Меню

Сравни дроби поставь знак или 111 511



Сравни дроби поставь знак или 111 511

Калькулятор сравнит дроби, для дробей с разными знаменателями калькулятор приведет их к наименьшему общему знаменателю.

В случае если введены сокращаемые дроби — калькулятор сократит дроби, прежде чем начать приводить их к общему знаменателю.

Нажмите кнопку рассчитать и калькулятор сравнит дроби.

Сравнение дробей с разными знаменателями

Чтобы сравнить дроби, надо: 1) привести дроби к наименьшему общему знаменателю 2) сравнить полученные дроби. Рассмотрим процесс сравнения двух дробей и :

  • 1 Находим наименьшее общее кратное знаменателей: НОК(8, 12)=24. Число 24 является наименьшим общим знаменателем двух дробей, приведем обе дроби к данному знаменателю. Любые две дроби можно привести к одинаковому знаменателю.
  • 2 Вычисляем дополнительный множитель первой дроби . Умножаем числитель и знаменатель на дополнительный множитель 3, получаем дробь .
  • 3 Вычислим дополнительный множитель второй дроби . Умножаем числитель и знаменатель на дополнительный множитель 2, получаем дробь .
  • 4 В результате получим дроби Пример Сравните дроби с разными знаменателями и

.

Источник

Онлайн калькулятор. Сравнение дробей.

Используя этот онлайн калькулятор для сравнения дробей, вы сможете очень просто и быстро сравнить две дроби.

Воспользовавшись онлайн калькулятором для сравнения дробей, вы получите детальное решение вашего примера, которое позволит понять алгоритм решения задач и закрепить пройденный на уроках материал.

Калькулятор сравнения дробей

Ввод данных в калькулятор сравнения дробей

В калькулятор сравнения дробей можно вводить: целые числа, десятичные дроби, обыкновенные дроби и смешанные числа.

Для ввода отрицательных чисел знак минус вводится в поле для целой части:

или

N.B. Буквенные выражения, операции извлечения корня и возведения в степень калькулятор не поддерживает!

Дополнительные возможности калькулятора сравнения дробей

Инструкция использования калькулятора сравнения дробей

Для сравнения дробей онлайн выполните следующие действия:

  • введите значения дробей;
  • нажмите кнопку «сравнить дроби».

Правила. Сравнения дробей.

Чтобы сравнить две обыкновенные дроби, следует привести дроби к общему знаменателю и сравнить числители получившихся дробей. Дробь с большим числителем будет больше.

Смотрите также правила и примеры: сравнения дробей.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Источник

Сравнение обыкновенных дробей

Сравнить две дроби — значит определить, какая из дробей больше, какая меньше или установить, что дроби равны.

Сравнение дробей с одинаковыми знаменателями

Из двух дробей с одинаковыми знаменателями больше та дробь, у которой числитель больше.

Пример. Дробь больше чем дробь , потому что доли в обеих дробях одинаковы, но в первой дроби их больше, чем во второй.

Если изобразим единицу отрезком и разделим его на 8 долей, то легко увидеть, что дробь больше :

Сравнение дробей с одинаковыми числителями

Из двух дробей с одинаковыми числителями больше та дробь, у которой знаменатель меньше.

Пример. Дробь больше чем дробь , потому что число долей в обеих дробях одинаково, но в первой дроби доли крупнее, чем во второй.

Изобразим две единицы в виде кругов, один разделим на 4 доли, второй на 6 долей. Теперь можно увидеть, что дробь больше :

Сравнение дробей с разными знаменателями и числителями

Чтобы сравнить дроби, у которых разные числители и знаменатели, нужно привести их к общему знаменателю. После этого их сравнивают по правилу сравнения дробей, у которых одинаковые знаменатели.

Пример. Сравните дроби: и .

Решение: приводим данные дроби к общему знаменателю:

Теперь сравниваем их по правилу сравнения дробей, у которых одинаковые знаменатели. Так как , значит .

Приведём ещё один способ сравнения дробей с разными знаменателями и числителями. Рассмотрим сначала числовой пример.

Пример. Сравним дроби и .

Решение: приводим данные дроби к общему знаменателю:

Решая данный пример можно заметить, что, после приведения дробей к общему знаменателю, задача сравнения свелась фактически к сравнению произведений

Так как 2 · 7 = 14, а 4 · 3 = 12, то

Значит, .

Теперь решим эту же задачу в общем виде, используя буквенную запись.

Пример. Пусть даны дроби и , где a и c — нуль или натуральные числа, b и d — натуральные числа. Приведём дроби к общему знаменателю:

  1. если a · d >c · b, то
  2. если a · d Пример.

Сравнение неправильной дроби с натуральным числом сводится к сравнению двух дробей.

Чтобы сравнить неправильную дробь с натуральным числом, нужно натуральное число представить в виде неправильной дроби со знаменателем 1, затем их можно сравнить одним из двух способов: используя перекрёстное правило, либо привести дроби к общему знаменателю. После этого их сравнивают по правилу сравнения дробей, у которых одинаковые знаменатели.

Пример. Сравните дробь с числом 5.

Решение: представим число 5 в виде дроби со знаменателем 1:

Приводим дроби к общему знаменателю:

Сравниваем числители, так как 11 Пример.

Онлайн калькулятор сравнения дробей

Данный калькулятор поможет вам сравнить обыкновенные дроби. Просто введите две дроби и нажмите кнопку Сравнить .

Источник

Сравнение дробей, как правильно

О чем эта статья:

Сравнение дробей с одинаковыми знаменателями

Как и при любом другом сравнении, суть сравнения дробей — в том, чтобы определить меньшую и большую дроби.

Нет ситуации более благоприятной для сравнения, чем дроби с одинаковыми знаменателями. Если вся разница между дробями только в числителях, пользуемся следующим правилом:

Из двух дробей с одинаковыми знаменателями больше дробь с большим числителем. А меньше будет та дробь, числитель которой меньше.

А теперь на примерах.

Пример 1. Сравните дроби:

  • Мы видим, что знаменатели дробей — равны. Значит сравниваем числители:
    8 8
  • Это значит, что 10
    1

Пример 3. Сравните дроби:

  • Знаменатели дробей снова равны. Сравниваем числители:
    3 > 1
    1

Как видите, нет ничего сложного в сравнении дробей, если знаменатели равны. Вся задача заключается в том, чтобы определить больший и меньший знаменатель.

Давайте разберем наглядный пример сравнения дробей:

Допустим, в торте 6 кусков. Если от целого торта отрезать один кусок — в торте останется 5 кусков.

  • Запишем в виде дробей: и
  • А теперь сравним полученные дроби: знаменатели — равны, сравниваем числители:
    6 > 5
    5

Понять, что целый торт больше, чем торт без одного куска, можно и без сравнения дробей. Но это же самое правило можно применить и при менее очевидных сравнениях, которые часто встречаются в повседневной жизни.

Сравнение дробей с одинаковыми числителями

Вы уже разобрались со сравнением дробей с одинаковыми знаменателями. Теперь задача чуть усложняется — научимся сравнивать дроби с разными знаменателями, но с одинаковыми числителями.

Если у двух дробей одинаковые числители, то больше будет та дробь, чей знаменатель меньше. А меньше будет дробь с большим знаменателем.

А теперь наши любимые примеры. Погнали!

Пример 1. Сравните дроби:

  • У дробей разные знаменатели и одинаковые числители. Значит, согласно правилу, нужно сравнить знаменатели:
    9 > 7
    7 10
  • Значит дробь с меньшим знаменателем — больше:

Пример 3. Сравните дроби:

    У дробей разные знаменатели и одинаковые числители. Значит, согласно правилу, нужно сравнить знаменатели:
    6 > 3
    3

Сравнение дробей с разными числителями и разными знаменателями

Нет ничего хитрого в сравнении дробей с одинаковыми числителями или знаменателями. Чуть больше усилий потребуется при сравнении дробей, в которых нет ничего одинакового.

Сначала вспомним, как привести дроби к общему знаменателю.
Рассмотрим пример дробей с разными знаменателями.

  • Нужно подобрать число, которое будет делиться на 7 и на 2 (найти наименьшее общее кратное НОК). В данном случае, НОК — 14. Проверим:
    14:7 = 2
    14 : 2 = 7
  • Первую дробь умножаем на дополнительный множитель 2:
  • Вторую дробь умножаем на дополнительный множитель 7:
  • Дроби приведены к общему знаменателю:

Давайте потренируемся в сравнении дробей.

Пример 1. Сравните дроби:

  • Приведем дроби к общему знаменателю. 30 делится на 15 и на 2.
    30 : 15 = 2
    30 : 2 = 15
  • Первую дробь умножаем на дополнительный множитель 2:
  • Вторую дробь умножаем на дополнительный множитель 15:
  • Дроби приведены к общему знаменателю:
  • Если две дроби имеют одинаковые знаменатели, то, согласно правилу, больше та дробь, чей числитель больше:

При сравнении неправильных дробей, помните, что неправильная дробь всегда больше правильной.

Пример 2: Сравните дроби:

  • 6/5 — неправильная дробь.
  • Выделим целую часть:
  • Значит, что

Вычитание смешанных чисел

Вычитание проходит гладко, когда уменьшаемое больше вычитаемого.

  • 12 — 7 = 6
    12 — уменьшаемое
    7 — вычитаемое
    5 — разность

В случае, если вычитаемое больше уменьшаемого, разность оказывается отрицательной. В этом нет ничего страшного. Но математика в 5 классе — «положительная», поэтому научимся находить разность смешанных чисел, не скатываясь «в минусы».

При вычитании дробей действует тот же самый принцип: вычитаемое должно быть больше уменьшаемого. Вот здесь то вам и пригодится навык сравнивать дроби.

Пример 1. Найдите разность:

Вычитаемая дробь меньше уменьшаемой

  • Выполняем вычитание:

Пример 2.Найдите разность:

  • Смешанные дроби превращаем в неправильные:
  • Чтобы сравнить дроби с разными числителями и знаменателями, нужно привести их к общему знаменателю:
  • Наименьшее общее кратное — 40
    40 : 8 = 5
    40 : 5 = 8
  • Умножаем первую дробь на дополнительный множитель 5:
  • Умножаем вторую дробь на дополнительный множитель 8:
  • Дроби приведены к общему знаменателю:

Если знаменатели одинаковые — больше та дробь, числитель которой больше.

  • Мы видим, что вычитаемое меньше уменьшаемого, значит можем без труда найти разность:

Примеры для самопроверки

Теория — это, конечно, хорошо. Но без практики — никуда. Пора потренироваться в решении примеров и закрепить тему сравнения дробей.

Пример 1. Сравните дроби:

Ответ: по правилу сравнения дробей с одинаковыми знаменателями, больше та дробь, у которой числитель больше. Это значит, что

Пример 2. Сравните дроби:

Ответ: по правилу сравнения дробей с разными знаменателями и одинаковыми числителями, больше та дробь, чей знаменатель меньше. Это значит, что

Пример 3. Сравните дроби:

Ответ:.

  • По правилу сравнения дробей с разными числителями и знаменателями, сначала нужно привести дроби к общему знаменателю:
  • Наименьшее общее кратное — 15:
    15 : 15 = 1
    15 : 5 = 3
  • Умножаем первую дробь на дополнительный множитель 1:
  • Умножаем вторую дробь на дополнительный множитель 3:
  • Дроби приведены к общему знаменателю:
  • Сравниваем числители получившихся дробей: 3

Источник

Читайте также:  Volkswagen polo skoda rapid 2020 сравнение