Меню

Сравнение с величиной принимающейся за единицу



pavelvog.ru

Из курса математики нам известны действия, которые можно производить над числами. Складывать, вычитать и сравнивать в математике можно любые числа. Такие действия над физическими величинами можно производить только в том случае, если они однородны, т. е. представляют одну и ту же физическую величину.

4 м + 3 м = 7 м;
9 кг — 5 кг = 4 кг;
30 с > 10 с.

Во всех трех случаях мы производили действия над однородными физическими величинами. Складывали длину с длиной, вычитали из массы массу, сравнивали промежуток времени с промежутком времени. Смешно и нелепо было бы складывать 4 м и 5 кг или вычитать 30 с из 9 кг!

А вот умножать и делить можно не только однородные, но и разные физические величины. Например:

  1. 10 кг ÷2 кг = 5. Здесь делятся не только числовые значения (10 ÷ 2 = 5), но и единицы физических величин (кг ÷ кг = 1). Результат показывает, во сколько раз одна физическая величина (масса) больше другой.
  2. 2 м. 4 м = 8 м 2 . Умножаются числовые значения (2 . 4 = 8) и единицы физических величин (м. м = м 2). В результате умножения двух физических величин — длин l 1 = 2 м и l 2 = 4 м — получилась новая физическая величина — площадь S = 8 м 2 .
  3. 10 м ÷ 2 с = 5 м/с. В результате деления двух разных физических величин — длины l = 10 м на промежуток времени t = 2 с, получилась новая физическая величина 5 м/c. Ее числовое значение равно 5, а единица новой физической величины — м/c. Эта физическая величина v = 5 м/c — скорость.
  4. 10 м ÷ 2 с = 20 м ÷ 4 с. Знак равенства относится не только к числовым значениям, но и к единицам. Знак равенства поставить нельзя, если сравнить 10 м ÷ 2 с и 20 м ÷ 4 мин. Здесь м/с ≠ м/мин.

Подумайте и ответьте

  1. Что необходимо учитывать при сложении и вычитании физических величин? Каким будет результат их сложения и вычитания?
  2. Какие физические величины можно сравнивать между собой? Приведите примеры.
  3. Можно ли делить и умножать разные физические величины? Что получится в результате?
  4. Определите, значение какой физической величины получится в результате:
    1. 40 с — 10 с;
    2. 40 c ÷ 10 c;
    3. 3 м. 4 м. 2 м;
    4. 120 км ÷ 2 ч.

Большие единицы времени — год и сутки — дала нам сама природа. Но час, минута и секунда появились благодаря человеку.

Принятое в настоящее время деление суток восходит к глубокой древности. В Вавилоне применялась не десятичная, а шестидесятеричная система счисления. Шестьдесят делится без остатка на 12, отсюда у вавилонян деление суток на 12 равных частей. В Древнем Египте было введено деление суток на 24 часа. Позже появились минуты и секунды. То, что в 1 часе 60 минут, а в 1 минуте 60 секунд, — также наследие шестидесятеричной системы Вавилона.

Определение единиц времени является очень важным. Основная единица времени — секунда — сначала была введена как 1/86400 доля суток, а затем из-за непостоянства суток — как определенная доля года. В настоящее время эталон секунды связан с частотой излучения атомов цезия.

Величина — одно из основных математических понятий, возникшее в древности и подвергшееся в процессе длительного развития ряду обобщений.

Первоначальное представление о величине связано с созданием чувственной основы, формированием представлений о размерах предметов: показать и назвать длину, ширину, высоту.

Под величиной понимаются особые свойства реальных объектов или явлений окружающего мира. Величина предмета — это его относительная характеристика, подчеркивающая протяженность отдельных частей и определяющая его место среди однородных.

Величины, характеризующиеся только числовым значением, называют скалярными (длина, масса, время, объем, площадь и др.). Кроме скалярных величин в математике рассматривают еще векторные величины, которые характеризуются не только числом, но и направлением (сила, ускорение, напряженность электрического поля и др.).

Скалярные величины могут быть однородными или разнородными. Однородные величины выражают одно и то же свойство объектов некоторого множества. Разнородные величины выражают различные свойства объектов (длина и площадь)

Свойства скалярных величин:

  • § любые две величины одного рода сравнимы либо они равны, либо одна из них меньше (больше) другой: 4т5ц …4т 50кг 4т5ц=4т500кг 4т500кг>4т50кг, т.к. 500кг>50кг, значит 4т5ц >4т 50кг;
  • § величины одного рода можно складывать, в результате получится величина того же рода:
    • 2км921м+17км387м 2км921м=2921м, 17км387м=17387м 17387м+2921м=20308м; значит
    • 2км921м+17км387м=20км308м
  • § величину можно умножать на действительное число, в результате получится величина того же рода:
    • 12м24см 9 12м24м=1224см, 1224см9=110м16см, значит
    • 12м24см 9=110м16см;
  • § величины одного рода можно вычитать, в результате получится величина того же рода:
    • 4кг283г-2кг605г 4кг283г=4283г, 2кг605г=2605г 4283г-2605г=1678г, значит
    • 4кг283г-2кг605г=1кг678г;
  • § величины одного рода можно делить, в результате получится действительное число:
    • 8ч25мин 5 8ч25мин=860мин+25мин=480мин+25мин=505мин, 505мин 5=101мин, 101мин=1ч41мин, значит 8ч25мин 5=1ч41мин .

Величина является свойством предмета, воспринимаемым разными анализаторами: зрительным, тактильным и двигательным. При этом чаще всего величина воспринимается одновременно несколькими анализаторами: зрительно-двигательным, тактильно-двигательным и т.д.

Восприятие величины зависит от:

  • § расстояния, с которого предмет воспринимается;
  • § величины предмета, с которым он сравнивается;
  • § расположения его в пространстве.

Основные свойства величины:

  • § Сравнимость — определение величины возможно только на основе сравнения (непосредственно или сопоставляя с неким образом).
  • § Относительность — характеристика величины относительна и зависит от выбранных для сравнения объектов один и тот же предмет может быть определен нами как больший или меньший в зависимости от того, с каким по размерам предметом он сравнивается. Например, зайчик меньше медведя, но больше мышки.
  • § Изменчивость — изменчивость величин характеризуется тем, что их можно складывать, вычитать, умножать на число.
  • § Измеряемость — измерение дает возможность характеризовать величину к сравнению чисел.

Размер физической величины – количественная определенность физической величины, присущая конкретному материальному объекту, системе, явлению или процессу .

Иногда возражают против широкого применения слова «размер», утверждая, что оно относится только к длине. Однако заметим, что каждое тело обладает определенной массой, вследствие чего тела можно различать по их массе, т.е. по размеру интересующей нас физической величи­ны (массы). Рассматривая предметы А иВ, можно, например, утверждать, что по длине или размеру длины они отличаются друг от друга (например,А > В). Более точная оценка может быть получена лишь после измерений длины этих предметов.

Читайте также:  Художественное определение предмета или явления аллегория эпитет сравнение

Часто в словосочетании «размер величины» слово «размер» опускают или за­меняют его на словосочетание «значение величины».

В машиностроении широко применяют термин «размер», подразумевая под ним значение физической величины — длины, свойственной какой-либо детали. Это значит, что для выражения одного понятия «значение физической величины» приме­няются два термина («размер» и «значение»), что не может способствовать упорядоче­нию терминологии. Строго говоря, необходимо уточнить понятие «размер» в маши­ностроении так, чтобы оно не противоречило понятию «размер физической величи­ны», принятому в метрологии. В ГОСТ 16263-70 дано четкое разъяснение по этому вопросу.

Количественная оценка конкретной физической величины, вы­раженная в виде некоторого числа единиц данной величины, на­зывается «значением физической величины».

Отвлеченное число, входящее в «значение» величины, называется числовым значением.

Между размером и значением величины есть принципиальная разница. Размер величины существует реально, независимо от то­го, знаем мы его или нет. Выразить размер величины можно при помощи любой из единиц данной величины, другими словами, при помощи числового значения.

Для числового значения характерно, что при применении дру­гой единицы оно изменяется, тогда как физический размер вели­чины остается неизменным.

Если обозначить измеряемую величину через x, единицу вели­чины — черезx 1 , а отношение их-через q 1 , то x = q 1 x 1  .

Размер величины xне зависит от выбора единицы, чего нель­зя сказать о числовом значении q , которое целиком определяется выбором единицы. Если для выражения размера величиныxвме­сто единицыx 1  применить единицуx 2  , то неизменившийся размерxбудет выражен другим значением:

x = q 2 x 2  , гдеn 2 n 1 .

Если в приведенных выражениях применять q= 1, то размеры единиц

x 1 = 1x 1 иx 2 = 1x 2 .

Размеры разных единиц одной и той же величины различны. Так, размер килограмма отличается от размера фунта; размер метра-от размера фута и т. п.

1.6. Размерность физических величин

Размерность физических величин- это соотношение между единицами величин, входящих в уравнение, свя­зывающее данную величину с другими величинами, через которые она выражается.

Размерность физической величины обозначается dimA (от лат. dimension –размерность ). Допустим, что физическая величинаА связана сX, Yуравнением A= F(Х, Y). Тогда величиныX, Y, А можно представить в виде

где А, X, Y — символы, обозначающие физическую вели­чину;а, х, y — числовые значения величин (безразмер­ные);[A]; [X]; [Y] — соответствующие единицы данных физических величин.

Размерности значений физических величин и их еди­ниц совпадают. Например:

Размерность — качественная характеристика физиче­ской величины, дающая представление о виде, природе величины, о соотношении ее с другими величинами, еди­ницы которых принимаются за основные.

С самых давних пор людей серьезно интересовал вопрос о том, как удобнее всего сравнить величины, выраженные в разных значениях. И дело здесь не только в природной любознательности. Человек древнейших земных цивилизаций придавал этому довольно непростому делу сугубо прикладное значение. Корректно измерить землю, определить вес продукта на рынке, рассчитать необходимое соотношение товаров при бартере, определить верную норму винограда при заготовке вина — вот лишь малая толика задач, которые часто всплывали в и без того нелёгкой жизни наших предков. Поэтому малообразованные и неграмотные люди при необходимости сравнить величины шли за советом к своим более опытным товарищам, а те нередко брали за такую услугу соответствующую мзду, и довольно неплохую, кстати.

Что можно сравнивать

В наше время этому занятию также отводится немалая роль в процессе изучения точных наук. Всем, конечно, известно, что сравнивать необходимо однородные величины, то есть яблоки — с яблоками, а свеклу — со свеклой. Никому и в голову не придет попробовать выразить градусы Цельсия в километрах или килограммы в децибелах, зато длину удава в попугаях мы знаем с самого детства (для тех, кто не помнит: в одном удаве — 38 попугаев). Хотя попугаи тоже бывают разные, и на самом деле длина удава будет различаться в зависимости от подвида попугая, но это уже детали, в которых мы и попробуем разобраться.

Размерности

Когда в задании указано: «Сравни значения величин», необходимо эти самые величины привести к одному знаменателю, то есть выразить в одних и тех же значениях для удобства сравнения. Понятное дело, что сравнить значение, выраженное в килограммах, со значением, выраженным в центнерах или в тоннах, для многих из нас не составит особого труда. Однако существуют однородные величины, выразить которые можно в разных размерностях и, более того, в разных системах измерения. Попробуйте, например, сравнить величины кинематической вязкости и определить, какая из жидкостей является более вязкой в сантистоксах и квадратных метрах в секунду. Не получается? И не получится. Для этого нужно оба значения отразить в одних и тех же величинах, а уже по числовому значению определить, какое из них превосходит соперника.

Система измерения

Для того чтобы понять, какие величины можно сравнивать, попытаемся вспомнить существующие системы измерения. Для оптимизации и ускорения расчетных процессов в 1875 году семнадцатью странами (в том числе Россией, США, Германией и др.) была подписана метрическая конвенция и определена метрическая система мер. Для разработки и закрепления эталонов метра и килограмма был основан Международный комитет мер и весов, а в Париже обустроено Международное бюро мер и весов. Эта система со временем эволюционировала в Международную систему единиц, СИ. В настоящее время эта система принята большинством стран в области технических расчетов, в том числе и теми странами, где традиционно в повседневной жизни используются национальные (например, США и Англия).

Читайте также:  Конспект урока образные сравнения

Однако параллельно с общепринятым стандартом эталонов развивалась и другая, менее удобная система СГС (сантиметр-грамм-секунда). Она была предложена в 1832 году немецким физиком Гауссом, а в 1874 году модернизирована Максвеллом и Томпсоном, в основном в области электродинамики. В 1889 году была предложена более удобная система МКС (метр-килограмм-секунда). Сравнение предметов по величине эталонных значений метра и килограмма для инженеров гораздо более удобно, нежели использование их производных (санти-, милли-, деци- и др.). Однако данная концепция также не нашла массовый отклик в сердцах тех, для кого она предназначалась. Во всём мире активно развивалась и использовалась поэтому расчеты в СГС проводили всё реже, а после 1960 года, с введением системы СИ, СГС и вовсе практически вышла из употребления. В настоящее время СГС реально применяют на практике лишь при расчетах в теоретической механике и астрофизике, и то из-за более простого вида записи законов электромагнетизма.

Пошаговая инструкция

Разберём подробно пример. Допустим, задача звучит так: «Сравните величины 25 т и 19570 кг. Какая из величин больше?» Что нужно сделать перво-наперво, это определить, в каких величинах у нас заданы значения. Итак, первая величина у нас задана в тоннах, а вторая — в килограммах. На втором шаге мы проверяем, не пытаются ли нас ввести в заблуждение составители задачи, пытаясь заставить сравнивать разнородные величины. Бывают и такие задания-ловушки, особенно в быстрых тестах, где на ответ к каждому вопросу дается 20-30 секунд. Как мы видим, значения однородны: и в килограммах, и в тоннах у нас измеряется масса и вес тела, поэтому вторая проверка пройдена с положительным результатом. Третий шаг, переводим килограммы в тонны или, наоборот, тонны — в килограммы для удобства сравнения. В первом варианте получается 25 и 19,57 тонн, а во втором: 25 000 и 19 570 килограмм. И вот теперь можно со спокойной душой сравнить величины этих значений. Как наглядно видно, первое значение (25 т) в обоих случаях больше, чем второе (19 570 кг).

Ловушки

Как уже упоминалось выше, современные тесты содержат очень много заданий-обманок. Это необязательно разобранные нами задачи, ловушкой может оказаться довольно безобидный с виду вопрос, особенно такой, где напрашивается вполне логичный ответ. Однако коварство, как правило, кроется в деталях или в маленьком нюансе, которые составители задания пытаются всячески замаскировать. Например, вместо уже знакомого вам по разобранным задачам с постановкой вопроса: «Сравни величины там, где это возможно» — составители теста могут просто попросить вас сравнить указанные величины, а сами величины выбрать поразительно похожие друг на друга. Например, кг*м/с 2 и м/с 2 . В первом случае это сила, действующая на объект (ньютоны), а во втором — ускорение тела, или м/с 2 и м/с, где вас просят сравнить ускорение со скоростью тела, то есть абсолютно разнородные величины.

Сложные сравнения

Однако очень часто в заданиях приводят два значения, выраженные не только в разных единицах измерения и в разных системах исчисления, но и отличные друг от друга по специфике физического смысла. Например, в постановке задачи сказано: «Сравни значения величин динамической и кинематической вязкостей и определи, какая жидкость более вязкая». При этом значения указаны в единицах СИ, то есть в м 2 /с, а динамической — в СГС, то есть в пуазах. Как поступить в этом случае?

Для решения таких задач можно воспользоваться представленной выше инструкцией с небольшим её дополнением. Определяемся, в какой из систем будем работать: пусть это будет общепринятая среди инженеров. Вторым шагом мы также проверяем, а не ловушка ли это? Но в данном примере тоже всё чисто. Мы сравниваем две жидкости по параметру внутреннего трения (вязкости), поэтому обе величины однородны. Третьим шагом переводим из пуазов в паскаль-секунду, то есть в общепринятые единицы системы СИ. Далее переводим кинематическую вязкость в динамическую, умножая её на соответствующее значение плотности жидкости (табличное значение), и сравниваем полученные результаты.

Вне системы

Существуют также внесистемные единицы измерения, то есть единицы, не вошедшие в СИ, но согласно результатам решений созыва Генеральных конференций по мерам и весам (ГКВМ), допустимые для совместного использования с СИ. Сравнивать такие величины между собой можно только при их приведении к общему виду в стандарте СИ. К внесистемным относятся такие единицы, как минута, час, сутки, литр, электрон-вольт, узел, гектар, бар, ангстрем и многие другие.

Величина — это то, что можно измерить. Такие понятия, как длина, площадь, объём, масса, время, скорость и т. д. называют величинами. Величина является результатом измерения , она определяется числом, выраженным в определённых единицах. Единицы, в которых измеряется величина, называют единицами измерения .

Для обозначения величины пишут число, а рядом название единицы, в которой она измерялась. Например, 5 см, 10 кг, 12 км, 5 мин. Каждая величина имеет бесчисленное множество значений, например длина может быть равна: 1 см, 2 см, 3 см и т. д.

Одна и та же величина может быть выражена в разных единицах, например килограмм, грамм и тонна — это единицы измерения веса. Одна и та же величина в разных единицах выражается разными числами. Например, 5 см = 50 мм (длина), 1 ч = 60 мин (время), 2 кг = 2000 г (вес).

Измерить какую-нибудь величину — значит узнать, сколько раз в ней содержится другая величина того же рода, принятая за единицу измерения.

Например, мы хотим узнать точную длину какой-нибудь комнаты. Значит нам нужно измерить эту длину при помощи другой длины, которая нам хорошо известна, например при помощи метра. Для этого откладываем метр по длине комнаты столько раз, сколько можно. Если он уложится по длине комнаты ровно 7 раз, то длина её равна 7 метрам.

Читайте также:  Результат сравнения разноименных показателей

В результате измерения величины получается или именованное число , например 12 метров, или несколько именованных чисел, например 5 метров 7 сантиметров, совокупность которых называется составным именованным числом .

В каждом государстве правительство установило определённые единицы измерения для различных величин. Точно рассчитанная единица измерения, принятая в качестве образца, называется эталоном или образцовой единицей . Сделаны образцовые единицы метра, килограмма, сантиметра и т. п., по которым изготавливают единицы для обиходного употребления. Единицы, вошедшие в употребление и утверждённые государством, называются мерами .

Меры называются однородными , если они служат для измерения величин одного рода. Так, грамм и килограмм — меры однородные, так как они служат для измерения веса.

Единицы измерения

Ниже представлены единицы измерения различных величин, которые часто встречаются в задачах по математике:

Меры веса/массы

  • 1 тонна = 10 центнеров
  • 1 центнер = 100 килограмм
  • 1 килограмм = 1000 грамм
  • 1 грамм = 1000 миллиграмм
  • 1 километр = 1000 метров
  • 1 метр = 10 дециметров
  • 1 дециметр = 10 сантиметров
  • 1 сантиметр = 10 миллиметров
  • 1 кв. километр = 100 гектарам
  • 1 гектар = 10000 кв. метрам
  • 1 кв. метр = 10000 кв. сантиметров
  • 1 кв. сантиметр = 100 кв. миллиметрам
  • 1 куб. метр = 1000 куб. дециметров
  • 1 куб. дециметр = 1000 куб. сантиметров
  • 1 куб. сантиметр = 1000 куб. миллиметров

Рассмотрим ещё такую величину как литр . Для измерения вместимости сосудов употребляется литр. Литр является объёмом, который равен одному кубическому дециметру (1 литр = 1 куб. дециметру).

Меры времени

  • 1 век (столетие) = 100 годам
  • 1 год = 12 месяцам
  • 1 месяц = 30 суткам
  • 1 неделя = 7 суткам
  • 1 сутки = 24 часам
  • 1 час = 60 минутам
  • 1 минута = 60 секундам
  • 1 секунда = 1000 миллисекундам

Кроме того, используют такие единицы измерения времени, как квартал и декада.

  • квартал — 3 месяца
  • декада — 10 суток

Месяц принимается за 30 дней, если не требуется определить число и название месяца. Январь, март, май, июль, август, октябрь и декабрь — 31 день. Февраль в простом году — 28 дней, февраль в високосном году — 29 дней. Апрель, июнь, сентябрь, ноябрь — 30 дней.

Год представляет собой (приблизительно) то время, в течении которого Земля совершает полный оборот вокруг Солнца. Принято считать каждые три последовательных года по 365 дней, а следующий за ними четвёртый — в 366 дней. Год, содержащий в себе 366 дней, называется високосным , а годы, содержащие по 365 дней — простыми . К четвёртому году добавляют один лишний день по следующей причине. Время обращения Земли вокруг Солнца содержит в себе не ровно 365 суток, а 365 суток и 6 часов (приблизительно). Таким образом, простой год короче истинного года на 6 часов, а 4 простых года короче 4 истинных годов на 24 часа, т. е. на одни сутки. Поэтому к каждому четвёртому году добавляют одни сутки (29 февраля).

Об остальных видах величин вы узнаете по мере дальнейшего изучения различных наук.

Сокращённые наименования мер

Сокращённые наименования мер принято записывать без точки:

  • Километр — км
  • Метр — м
  • Дециметр — дм
  • Сантиметр — см
  • Миллиметр — мм

Меры веса/массы

  • тонна — т
  • центнер — ц
  • килограмм — кг
  • грамм — г
  • миллиграмм — мг

Меры площади (квадратные меры)

  • кв. километр — км 2
  • гектар — га
  • кв. метр — м 2
  • кв. сантиметр — см 2
  • кв. миллиметр — мм 2
  • куб. метр — м 3
  • куб. дециметр — дм 3
  • куб. сантиметр — см 3
  • куб. миллиметр — мм 3

Меры времени

  • век — в
  • год — г
  • месяц — м или мес
  • неделя — н или нед
  • сутки — с или д (день)
  • час — ч
  • минута — м
  • секунда — с
  • миллисекунда — мс

Мера вместимости сосудов

Измерительные приборы

Для измерения различных величин используются специальные измерительные приборы. Одни из них очень просты и предназначены для простых измерений. К таким приборам можно отнести измерительную линейку, рулетку, измерительный цилиндр и др. Другие измерительные приборы более сложные. К таким приборам можно отнести секундомеры, термометры, электронные весы и др.

Измерительные приборы, как правило, имеют измерительную шкалу (или кратко шкалу). Это значит, что на приборе нанесены штриховые деления, и рядом с каждым штриховым делением написано соответствующее значение величины. Расстояние между двумя штрихами, возле которых написано значение величины, может быть дополнительно разделено ещё на несколько более малых делений, эти деления чаще всего не обозначены числами.

Определить, какому значению величины соответствует каждое самое малое деление, не трудно. Так, например, на рисунке ниже изображена измерительная линейка:

Цифрами 1, 2, 3, 4 и т. д. обозначены расстояния между штрихами, которые разделены на 10 одинаковых делений. Следовательно, каждое деление (расстояние между ближайшими штрихами) соответствует 1 мм. Эта величина называется ценой деления шкалы измерительного прибора.

Перед тем как приступить к измерению величины, следует определить цену деления шкалы используемого прибора.

Для того чтобы определить цену деления, необходимо:

  1. Найти два ближайших штриха шкалы, возле которых написаны значения величины.
  2. Вычесть из большего значения меньшее и полученное число разделить на число делений, находящихся между ними.

В качестве примера определим цену деления шкалы термометра, изображённого на рисунке слева.

Возьмём два штриха, около которых нанесены числовые значения измеряемой величины (температуры).

Например, штрихи с обозначениями 20 °С и 30 °С. Расстояние между этими штрихами разделено на 10 делений. Таким образом, цена каждого деления будет равна:

(30 °С — 20 °С) : 10 = 1 °С

Следовательно, термометр показывает 47 °С.

Измерять различные величины в повседневной жизни приходится постоянно каждому из нас. Например, чтобы прийти вовремя в школу или на работу, приходится измерять время, которое будет потрачено на дорогу. Метеорологи для предсказания погоды измеряют температуру, атмосферное давление, скорость ветра и т. д.

Источник