.

Как правило, различают экстенсиональные и интенсиональные семантические сети. Экстенсиональная семантическая сеть описывает конкретные отношения данной ситуации. Интенсиональная – имена классов объектов, а не индивидуальные имена объектов. Связи в интенсиональной сети отражают те отношения, которые всегда присущи объектам данного класса.

Фреймовая модель знаний

Фреймовая модель основана на концепции Марвина Мински (Marvin Minsky) – профессора Массачусетского технологического института, основателя лаборатории искусственного интеллекта, автора ряда фундаментальных работ. Фреймовая модель представляет собой систематизированную психологическую модель памяти человека и его сознания.

Фрейм – это минимально возможное описание сущности какого-либо события, ситуации, процесса или объекта. Существует и другое понимание фрейма – это ассоциативный список атрибутов. Понятие «минимально возможное» означает, что при дальнейшем упрощении описания теряется его полнота, и оно перестает определять ту единицу знаний, для которой было предназначено. Представление знаний с помощью фреймов понимается как один из способов представления знаний о ситуациях. Фрейм имеет имя (название) и состоит из слотов.

Слоты – это незаполненные (нулевые) позиции фрейма. Если у фрейма все слоты заполнены – это описание конкретной ситуации. В переводе с английского слово «фрейм» означает «рамка», а слово «слот» – «щель». В отличие от моделей других типов во фреймовых моделях фиксируется жесткая структура информационных единиц, которая называется протофреймом. В общем виде структура информационных единиц выглядит следующим образом:

имя слота1 (значение слота1);
имя слота2 (значение слота2);
. . . . . . . . . . . . . . . . . . . . . . . . . .
имя слотаК (значение слотаК)).

Значением слота может быть практически что угодно (числа, математические соотношения, тексты на естественном языке или на языке программ, ссылки на другие слоты данного фрейма). Значением слота может выступать и отдельный фрейм, что является очень удобным для упорядочивания знаний по степени общности. Исключение из фрейма любого слота делает его неполным, а иногда и бессмысленным.

При конкретизации фрейма ему и слотам приписываются конкретные имена и происходит заполнение слотов. Таким образом из протофреймов получаются фреймы – экземпляры. Переход от исходного протофрейма к фрейму – экземпляру может быть многошаговым, за счет постепенного уточнения значений слотов [4].

Рассмотрим некоторый протофрейм:

Фамилия (значение слота1);
Год рождения (значение слота2);
Специальность (значение слота3);
Стаж (значение слота4)).

Если в качестве значений слотов использовать конкретные данные, то получим фрейм – экземпляр:

Фамилия (Попов – Сидоров – Иванов – Петров);
Год рождения (1965 – 1975 – 1980 – 1978);
Специальность (директор – бухгалтер – техник – курьер);
Стаж (15 – 7 – 3 – 4)).

Связи между фреймами задаются значениями специального слота с именем «связь».

Фреймы подразделяются на:

  • фрейм-экземпляр – конкретная реализация фрейма, описывающая текущее состояние в предметной области;
  • фрейм-образец – шаблон для описания объектов или допустимых ситуаций предметной области;
  • фрейм-класс – фрейм верхнего уровня для представления совокупности фреймов образцов.

Заключение

Модели представления знаний – это одно из важнейших направлений исследований в области искусственного интеллекта. Без знаний искусственный интеллект не может существовать. Действительно, представьте себе человека, который абсолютно ничего не знает. Например, он не знает даже таких элементарных вещей как:

  • для того, чтобы не было обезвоживания, необходимо периодически пить;

Таких примеров удастся привести еще много, но уже сейчас можно легко ответить на следующий вопрос: «Поведение такого человека может считаться разумным?». Конечно же, нет. Именно поэтому, при создании систем искусственного интеллекта особенное внимание уделяется моделям представления знаний.

На сегодняшний день разработано уже достаточное количество моделей. Каждая из них обладает своими плюсами и минусами, и поэтому для каждой конкретной задачи необходимо выбрать именно свою модель. От этого будет зависит не столько эффективность выполнения поставленной задачи, сколько возможность ее решения вообще.

Список литературы

  1. Комарцова Л.Г., Максимов А.В. Нейрокомпьютеры: учебное пособие для вузов. – 2-е изд., перераб. И доп. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. – С. 210-213.
  2. Хайкин С. Нейронные сети: полный курс, 2-е издание, исправленное.: Пер. с англ. – М.: ООО «И.Д. Вильямс», 2006. – 1104 с.: ил. – Парал. тит. англ. – С. 6 –22.
  3. Осовский С. Нейронные сети для обработки информации / Пер. с польского И.Д. Рудинского. – М.: Финансы и статистика, 2002. – 344 с.
  4. Тарков М.С. Нейрокомпьютерные системы: Учебное пособие / М.С. Тарков. – М.: Интернет-Университет Информационных Технологий; БИНОМ. Лаборатория знаний, 2006. – 142 с.
  5. Круглов В.В., Борисов В.В. Искусственные нейронные сети. Теория и практика. – 2-е изд., стереотип. – М.: Горячая линия-Телеком, 2002–322 с.

Завершение формирования электронного архива по направлению «Науки о Земле и энергетика»

Создание электронного архива по направлению «Науки о Земле и энергетика»

Электронное периодическое издание зарегистрировано в Федеральной службе по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), свидетельство о регистрации СМИ — ЭЛ № ФС77-41429 от 23.07.2010 г.

Соучредители СМИ: Долганов А.А., Майоров Е.В.

Источник