Меню

Сравнить разрешающие способности двух дифракционных решеток



Срешением . сравнить разрешающие дифракционных решеток, если одна из них имеет 420 штрихов на 1 мм при длине 4,8 см, а вторая 1340 штрихов на 1 мм при длине 6 см.

Ответы

2) Наилучшее качество это расплывчатое понятие 🙂 Зависит от звуковой карты.

Так или иначе, качество звука определяется:

а) Частотой дискретизации: частотой снятия уровня звука.

б) Глубиной кодирования (иногда называют разрешением сэмплирования итд)

Допустим лучшее качество, которого позволяет достичь лично моя звуковая карта — это частота 48 кГц и глубина 24 бит. Это означает, что на каждую секунду звучания производится 48000 тысяч замеров уровня звука и каждый замер кодируется 24 битным числом (3 байтами). Для стерео звука кодирование производится для двух разных каналов отдельно.

Посчитаем, какой объем займут 2 минуты звука с вышеуказанными параметрами:

120 сек * 48000 Гц * 3 байта * 2 канала = 34 560 000 байт = 33 750 кбайт = 32.96 Мбайт.

1) Уже решал, копирую сюда:

Найдем разрешение по горизантали и вертикали, приняв, что дюйм = 2.54 см

По горизонтали: 9/2.54 * 1024 = 3628 точек

По вертикали 12/2.54 * 1024 = 4837 точек

Значит всего точек в изображении 3628*4837 = 17 548 636

Далее, палитра 256 цветов означает, что каждая точка кодируется log2(256) = 8 битами (2^8 = 256), то есть одним байтом. Значит изображение занимает в памяти 17548636 * 1 байт = 17548636/1024 кбайт = 17137/1024 Мбайт = 16.7 Мбайт

Источник

5.5. Дифракционная решетка

Широкое распространение в научном эксперименте и технике получили дифракционные решетки, которые представляют собой множество параллельных, расположенных на равных расстояниях одинаковых щелей, разделенных равными по ширине непрозрачными промежутками. Дифракционные решетки изготавливаются с помощью делительной машины, наносящей штрихи (царапины) на стекле или другом прозрачном материале. Там, где проведена царапина, материал становится непрозрачным, а промежутки между ними остаются прозрачными и фактически играют роль щелей.

Рассмотрим сначала дифракцию света от решетки на примере двух щелей. (При увеличении числа щелей дифракционные максимумы становятся лишь более узкими, более яркими и отчетливыми.)

Пусть а — ширина щели, a b ширина непрозрачного промежутка (рис. 5.6).

Рис. 5.6. Дифракция от двух щелей

Период дифракционной решетки — это расстояние между серединами соседних щелей:

Разность хода двух крайних лучей равна

Если разность хода равна нечетному числу полуволн

то свет, посылаемый двумя щелями, вследствие интерференции волн будет взаимно гаситься. Условие минимумов имеет вид

Эти минимумы называются дополнительными.

Если разность хода равна четному числу полуволн

то волны, посылаемые каждой щелью, будет взаимно усиливать друг друга. Условие интерференционных максимумов с учетом (5.36) имеет вид

Это формула для главных максимумов дифракционной решетки.

Кроме того, в тех направлениях, в которых ни одна из щелей не распространяет свет, он не будет распространяться и при двух щелях, то есть главные минимумы решетки будут наблюдаться в направлениях, определяемых условием (5.21) для одной щели:

Если дифракционная решетка состоит из N щелей (современные решетки, применяемые в приборах для спектрального анализа, имеют до 200 000 штрихов, и период d = 0.8 мкм, то есть порядка 12 000 штрихов на 1 см), то условием главных минимумов является, как и в случае двух щелей, соотношение (5.41), условием главных максимумов — соотношение (5.40), а условие дополнительных минимумов имеет вид

Здесь k’ может принимать все целочисленные значения, кроме 0, N, 2N, . . Следовательно, в случае N щелей между двумя главными максимумами располагается (N–1) дополнительных минимумов, разделенных вторичными максимумами, создающими относительно слабый фон.

Положение главных максимумов зависит от длины волны l. Поэтому при пропускании через решетку белого света все максимумы, кроме центрального, разлагаются в спектр, фиолетовый конец которого обращен к центру дифракционной картины, а красный — наружу. Таким образом, дифракционная решетка представляет собой спектральный прибор. Заметим, что в то время как спектральная призма сильнее всего отклоняет фиолетовые лучи, дифракционная решетка, наоборот, сильнее отклоняет красные лучи.

Важной характеристикой всякого спектрального прибора является разрешающая способность.

Разрешающая способность спектрального прибора — это безразмерная величина

Источник

Дифракция света и дифракционная решетка

Содержание:

Первые опыты и активные исследования природы света начались еще в далеком XVII веке, когда итальянский ученый Франческо Гримальди впервые открыл такое интересное физическое явление как дифракция света. Что же такое дифракция света? Это отклонение света от прямолинейного распространения в силу определенных препятствий на его пути. Более научное объяснение причинам дифракции света было дано в начале XIX века английским ученым Томасом Юнгом, согласно нему дифракция света возможна благодаря тому, что свет представляет собой волну, идущую от своего источника и естественным образом искривляющуюся при попадании на определенные препятствия. Им же была изобретена первая дифракционная решетка, представляющая собой оптический прибор, работающий на основе дифракции света, то есть специально искривляющий световую волну.

Дифракция и интерференция света

Изучая поведение монохроматического пучка света, Томас Юнг, разделив его пополам, получил дифракционную картину, которая представляла собой последовательное чередование ярких и темных полос на экране. Волновая теория природы света, сформированная Юнгом, прекрасно объясняла это явление. Будучи волной, пучок света при попадании на непрозрачное препятствие искривляется, меняет траекторию своего движения. Так появляется дифракция света, при которой свет может, как целиком огибать препятствия (если длина световой волны больше размеров препятствия) или искривлять свою траекторию (когда размеры препятствий сопоставимы с длиной световой волны). Примером тут может быть попадание света через узкие щели или небольшие отверстия, как на фото ниже.

Читайте также:  Самоед или шпиц сравнение

Луч света в пещере, наглядная иллюстрация дифракции света в природе.

А тут на картинке показано более схематическое изображение дифракции.

Физическое явление дифракции света дополняет еще одно важное свойство световой волны – интерференция света. Суть интерференции света заключается в накладывании одних световых волн на другие. В результате может происходить искривление синусоидальной формы результирующей волны.

Так схематически выглядит интерференция.

При этом, волны, которые накладываются, могут, как усиливать мощь общей световой волны (при совпадении амплитуд), так и наоборот погасить ее.

Дифракционная решетка

Как мы писали выше, дифракционная решетка представляет собой простой оптический прибор, который искривляет световую волну.

Вот так она выглядит.

Или еще чуть более маленький экземпляр.

Также дифракционную решетку можно охарактеризовать тремя параметрами:

  • Период d. Он представляет собой расстояние между двумя щелями, через которые проходит свет. Так как длина световой волны обычно находится в диапазоне нескольких десятых микрометра, то величина d обычно имеет 1 микрометр.
  • Постоянная решетка а. Это количество прозрачных щелей на длине 1 мм поверхности решетки. Эта величина обратно пропорциональна периоду дифракционной решетки d. Обычно имеет 300-600 мм -1
  • Общее количество щелей N. Высчитывается путем умножения длины дифракционной решетки на ее постоянную а. Обычно длина решетки имеет несколько сантиметров, а количество щелей при этом составляет 10-20 тысяч.

Виды дифракционных решеток

На самом деле есть целых два вида дифракционных решеток: прозрачная и отражающая.

Прозрачная решетка представляет собой прозрачную тонкую пластину из стекла или прозрачного пластика, на которую нанесены штрихи. Штрихи эти как раз и являются препятствиями для световой волны, сквозь них она не может пройти. Ширина штриха – это и есть, по сути, период дифракционной решетки d. А оставшиеся между штрихами прозрачные зазоры – это щели. Такие решетки наиболее часто применяются при выполнении лабораторных работ.

Отражающая дифракционная решетка – это металлическая либо пластиковая и отполированная пластина. Вместо штрихов на нее нанесены бороздки определенной глубины. Период d соответственно это расстояние между этими бороздками. Простым примером отражающей дифракционной решетки может быть оптический CD диск.

Такие решетки часто используют при анализе спектров излучения, так как благодаря их дизайну можно удобно распределить интенсивность максимумов дифракционной картины на пользу максимумов более высокого порядка.

Принцип работы дифракционной решетки

Представим, что на нашу решетку падает свет, имеющий плоский фронт. Это важный момент, так как классическая формула будет верна при условии, что волновой фронт является плоским и параллельным самой пластинке. Штрихи решетки будут вносить в этот световой фронт возмущение и как результат на выходе из решетки создаться ситуация будто бы работает множество когерентных (синхронных) источников излучения. Эти источники и являются причиной дифракции.

От каждого источника (по сути щели между штрихами решетки) будут распространяться световые волны, которые будут когерентными (синхронными) друг другу. Если на некотором расстоянии от решетки поместить экран, то мы сможем увидеть на нем яркие полосы, между которыми будет тень.

Формула дифракционной решетки

Яркие полосы, которые мы увидим на экране можно также назвать максимумами решетки. Если рассматривать условия усиления световых волн, то можно вывести формулу максимума дифракционной решетки, вот она.

Где θm это углы между перпендикуляром к центру пластинки и направлением на соответствующую линию максимума на экране. Величина m называется порядком дифракционной решетки. Она принимает целые значения и ноль, то есть m = 0, ±1, 2, 3 и так далее. λ – длина световой волны, а d – период решетки.

Таким образом, можно рассчитать положение всех максимумов решетки.

Разрешающая способность дифракционной решетки

Разрешающей способностью называют способность решетки разделить две волны с близкими значениями длины λ на два отдельных максимума на экране.

Применение дифракционной решетки

Какое же практическое применение дифракционной решетки, в чем ее конкретная польза? Дифракционная решетка является важным и незаменимым инструментов в спектроскопии, так с ее помощью можно узнать, например, химический состав далекой звезды. Свет, идущий от этой звезды, собирают зеркалами и направляют на решетку. Измеряя значения θm можно узнать все длины волн спектра, а значит и химические элементы, которые их излучают.

Дифракция света и дифракционная решетка, видео

И в завершение интересное образовательное видео по теме нашей статьи от заслуженного учителя Украины – Павла Виктора, на наш взгляд его видео лекции на Ютубе по физике могут быть очень полезными для всех, кто изучает этот предмет.

Источник

Практические применения

Метод рентгеноструктурного анализа: по заданным значениям  и m можно найти межплоскостное расстояние d, т.е. определить структуру металла. При дифракции электронов  электронография; при дифракции нейтронов  нейтронография.

Метод рентгеновской спектроскопии: по известным значениям d , , и m находят длину волны  падающего неизвестного излучения.

2. Разрешающая способность оптических приборов

Рис. 2. Дифракционное изображение точечного источника (дифракция на круглом отверстии). В центральное пятно попадает приблизительно 85 % энергии света.

Даже для идеальных приборов (отсутствуют дефекты и аберрации) невозможно получить стигматическое изображение точечного источника из-за дифракции.

Размер дифракционных изображений очень мал. Например, радиус центрального светлого пятна в фокальной плоскости линзы диаметром D = 5 см с фокусным расстоянием F = 50 см в монохроматическом свете с длиной волны λ = 500 нм приблизительно равен 0,006 мм. Но в высокоточных астро­но­ми­ческих приборах реализуется дифракци­он­ный предел качества изо­бра­же­ний. Вслед­ствие дифракционного размытия изобра­жения двух близких точек объекта могут оказаться неотличимыми от изо­бра­же­ния одной точки.

Критерий Рэлея

Изображения двух одинаковых близ­лежащих точечных источ­ни­ков разрешимы (разделены для вос­приятия), если центральный мак­симум дифракционной кар­ти­ны от одного источника совпадает с первым минимумом дифра­кци­он­ной картины от другого.

По критерию Рэлея интен­сив­ность «провала» между макси­му­мами составляет 80% интен­сив­но­сти в максимуме.

Разрешающая способность объектива

Рис. 4. Дифракционные изображения двух близких звезд в фокальной плоскости объектива телескопа

Рассмотрим в качестве примера объектив астрономического телескопа, нацеленного на две близкие звезды, находящиеся на угловом расстоянии ψ друг от друга. В фокальной плоскости объектива диаметром D наблюдаются дифракционные изображения звезд. Расстояние Δl между центрами дифракционных изображений звезд должно удовлетворять критерию Рэлея:

. (2)

Разрешающей способностью (разрешающей силой) объектива называется величина, обратная минимальному угловому расстоянию

, (3)

т.е. для увеличения разрешающей способности телескопа следует увеличивать диаметр объектива, либо переходить к более коротким волнам (ультрафиолетовым, потоку электронов).

Космический телескоп Хаббла, выведенный на орбиту в 1990 году, имеет зеркало диаметром D = 2,40 м. Предельное угловое разрешение этого телескопа по длине волны λ = 550 нм равно: ψmin = 2,8·10 –7 рад. На работу космического телескопа не оказывают влияния атмосферные возмущения.

Оценим разрешающую способность глаза. Глаз при рассматривании удаленных предметов действует так же, как и объектив телескопа. Роль D играет диаметр зрачка глаза dзр. Полагая dзр = 3 мм, λ = 550 нм, найдем для предельного углового разрешения глаза, удаленного от предмета на расстоянии F  25 см

.

Источник

2.2. Разрешающая способность дифракционной решетки

С помощью дифракционной решетки можно производить очень точные измерения длины волны. Если период d решетки известен, то определение длины сводится к измерению угла m, соответствующего направлению на выбранную линию в спектре m-го порядка. На практике обычно используются спектры 1-го или 2-го порядков.

Если в спектре исследуемого излучения имеются две спектральные линии с длиной волн λ1 и λ2, то решетка в каждом спектральном порядке (кроме m = 0) может отделить одну волну от другой.

Спектральной разрешающей способностью R решетки, характеризующей возможность разделения с ее помощью двух близких спектральных линий с длинами волн λ и λ + Δλ, называется отношение длины волны λ к минимально возможному значению Δλ, т.е.

. (4)

Максимум m-го порядка для длины волны 2:

. (5)

При переходе к соседнему минимуму с длиной волны 1 разность хода меняется на , где N  число щелей решетки, поэтому

. (6)

По критерию Рэлея соседние максимум и минимум совпадают, поэтому

(4) , (7)

т.е. разрешающая способность решетки пропорциональна порядку спектра m и числу щелей N.

Пусть решетка имеет период d = 10 –3 мм, ее длина L = 10 см. Тогда, N = 10 5 (это хорошая решетка). В спектре 2-го порядка разрешающая способность решетки оказывается равной R = 2·10 5 . Это означает, что минимально разрешимый интервал длин волн в зеленой области спектра (λ = 550 нм) равен Δλ = λ / R ≈ 2,8·10 –3 нм.

3. Понятие о голографии

Голография («полная запись»  греч.) это особый способ записи и последующего восстановления волнового поля, основан­ный на регистрации интерференционной картины.

Авторы: Д. Габор (1900 – 1979 г., Англия), опубликовал в 1947 г., Нобелевская премия 1971 г.; Ю.Н. Денисюк (СССР), реализовал в 1962 г. После изобретения лазеров  источников света высокой степени когерентности Э. Лейт Ю. Упатниекс (США) экспериментально осуществили голографию.

Рассматривая голограмму из разных направлений, можно заглянуть за ближние предметы. Это объясняется тем, что, перемещая голову, мы воспринимаем лучи, отраженные от скрытых частей предмета.

Запись и хранение информации с высокой плотностью;

Компьютеры с голографической памятью;

Голографическое кино, телеви­де­ние, электронный микроскоп,…

Глава 3. Оптика

3.11. Поляризация света

В начале XIX века, когда Т. Юнг и О. Френель развивали волновую теорию света, природа световых волн была неизвестна. На первом этапе предполагалось, что свет представляет собой продольные волны, распространяющиеся в некоторой гипотетической среде – эфире. При изучении явлений интерференции и дифракции вопрос о том, являются ли световые волны продольными или поперечными, имел второстепенное значение. В то время казалось невероятным, что свет – это поперечные волны, так как по аналогии с механическими волнами пришлось бы предполагать, что эфир – это твердое тело (поперечные механические волны не могут распространяться в газообразной или жидкой среде).

Однако, постепенно накапливались экспериментальные факты, свидетельствующие в пользу поперечности световых волн. Еще в конце XVII века было обнаружено, что кристалл исландского шпата (CaCO3) раздваивает проходящие через него лучи. Это явление получило название двойного лучепреломления (рис. 3.11.1).

Прохождение света через кристалл исландского шпата (двойное лучепреломление). Если кристалл поворачивать относительно направления первоначального луча, что поворачиваются оба луча, прошедшие через кристалл.

В 1809 году французский инженер Э. Малюс открыл закон, названный его именем. В опытах Малюса свет последовательно пропускался через две одинаковые пластинки из турмалина (прозрачное кристаллическое вещество зеленоватой окраски). Пластинки могли поворачиваться друг относительно друга на угол φ (рис. 3.11.2).

Иллюстрация к закону Малюса.

Интенсивность прошедшего света оказалась прямо пропорциональной cos 2 φ:

Ни двойное лучепреломление, ни закон Малюса не могут найти объяснение в рамках теории продольных волн. Для продольных волн направление распространения луча является осью симметрии. В продольной волне все направления в плоскости, перпендикулярной лучу, равноправны. В поперечной волне (например, в волне, бегущей по резиновому жгуту) направление колебаний и перпендикулярное ему направление не равноправны (рис. 3.11.3).

Поперечная волна в резиновом жгуте. Частицы колеблются вдоль оси y. Поворот щели S вызовет затухание волны.

Таким образом, асимметрия относительно луча является решающим признаком, который отличает поперечную волну от продольной. Впервые догадку о поперечности световых волн высказал Т. Юнг (1816 г.). Френель, независимо от Юнга, также выдвинул концепцию поперечности световых волн, обосновал ее многочисленными экспериментами и создал теорию двойного лучепреломления света в кристаллах.

В середине 60-х годов XIX века Максвелл сделал вывод о том, что свет – это электромагнитные волны. Этот вывод был сделан на основе совпадения известного значения скорости света со скоростью распространения предсказанных Максвеллом электромагнитных волн. К тому времени, когда Максвелл сделал вывод о существовании электромагнитных волн, поперечность световых волн уже была доказано экспериментально. Поэтому Максвелл справедливо полагал, что поперечность электромагнитных волн является еще одним важнейшим доказательством электромагнитной природы света.

В электромагнитной теории света исчезли все затруднения, связанные с необходимостью введения особой среды распространения волн – эфира, который приходилось рассматривать как твердое тело.

В электромагнитной волне вектора и перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны (рис. 2.6.3). Во всех процессах взаимодействия света с веществом основную роль играет электрический вектор поэтому его называют световым вектором. Если при распространении электромагнитной волны световой вектор сохраняет свою ориентацию, такую волну называют линейно-поляризованной или плоско-поляризованной (термин поляризация волн был введен Малюсом применительно к поперечным механическим волнам). Плоскость, в которой колеблется световой вектор называется плоскостью колебаний (плоскость yz на рис. 2.6.3), а плоскость, в которой совершает колебание магнитный вектор плоскостью поляризации (плоскость xz на рис. 2.6.3).

Если вдоль одного и того же направления распространяются две монохроматические волны, поляризованные в двух взаимно перпендикулярных плоскостях, то в результате их сложения в общем случае возникает эллиптически-поляризованная волна (рис. 3.11.4).

Сложение двух взаимно перпендикулярно поляризованных волн и образование эллиптически поляризованной волны.

В эллиптически-поляризованной волне в любой плоскости P, перпендикулярной направлению распространения волны, конец результирующего вектора за один период светового колебания обегает эллипс, который называется эллипсом поляризации. Форма и размер эллипса поляризации определяются амплитудами ax и ay линейно-поляризованных волн и фазовым сдвигом Δφ между ними. Частным случаем эллиптически-поляризованной волны является волна с круговой поляризацией (ax = ay, Δφ = ± π / 2).

Рис. 3.11.5 дает представление о пространственной структуре эллиптически-поляризованной волны.

Электрическое поле в эллиптически-поляризованной волне.

Линейно-поляризованный свет испускается лазерными источниками. Свет может оказаться поляризованным при отражении или рассеянии. В частности, голубой свет от неба частично или полностью поляризован. Однако, свет, испускаемый обычными источниками (например, солнечный свет, излучение ламп накаливания и т. п.), неполяризован. Свет таких источников состоит в каждый момент из вкладов огромного числа независимо излучающих атомов (см. § 3.2) с различной ориентацией светового вектора в излучаемых этими атомами волнах. Поэтому в результирующей волне вектор беспорядочно изменяет свою ориентацию во времени, так что в среднем все направления колебаний оказываются равноправными. Неполяризованный свет называют также естественным светом.

В каждый момент времени вектор может быть спроектирован на две взаимно перпендикулярные оси (рис. 3.11.6).

Разложение вектора по осям.

Это означает, что любую волну (поляризованную и неполяризованную) можно представить как суперпозицию двух линейно-поляризованных во взаимно перпендикулярных направлениях волн: Но в поляризованной волне обе составляющие Ex(t) и Ey(t) когерентны, а в неполяризованной – некогерентны (см. § 3.2), т. е. в первом случае разность фаз между Ex(t) и Ey(t) постоянна, а во втором она является случайной функцией времени.

Явление двойного лучепреломления света объясняется тем, что во многих кристаллических веществах показатели преломления для двух взаимно перпендикулярно поляризованных волн различны. Поэтому кристалл раздваивает проходящие через него лучи (рис. 3.11.1). Два луча на выходе кристалла линейно поляризованы во взаимно перпендикулярных направлениях. Кристаллы, в которых происходит двойное лучепреломление, называются анизотропными.

С помощью разложения вектора на составляющие по осям можно объяснить закон Малюса (рис. 3.11.2).

У многих кристаллов поглощение света сильно зависит от направления электрического вектора в световой волне. Это явление называют дихроизмом. Этим свойством, в частности, обладают пластины турмалина, использованные в опытах Малюса. При определенной толщине пластинка турмалина почти полностью поглощает одну из взаимно перпендикулярно поляризованных волн (например, Ex) и частично пропускает вторую волну (Ey). Направление колебаний электрического вектора в прошедшей волне называется разрешенным направлением пластинки. Пластинка турмалина может быть использована как для получения поляризованного света, так и для анализа характера поляризации света (поляризатор и анализатор). В настоящее время широко применяются искусственные дихроичные пленки, которые называются поляроидами. Поляроиды почти полностью пропускают волну разрешенной поляризации и не пропускают волну, поляризованную в перпендикулярном направлении. Таким образом, поляроиды можно считать идеальными поляризационными фильтрами.

Рассмотрим прохождение естественного света последовательно через два идеальных поляроида П1 и П2 (рис. 3.11.7), разрешенные направления которых развернуты на некоторый угол φ. Первый поляроид играет роль поляризатора. Он превращает естественный свет в линейно-поляризованный. Второй поляроид служит для анализа падающего на него света.

Прохождение естественного света через два идеальных поляроида. yy’ – разрешенные направления поляроидов.

Если обозначить амплитуду линейно-поляризованной волны после прохождения света через первый поляроид через то волна, пропущенная вторым поляроидом, будет иметь амплитуду E = E cos φ. Следовательно, интенсивность I линейно-поляризованной волны на выходе второго поляроида будет равна

Таким образом, в электромагнитной теории света закон Малюса находит естественное объяснение на основе разложения вектора на составляющие.

Источник