Меню

Сравнение теоретического с эмпирическим



Эмпирический и теоретический уровни научного познания. Относительность этих понятий

Для понимания взаимосвязи методов и форм научного познания необходимо выделить эмпирический и теоретический уровни. Более того, есть нужда в определении приёмов научного исследования и возможных способов организации полученного знания.

Эмпирический уровень научного познания

Эмпирический уровень научного познания – это научная практическая деятельность.

Эмпирический уровень научного познания связан с конкретными видами предметно-орудийной деятельности, именно это позволяет им обеспечивать накопление, фиксацию, группировку и обобщение исходного материала для выстраивания опосредованного, теоретического знания, иными словами наблюдения или эксперимента – в разных его формах, в том числе и моделирования, систематизированного описания полученных результатов, а также анализа и обобщения. Важно понимать, что анализ и обобщение позволяют исследователю наиболее близко подойти к теоретическому уровню научного познания.

Теоретический уровень научного познания

Теоретический уровень научного познания – это вид знания, который представлен различными видами и методами познавательной деятельности, способами организации знания, характеризующиеся определённой степенью опосредованности и обеспечению создания, построения и разработке научной теории, которая представлена логикой организованного знания об объективных законах и иных существенных – общих и необходимых – связях и отношениях в объективном мире.

Теоретический уровень научного познания включает в себя теоретические концепции, научные абстракции, идеализации и умственные модели. Более того, в него входят научные законы и их различные формулировки, научные идеи и гипотезы, различные методы оперирования с научными абстракциями и построением теорий, логических средств.

Отметим, что различие данных уровней носит весьма относительный характер: ни один вид эмпирической деятельности не представляется возможным без его теоретического осмысления и без сопутствующих понятий, гипотез и теорий. И наоборот, всякая теория, даже самого абстрактного вида, в любом случает опирается на практическое знание, эмпирические данные и основана на объективной реальности, опосредованная той же практикой, таким образом, обращена к эмпирическим данным.

Следует сказать, что всякое утверждение или положение может быть эмпирическим и теоретическим, это напрямую зависит от того, каким путём оно получено.

Допустим, на основании опытов Майкельсона-Морли, существует положение, что скорость света равна во всех движущихся относительно друг друга системах, более того, она не находится в прямой зависимости от их относительного движения. Таким образом, можно утверждать, что это знание приобретает очертания обобщения эмпирических данных и одновременно с указанными данными и способами их получения включается в эмпирический уровень.

Важно отметить, что такое же утверждение может играть роль одного из правил частной теории относительности. В таком случае оно представляет собой теоретическое знание, которое является следствием, из которого оно же и вытекает.

Противопоставление эмпирического и теоретического уровней познания носит относительный характер. Посредством её выражается глубокая внутренняя связь, которая существует в объективном мире между единичным и общим, явлением и сущностью. При этом важно понимать, что различение жизненно необходимо, поскольку любой исследователь принимает во внимание свой путь, по которому он движется в научном познании и какая у него конечная цель. Это помогает правильно выстроить последовательность всех действий и шагов на пути к получению знания. Именно глубина этого понимания становится ключевой в определении культуры исследовательского труда.

Различия понятий эмпирического и теоретического уровней познания

Зачастую наблюдается путаница в применении понятий эмпирического и теоретического уровней познания, а также чувственного и рационального. Чтобы разобраться в этом вопросе, необходимо чётко понимать границы каждого из терминов.

Процесс познания имеет множество граней и важно понимать, как соотносятся эмпирический и теоретических уровни с чувственным. По своей сути уровни соотносятся по нескольким критериям:

  • Область проявления.
  • Уровень осуществления процесса.
  • Характер протекания процессов.
  • Границы, рамки реализации.

По области проявления эмпирический и теоретический уровни принадлежат познавательной деятельности в сфере науки, а чувственное и рациональное мышление работает в любой форме отражения внешнего мира в сознании человека.

Говоря об уровне осуществления процесса, можно утверждать, что теоретический и эмпирический приобретают очертания научного познания, которое проявляется в общественной деятельности, которая подразумевает обмен идеями и результатами. А Рациональное и чувственное мышление происходит как индивидуальный познавательный процесс.

Характер протекания процессов на теоретическом и эмпирическом уровнях выглядит как отбор приёмов, способов и методов. Здесь имеются в виду эмпирические или теоретические, которые осуществляются учёными осознанно. Касательно рационального и чувственного познания можно утверждать, опираясь на данные физиологии высшей нервной деятельности и психологии, что они действуют как психофизиологический процесс в нервной системе и коре головного мозга.

Говоря о границах и рамках реализации, то важно отметить, что эмпирический уровень базируется на органах чувств, при этом не сводится к ним, а только состоит из наблюдения и орудийно-предметной деятельности. Подразумеваются инструменты и приборы, описание полученных данных, иными словами это мыслительная деятельность.

В теоретическом уровне, который невозможен без развитого логического мышления, имеет место применение специализированных методологических средств, которые служат его основой.

Чувственное познание определено как нечто, что базируется исключительно на органах чувств. А рациональное на логике и мышлении. Важно отметить, что не любая рациональная, умственная или иная подобная деятельность может носить теоретический характер.

Размышления шахматиста над решением шахматной задачи не стоит характеризовать как теоретический уровень.

Таким образом, становится понятно, как соотносятся уровни научного и чувственного познания.

Источник

Эмпирическое и теоретическое познание

Научное познание можно разделить на два уровня: теоретический и эмпирический. Первый основывается на умозаключениях, второй – на опытах и взаимодействии с исследуемым объектом. Несмотря на различную природу, эти методы обладают одинаково большим значением для развития науки.

Эмпирические исследования

В основе эмпирического познания лежит непосредственное практическое взаимодействие исследователя и изучаемого им объекта. Оно состоит из экспериментов и наблюдений. Эмпирическое и теоретическое познание противоположны – в случае с теоретическими исследованиями человек обходится лишь собственными представлениями о предмете. Как правило, такой способ является уделом гуманитарных наук.

Эмпирические же исследования не могут обойтись без приборов и приборных установок. Это средства, связанные с организацией наблюдений и экспериментов, но помимо них есть еще и понятийные средства. Их используют в качестве специального научного языка. Он обладает сложной организацией. Эмпирическое и теоретическое познание ориентированы на исследование явлений и возникающих между ними зависимостей. Проводя эксперименты, человек может выявить объективный закон. Этому также способствует изучение явлений и их корреляции.

Эмпирические методы познания

Согласно научному представлению эмпирическое и теоретическое познание состоит из нескольких методов. Это совокупность шагов, необходимых для решения определенной задачи (в данном случае речь идет о выявлении неизвестных прежде закономерностей). Первый эмпирический метод — это наблюдение. Оно представляет собой целенаправленное исследование предметов, которое в первую очередь опирается на различные органы чувств (восприятия, ощущения, представления).

Читайте также:  Сравнение тех характеристик автомобилей

На своем начальном этапе наблюдение дает представление о внешних характеристиках объекта познания. Однако конечная цель этого метода исследования заключается в определении более глубоких и внутренних свойств предмета. Распространенное заблуждение заключается в идее о том, что научное наблюдение представляет собой пассивное созерцание. Это далеко не так.

Наблюдение

Эмпирическое наблюдение отличается детальным характером. Оно может быть как непосредственным, так и опосредованным разными техническими устройствами и приборами (например, фотокамерой, телескопом, микроскопом и т. д.). По мере развития науки наблюдение становится все более комплексным и сложным. У этого метода есть несколько исключительных качеств: объективность, определенность и однозначность замысла. При использовании приборов дополнительную роль играет расшифровка их показаний.

В социальных и гуманитарных науках эмпирическое и теоретическое познание приживается неоднородно. Наблюдение в этих дисциплинах отличается особенной сложностью. Оно становится зависимым от личности исследователя, его принципов и жизненных установок, а также степени заинтересованности в предмете.

Наблюдение не может осуществляться без определенной концепции или идеи. Оно должно основываться на некой гипотезе и регистрировать определенные факты (при этом показательными будут только связанные между собой и репрезентативные факты).

Теоретические и эмпирические исследования отличаются друг от друга в деталях. Например, у наблюдения есть свои конкретные функции, которые не характерны для других методов познания. В первую очередь это обеспечение человека информацией, без которой невозможно дальнейшее исследование и выдвижение гипотез. Наблюдение – это топливо, на котором работает мышление. Без новых фактов и впечатлений не будет и новых знаний. Кроме того, именно с помощью наблюдения можно сопоставить и проверить истинность результатов предварительных теоретических исследований.

Эксперимент

Разные между собой теоретические и эмпирические методы познания отличаются еще и степенью своего вмешательства в изучаемый процесс. Человек может наблюдать за ним строго со стороны, а может проанализировать его свойства на собственном опыте. Эту функцию осуществляет один из эмпирических методов познания – эксперимент. По важности и вкладу в итоговый результат исследований он ничуть не уступает наблюдению.

Эксперимент — это не только целенаправленное и активное вмешательство человека в протекание исследуемого процесса, но и его изменение, а также воспроизведение в специально подготовленных условиях. Данный метод познания требует гораздо больше усилий, чем наблюдение. Во время эксперимента объект изучения изолируется от любого постороннего влияния. Создается чистая и незамутненная среда. Условия эксперимента полностью задаются и контролируются. Поэтому этот метод, с одной стороны, соответствует естественным законам природы, а с другой стороны, отличается искусственной, определенной человеком сущностью.

Структура эксперимента

Все теоретические и эмпирические методы имеют определенную идейную нагрузку. Не является исключением и эксперимент, который осуществляется в несколько стадий. В первую очередь происходят планирование и пошаговое построение (определяются цель, средства, тип и т. д.). Затем наступает этап осуществления эксперимента. При этом он происходит под совершенным контролем человека. По завершении активной фазы наступает очередь интерпретации результатов.

И эмпирическое, и теоретическое познание отличается определенной структурой. Для того чтобы состоялся эксперимент, требуются сами экспериментаторы, объект эксперимента, приборы и другое необходимое оборудование, методика и гипотеза, которая подтверждается или опровергается.

Приборы и установки

С каждым годом научные исследования становятся все сложнее. Им требуется все более современная техника, которая позволяет изучать то, что недоступно простым человеческим органам чувств. Если раньше ученые ограничивались собственным зрением и слухом, то теперь в их распоряжении есть невиданные прежде экспериментальные установки.

В ходе использования прибора он может оказать негативное воздействие на изучаемый объект. По этой причине результат эксперимента иногда расходится с его первоначальными целями. Некоторые исследователи пытаются нарочно достичь таких результатов. В науке подобный процесс называется рандомизацией. Если эксперимент принимает случайный характер, то его последствия становятся дополнительным объектом анализа. Возможность рандомизации — это еще одна черта, которой отличается эмпирическое и теоретическое познание.

Сравнение, описание и измерение

Сравнение – третий эмпирический метод познания. Эта операция позволяет выявлять различия и сходства объектов. Эмпирический, теоретический анализ не может осуществляться без глубоких знаний о предмете. В свою очередь, многие факты начинают играть новыми красками, после того как исследователь сопоставляет их с другой известной ему фактурой. Сравнение объектов проводится в рамках признаков, существенных для конкретного эксперимента. При этом предметы, которые сопоставляются по одной черте, могут быть несравнимыми по другим своим характеристикам. Данный эмпирический прием основывается на аналогии. Он лежит в основе важного для науки сравнительно-исторического метода.

Методы эмпирического и теоретического познания могут комбинироваться между собой. Но почти никогда исследование не обходится без описания. Эта познавательная операция фиксирует результаты ранее проведенного опыта. Для описания используются научные системы обозначения: графики, схемы, рисунки, диаграммы, таблицы и т. д.

Последний эмпирический метод познания – измерение. Оно осуществляется посредством специальных средств. Измерение необходимо для определения числового значения искомой измеряемой величины. Такая операция обязательно проводится согласно принятым в науке строгим алгоритмам и правилам.

Теоретическое познание

В науке теоретическое и эмпирическое знание имеет разные фундаментальные опоры. В первом случае это отстраненное использование рациональных методов и логических процедур, а во втором – прямое взаимодействие с объектом. Теоретическое познание использует интеллектуальные абстракции. Одним из важнейших его методов является формализация – отображение знания в символическом и знаковом виде.

На первом этапе выражения мышления используется привычный человеческий язык. Он отличается сложностью и постоянной изменчивостью, из-за чего не может быть универсальным научным инструментом. Следующая ступень формализации связана с созданием формализованных (искусственных) языков. У них есть конкретное предназначение – строгое и точное выражение знания, которого нельзя достичь с помощью естественной речи. Такая система символов может принимать формат формул. Он очень популярен в математике и других точных науках, где нельзя обойтись без цифр.

С помощью символики человек исключает неоднозначное понимание записи, делает ее короче и яснее для дальнейшего использования. Без быстроты и простоты в применении своих инструментов не может обойтись ни одно исследование, а значит, и все научное познание. Эмпирическое и теоретическое изучение одинаково нуждается в формализации, но именно на теоретическом уровне она принимает исключительно важное и фундаментальное значение.

Читайте также:  Iphone 11 pro max iphone 12 pro max сравнить

Искусственный язык, созданный в узких научных рамках, становится универсальным средством обмена мыслей и коммуникации специалистов. В этом заключается принципиальная задача методологии и логики. Эти науки необходимы для передачи информации в понятном, систематизированном виде, избавленном от недостатков естественного языка.

Значение формализации

Формализация позволяет уточнять, анализировать, разъяснять и определять понятия. Эмпирический и теоретический уровни познания не могут обойтись без них, поэтому система искусственных символов всегда играла и будет играть большую роль в науке. Обыденные и выражаемые в разговорном языке понятия кажутся очевидными и ясными. Однако в силу своей неоднозначности и неопределенности они не подходят для научных исследований.

Особенно важна формализация при анализе предполагаемых доказательств. Последовательность формул, основанных на специализированных правилах, отличается необходимой для науки точностью и строгостью. Кроме того, формализация необходима для программирования, алгоритмизации и компьютеризации знаний.

Аксиоматический метод

Еще один метод теоретического исследования – аксиоматический метод. Он является удобным способом дедуктивного выражения научных гипотез. Теоретические и эмпирические науки невозможно представить без терминов. Очень часто они возникают благодаря построению аксиом. Например, в эвклидовой геометрии в свое время были сформулированы основополагающие термины угла, прямой, точки, плоскости и т. д.

В рамках теоретического познания ученые формулируют аксиомы – постулаты, которые не требуют доказательства и являются исходными утверждениями для дальнейшего построения теорий. Примером такого положения может послужить идея о том, что целое всегда больше части. С помощью аксиом строится система вывода новых терминов. Следуя правилам теоретического познания, ученый может из ограниченного числа постулатов получить уникальные теоремы. В то же время аксиоматический метод намного эффективнее применяется для преподавания и классификации, чем для открытия новых закономерностей.

Гипотетико-дедуктивный метод

Хотя теоретические, эмпирические научные методы отличаются друг от друга, они часто используются совместно. Примером такого применения является гипотетико-дедуктивный метод. С помощью него строятся новые системы тесно переплетенных гипотез. Ни их основе выводятся новые утверждения, касающиеся эмпирических, экспериментально доказанных фактов. Метод выведения заключения из архаичных гипотез называется дедукцией. Этот термин многим знаком благодаря романам о Шерлоке Холмсе. Действительно, популярный литературный персонаж в своих расследованиях часто пользуется дедуктивным методом, с помощью которого из множества разрозненных фактов строит стройную картину преступления.

В науке действует такая же система. У подобного способа теоретического познания есть своя четкая структура. В первую очередь происходит ознакомление с фактурой. Затем выдвигаются предположения о закономерностях и причинах изучаемого явления. Для этого используются всевозможные логические приемы. Догадки оцениваются согласно своей вероятности (из этого вороха выбирается наиболее вероятная). Все гипотезы проверяются на непротиворечивость логике и совместимость с основными научными принципами (например, законами физиками). Из предположения выводятся следствия, которые затем проверяются путем эксперимента. Гипотетико-дедуктивный метод – это не столько способ нового открытия, сколько метод обоснования научных знаний. Этим теоретическим инструментом пользовались такие великие умы, как Ньютон и Галилей.

Источник

13.2.1. Сравнение эмпирического распределения с теоретическим

В разных задачах подсчет теоретических частот осуществляется по-разному. Рассмотрим примеры задач, иллюстрирующих различ­ные варианты подсчета теоретических частот. Начнем с равноверо­ятного распределения теоретических частот. В задачах такого типа (13.1, 13.2 и 13.3) в силу требования равномерности распределения все теоретические частоты должны быть равны между собой.

Пример 13.1. Предположим, что в эксперименте психологу необходимо использовать шестигранный игральный кубик с цифрами на гранях от 1 до 6. Для чистоты эксперимента необходимо получить «идеальный» кубик, т. е. такой, чтобы при достаточно большом числе подбрасываний, каждая его грань выпадала бы примерно равное число раз. Задача состоит в выяснении того, будет ли данный кубик близок к идеальному?

Решение. Для решения этой задачи, психолог подбрасывал кубик 60 раз, при этом количество выпадений каждой грани (эмпирические частоты fэ) распределилось следующим образом:

Fэ – эмпирические частоты

fm – теоретические частоты

Н: Эмпирическое и теоретическое распреде­ления не различаются между собой.

Н1: Эмпирическое и теоретическое распреде­ления различаются между собой.

В «идеальном» случае необходимо, чтобы каждая из 6 его граней (теоретические частоты) выпадала бы равное число раз: . Величинаи будет, очевидно, теоретической частотой(fm), одинаковой для каждой грани кубика.

Согласно данным таблицы 13.1 легко подсчитать величину χ 2 эмп (хи-квадрат эмпирическое) по формуле (13.1).

.

Теперь, для того чтобы найти χ 2 кр, необходимо обратиться к Таблице 16 приложения 1, определив предварительно число степеней свободы ν. В нашем случае к (число граней) = 6, следовательно, ν = 6 – 1 = 5. По таблице 16 приложения 1 находим величины χ 2 кр для уровней значимости 0,05 и 0,01:

Строим «ось значимости».

В нашем случае χ 2 эмп попало в зону незначимости и оказалось равным 4,2, что гораздо меньше 11,070 – критической величины для 5% уровня значимости. Следовательно, можно принимать гипотезу Н о том, что эмпирическое и теоретическое распределения не различаются между собой. Таким образом, можно утверждать, что игральный кубик «безупречен».

Понятно также, что если бы χ 2 эмп попало в зону значимос­ти, то следовало бы принять гипотезу Н1 о наличии различий и тем самым утверждать, что наш игральный кубик был бы далеко не «безупречен».

Пример 13.2. В эксперименте испытуемый должен произвести выбор левого или правого стола с заданиями. В инструкции психолог подчеркивает, что задания на обоих столах одинаковы. Из 150 испытуемых правый стол выбрали 98 человек, а левый 52. Можно ли утверждать, что подобный выбор левого или правого стола равновероятен или он обусловлен какой-либо причиной, неизвестной психологу?

Решение. Подчеркнем, что данная задача вновь на сопоставление экспериментального распределения с теоретическим. Каковы в этом случае параметры теоретического распределения? Предполагается, что выбор должен быть равновероятным, т. е. правый и левый стол должны выбрать одинаковое количество испытуемых, а это человек.

Проверим совпадение эмпирического распределения с теоретическим по критерию хи-квадрат. Лучше всего для расчета критерия использовать таблицу 13.2, последовательность вычислений в которой соответствует формуле (13.1).

Альтернативы выбора стола

Н: Правый и левый стол выбирают одинаковое количество испытуемых.

Н1: Правый и левый стол выбирают не одинаковое количество испытуемых.

В таблице 13.2 альтернатива 1 соответствует выбору правого стола, а альтернатива 2 – выбору левого. Второй и третий столбцы таблицы, соответственно, эмпирические и теоретические частоты. Следует просуммировать эти два столбца, чтобы проверить равенство сумм эмпирических и теоретических частот. Четвертый столбец соответствует разности между эмпирическими и теоретическими частотами (fэ – fт). В нижней строчке столбца эти разности просуммированы. Полученная сумма равна 0. В дальнейших расчетах величина этой суммы не используется, но ее обязательно следует каждый раз вычислять, поскольку ее равенство нулю гарантирует правильность вычислений на этом этапе. Если же сумма элементов четвертого столбца не равна нулю, это означает, что в расчеты вкралась ошибка.

Читайте также:  Сравнение автономности всех iphone

В нашем случае эмпирическая величина хи-квадрат, вычис­ленная по формуле (13.1), равна 14,1 и является суммой чисел в шестом столбце. Для того чтобы найти табличные значения χ 2 кр, следует определить число степеней свободы по формуле: ν = k – 1, где k – количество альтернатив (строк). В нашем случае k = 2, следовательно, ν = 2 – 1 = 1. По таблице 16 приложения 1 находим:

Строим «ось значимости».

Полученные различия оказались значимыми на уровне 1%. Иными словами, испытуемые статистически значимо предпочитают выбор правого стола. В терминах статистических гипотез этот вывод звучит так: выбор направления оказался не случайным, поэтому нулевая гипотеза Н о сходстве отклоняется и на высоком уровне значимости принимается альтернативная гипотеза Н1 о различии. Если психологу интересны причины подобного выбора, то их следует выяснять в специальном эксперименте.

Пример 13.3. Психолог решает задачу: будет ли удовлетворенность работой на данном предприятии распределена равномерно по следующим альтернативам (градациям):

1 – работой вполне доволен;

2 – скорее доволен, чем не доволен;

3 – трудно сказать, не знаю, безразлично;

4 – скорее недоволен, чем доволен;

5 – совершенно недоволен работой.

Решение. Для решения этой задачи производится опрос случайной выборки из 65 респондентов (испытуемых) об удовлетворенности работой: «В какой степени Вас устраивает Ваша теперешняя работа?», причем ответы должны даваться согласно вышеозначенным альтернативам.

Полученные ответы (эмпирические частоты) представлены в таблице 13.3 в столбце № 2. В этой же таблице в третьем столбце даны теоретические частоты для данной выборки испытуемых, которые, согласно предположению психолога, должны быть одинаковы и равняться: . В следующих столбцах таблицы 13.3 приведены необходимые расчеты по формуле (13.1).

Н: Удовлетворенность работой на данном предприятии распреде­лена равномерно по перечисленным альтернативам.

Н1: Удовлетворенность работой на данном предприятии распреде­лена не равномерно по перечисленным альтернативам.

Напомним, что сумма величин (fэ – fm) в столбце № 4 должна равняться нулю. Это показатель правильности вычислений.

В шестом столбце таблицы подсчитана величина χ 2 эмп, равная 9,54. Для того чтобы найти табличные значения χ 2 кр для двух уровней значимости, следует вначале определить число степеней свободы по формуле: ν = k – 1, где k – количество альтернатив (строк). В нашем случае k = 5, следовательно, ν = 5 – 1 = 4. По таблице 16 приложения 1 находим:

Строим «ось значимости».

Величина χ 2 эмп попала в зону неопределенности. Можно считать, однако, что полученные различия значимы на уровне 5% и принять гипотезу Н1 о различии теоретического и эмпирического распределений. Психолог может предположить, что на 5% уровне значимости выбор альтернатив респондентами не равновероятен. Таким образом, можно сказать, что эмпирическое распределение выбора альтернатив значимо отличается от теоретически предположенного равномерного выбора альтернатив. Причину этого, а также степень отвержения или предпочтения работы на данном предприятии психолог может выяснить в специальном исследовании.

При решении приведенных выше трех задач с равновероятным распределением теоретических частот не было необходимости использовать специальные процедуры их подсчета. Однако на практике чаще возникают задачи, в которых распределение теоретических частот не имеет равновероятного характера. В этих случаях для подсчета теоретических частот используются специальные формулы или таблицы. Рассмотрим задачу, в которой в качестве теоретического будет использоваться нормальное распределение

Пример 13.4. У 267 человек был измерен рост. Вопрос состоит в том, будет ли полученное в этой выборке распределение роста близко к нормальному? (Задача взята из учебника Лакина Г. Ф. Биометрия, 1990).

Решение. Измерения проводились с точностью до 0,1 см и все полученные величины роста оказались в диапазоне от 156,5 до 183,5 см. Для расчета по критерию хи-квадрат целесообразно разбить этот диапазон на интервалы, величину интервала удобнее всего взять равной 3 см, поскольку 183,5 – 156,5 = 27 и 27 делится нацело на 3 . Таким образом, все экспериментальные данные будут распределены по 9 интервалам. При этом центрами интервалов будут следующие числа: 158 (поскольку 156,5 + 159,5 = 316 и), 161 (поскольку 159,5 + 162,5 = 322 и), 164 и т. д. до 182.

При измерении роста в каждый из этих интервалов попало какое-то количество людей – эта величина для каждого интервала и будет эмпирической частотой, обозначаемой в дальнейшем как fэj.

Расчетная формула критерия хи-квадрат для сравнения двух эмпирических распределений в зависимости от вида представленных данных может иметь следующий вид:

, (13.2)

где N и М – соответственно число элементов а первой и во второй выборке. Эти числа могут совпадать, а могут быть и различными.

Н: Полученное в этой выборке распределение роста близко к нормальному.

Н1: Полученное в этой выборке распределение роста отличается от нормального.

Чтобы применить расчетную формулу (13.1), необходимо прежде всего вычислить теоретические частоты. Для этого по всем полученным значениям эмпирических частот (по всем выборочным данным) нужно вычислить:

и среднеквадратическое отклонение (σ).

Для наших выборочных данных величина среднего Mх оказа­лась равной 166,22 и среднеквадратическое σ = 4,06.

Затем для каждого выделенного интервала следует подсчитать величины oi по формуле (13.3) (где индекс i изменяется от 1 до 9, т. к. у нас 9 интервалов):

. (13.3)

Величины oi называются нормированными частотами. Удобнее производить их расчет в приведенной ниже таблице 13.4. Подсчитав эти величины, необходимо занести их в соответствующую строчку третьего столбца таблицы 13.4.

Затем по величинам нормированных частот по таблице 15 приложения 1 находятся величины f(oi), которые называются ординатами нормальной кривой для каждой oi. Величины f(oi), полученные из таблицы 15 приложения 1, заносятся в соответствующую строчку четвертого столбца таблицы 13.4. Величины, полученные в третьем и четвертом столбцах таблицы 13.4, позволяют вычислить по соответствующей формуле необходимые нам теоретические частоты (обозначаемые как fmi) и также занести их в пятый столбец таблицы 13.4.

Расчет теоретических частот осуществляется для каждого интервала по следующей формуле

, (13.4)

где n = 267 (общая величина выборки),

λ = 3 (величина интервала) и

σ – среднеквадратичное отклонение.

Напомним, что после подсчета эти величины заносятся в соответствующую строчку пятого столбца таблицы 13.4.

Источник