Средства измерения электрических величин меры

Средства измерения электрических величин меры

Эталоном называют средство измерений, обеспечивающее воспроизведение и хранение единицы физической величины для передачи ее размера другим средствам измерений.

В зависимости от точности воспроизведения единицы и назначения эталоны подразделяются на первичные, обеспечивающие воспроизведение единицы с наивысшей достижимой в стране точностью, и вторичные, значение которых устанавливается по первичному эталону. Вторичные эталоны обычно являются рабочими эталонами и предназначены для поверки образцовых средств измерения.

Мера – средство измерений, предназначенное для воспроизведения физической величины заданного размера.

В зависимости от степени точности и области применения меры подразделяются на эталоны, образцовые и рабочие меры.

Образцовые меры предназначены для поверки и градуировки рабочих мер и измерительных приборов. Они могут быть также непосредственно использованы для точных измерений. В зависимости от точности образцовые меры подразделяются на три разряда. Образцовые меры первого разряда наиболее точные. Они поверяются непосредственно по рабочим эталонам. Образцовые меры второго разряда поверяются по образцовым мерам первого разряда и т.д.

Рабочие меры изготавливаются для широкого диапазона номинальных значений величин и используются для поверки измерительных приборов и для измерений на промышленных предприятиях и в научных организациях.

Меры единиц электрических величин

Меры ЭДС. В качестве мер ЭДС, как образцовых, так и рабочих, применяются нормальные элементы различных классов точности. Нормальные элементы представляют собой специальные гальванические элементы, ЭДС которых точно известна.

Меры электрического сопротивления. Образцовые и рабочие меры электрического сопротивления выполняются в виде катушек сопротивления. Номинальное сопротивление образцовой катушки должно удовлетворять условию R=10 n Ом, где n – целое число. Минимальное сопротивление катушки равно 10 –5 Ом, максимальное – 10 10 Ом.

Меры индуктивности. Образцовые и рабочие меры индуктивности представляют собой катушки индуктивности. Катушки должны сохранять постоянство индуктивности с течением времени и обладать малым активным сопротивлением, независимостью индуктивности от значения тока и возможно малой зависимостью индуктивности от частоты и температуры.

Образцовые катушки индуктивности представляют собой пластмассовый или фарфоровый каркас с наложенной на него обмоткой из медной изолированной проволоки. Использование каркаса из немагнитного материала исключает зависимость индуктивности от тока в катушке. Для уменьшения влияния внешних магнитных полей катушки экранируют. Образцовые катушки индуктивности изготовляют с пятью номинальными значениями: 1; 0,1; 0,01; 0,001 и 0,0001 Г.

Меры емкости. Образцовые и рабочие меры емкости представляют собой конденсаторы постоянной или переменной емкости. К ним предъявляются следующие основные требования: минимальная зависимость емкости от времени, температуры и частоты; малые потери в диэлектрике, характеризуемые тангенсом угла потерь; высокое сопротивление и прочность изоляции.

В наибольшей степени этим требованиям отвечают воздушные конденсаторы. Они выпускаются как постоянной, так и переменной емкости. Однако из-за низкой диэлектрической проницаемости воздуха воздушные конденсаторы имеют большие габариты даже при малом значении емкости, поэтому образцовые конденсаторы постоянной емкости с воздушным диэлектриком имеют емкость не более 0,01 мкФ. Максимальная емкость воздушных конденсаторов переменной емкости обычно не превышает 1100 пФ.

В образцовых конденсаторах с большим значением емкости в качестве диэлектрика используется слюда. Слюдяные конденсаторы имеют худшие электрические параметры, чем воздушные, в частности больший тангенс угла диэлектрических потерь, но позволяют получить значительные емкости (до 1 мкФ) при небольших габаритах. Они состоят из тонких металлических пластин со слюдяными прослойками.

Эталоны единиц электрических величин

Эталон единицы величины – техническое средство или их совокупность, устанавливающие, воспроизводящие и (или) хранящие единицу величины, а также кратных или дольных значений этой единицы, в целях передачи размера единицы другим средствам измерений (нижестоящих).

К эталону основных единиц электрических величин относится эталон силы электрического тока.

Единица силы тока ампер есть сила неизменяющегося тока, который, проходя по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызывает между этими проводниками силу, равную 2·10 –7 Н на каждый метр длины.

К эталонам производных единиц относятся эталоны ЭДС, электрического сопротивления, индуктивности и электрической емкости.

Эталон ЭДС состоит из 20 насыщенных нормальных элементов и устройства сравнения (компаратора) для взаимного сличения нормальных элементов. Такую совокупность мер называют групповым эталоном. Электродвижущая сила каждого из элементов с течением времени может несколько колебаться в ту или иную сторону, но среднее значение ЭДС всей группы оказывается стабильным.

Эталон индуктивности является групповым и состоит из четырех катушек. Индуктивность катушек зависит от числа витков и их линейных размеров, т. е. может быть определена путем измерения этих размеров. Это равносильно сравнению эталона индуктивности с метром, являющимся единицей основной величины – длины.

Эталон электрического сопротивления (эталон ома) также является групповым – он состоит из 10 манганиновых катушек электрического сопротивления с номинальным значением 1 Ом, помещенных в двойных герметических кожухах, заполненных сжатым воздухом.

Поверка первичных эталонов ЭДС и сопротивления, т. е. нахождение их числовых значений, осуществляется с помощью первичного эталона индуктивности (эталона генри) и первичного эталона ампера, т. е. с помощью ампер-весов.

Электродвижущая сила нормального элемента сравнивается с падением напряжения на измерительной катушке, входящей в состав эталона сопротивления, при прохождении по ней тока, измеряемого ампер-весами.

Эталон электрической емкости представляет собой воздушный конденсатор переменной емкости специальной конструкции. Выходным параметром эталона является изменение его емкости ΔС, возникающее при перемещении его подвижной части на 100 мм. Изменение емкости определяют расчетным путем.

Источник

Меры электрических величин

Мерой называется средство измерений, предназначенное для воспроизведения физической величины данного размера, например измерительная катушка сопротивления, конденсатор, гиря.

Набор мер представляет собой специально подобранный комплект мер для воспроизведения ряда одноименных величин различного размера (например, магазины сопротивлений, емкостей и т.д.).

В зависимости от степени точности и области применения меры подразделяются на эталоны, образцовые меры и рабочие меры.

Эталон – это средство измерений, обеспечивающее воспроизведение и хранение единицы физической величины для передачи ее размера другим средствам измерений.

Эталоны в свою очередь подразделяются на первичные обеспечивающие воспроизведение единицы с наивысшей достижимой в стране точностью и вторичные, значение которых устанавливается по первичному эталону. Вторичные эталоны обычно являются рабочими эталонами и предназначены для поверки образцовых средств измерения.

Образцовые меры – это средства измерений, предназначенные для поверки и градуировки рабочих мер и измерительных приборов. Они могут быть также использованы для выполнения точных измерений.

В зависимости от точности образцовые меры подразделяются на три разряда:

первого разряда – наиболее точные, которые поверяются непосредственно по рабочим эталонам;

второго разряда – точные, которые поверяются по образцовым мерам первого разряда;

третьего разряда – точные, которые поверяются по образцовым средствам второго разряда.

Рабочие меры – это средства измерений, которые используются для поверки измерительных приборов, а также для выполнения измерений на промышленных предприятиях и в научных организациях.

Для нас наибольший интерес представляют меры единиц электрических величин, к которым можно отнести меры электродвижущей силы (ЭДС), меры электрического сопротивления, меры индуктивности и взаимной индуктивности, меры емкости.

В качестве мер ЭДС применяются нормальные элементы различных классов точности. Это специальные гальванические элементы, ЭДС которых точно известна. Различают элементы с насыщенным и ненасыщенным раствором сернокислого кадмия. Предпочтение отдается элементам с насыщенным раствором кадмия, т.к. у них стабильность ЭДС значительно выше. Она находится в пределах 1,0185 – 1,0187 В и в течение года не должна измениться более, чем на 50 мкВ. Классы точности таких элементов 0,001, 0,002 и 0,005.

У элементов с ненасыщенным раствором кадмия меньше внутреннее сопротивление и они меньше зависят от изменений температуры. Их ЭДС лежит в пределах 1,0186 – 1,0194 В при допустимом изменении в течение года не более, чем на 200 мкВ.. Они имеют класс точности 0,02.

Нормальные элементы нельзя трясти и опрокидывать, они должны быть защищены от сильных источников света и тепла. Температура хранения их должна быть постоянна.

Образцовые и рабочие меры электрического сопротивления выполняются в виде катушек сопротивления.

Номинальное сопротивление образцовой катушки должно удовлетворять условию R= 10 n Ом, где n – целое число. Минимальное сопротивление катушки равно 10 -5 Ом, максимальное – 10 10 Ом.

Образцовые катушки сопротивления изготавливаются из манганиновой проволоки или ленты. Манганин – это сплав меди (84%), марганца (12%) и никеля (4%). Он обладает малым температурным коэффициентом сопротивления (10 -5 / 0 С), большим удельным сопротивлением (0,45 Мом м) и малой термоэдс при контакте с медью (2 мкВ НА 1 0 С ) . Образцовым катушкам сопротивления присваивается один из следующих классов точности: 0,0005; 0,001; 0,005; 0,01; 0,02; 0,05; 0,1; 0,2. Данные числа определяют наибольшую допустимую относительную погрешность, выраженную в процентах.

Набор различных катушек сопротивлений, смонтированных в одном корпусе, образуют магазин сопротивлений.

Образцовые и рабочие меры индуктивности и взаимной индуктивности представляют собой катушки. Такие катушки должны иметь постоянство индуктивности с течением времени и обладать малым активным сопротивлением. Их индуктивность не должна зависеть от величины тока, протекающего через них, а также от частоты и температуры.

Образцовые катушки индуктивности представляют собой пластмассовый или фарфоровый каркас с наложенной на него обмоткой из медной изолированной проволоки. Использование каркаса из немагнитного материала исключает зависимость индуктивности от тока в катушке. Для уменьшения влияния внешних магнитных полей катушки экранируют. Образцовые катушки индуктивности изготавливают с пятью номинальными значениями: 1; 0,1; 0,01; 0,001; 0,0001 Г.

Катушки индуктивности и взаимной индуктивности предназначены для работы в цепях переменного тока с частотой до
10 кГц.

В качестве образцовых и рабочих мер переменной индуктивности служат вариометры. Вариометр состоит из двух катушек индуктивности, одна из которых подвижная. Путем изменения взаимного расположения катушек можно плавно изменять значение индуктивности или взаимной индуктивности.

Наборы различных катушек индуктивности, смонтированных в одном корпусе, называются магазином индуктивностей.

Образцовые и рабочие меры емкости представляют собой конденсаторы постоянной или переменной емкости. К ним предъявляются следующие основные требования: минимальная зависимость емкости от времени, температуры и частоты; малые потери в диэлектрике, характеризуемые тангенсом угла потерь; высокое сопротивление и прочность изоляции.

В наибольшей степени этим требованиям отвечают воздушные конденсаторы. Они выпускаются как постоянной, так и переменной емкости. Но воздушные конденсаторы имеют большие массу и габариты. Из-за этого меры емкости, сформированные с помощью воздушных конденсаторов, имеют значение в пределах от 0,01
до 110 пФ. Для увеличения образцовых значений емкости используют конденсаторы, у которых в качестве диэлектрика используется слюда. Такие конденсаторы позволяют получить большие емкости (до 1 мкФ) при небольших габаритах, но обладают большим тангенсом угла диэлектрических потерь.

Слюдяные конденсаторы выпускаются как в виде отдельных мер, так и в виде магазинов емкостей. Для получения суммарной емкости нескольких конденсаторов их соединяют в магазинах параллельно.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Характеристика средств измерения электрических величин

Средства измерения электрических величин

Измерением называется процесс нахождения опытным путем значения физической величины с помощью специальных технических средств. Электроизмерительные приборы широко используются при наблюдении за работой электроустановок, при контроле за их состоянием и режимами работы, при учете расхода и качества электрической энергии, при ремонте и наладке электротехнического оборудования.

Электроизмерительными приборами называют средства электрических измерений, предназначенные для выработки сигналов, функционально связанных с измеряемыми физическими величинами в форме, доступной для восприятия наблюдателем или автоматическим устройством.

Электроизмерительные приборы делятся:

  • по виду получаемой информации на приборы для измерения электрических (ток, напряжение, мощность и др.) и неэлектрических (температура, давление и др.) величин;
  • по методу измерения — на приборы непосредственной оценки (амперметр, вольтметр и др.) и приборы сравнения (измерительные мосты и компенсаторы);
  • по способу представления измеряемой информации — на аналоговые и дискретные (цифровые).

Наибольшее распространение получили аналоговые приборы непосредственной оценки, которые классифицируются по признакам: род тока (постоянный или переменный), род измеряемой величины (ток, напряжение, мощность, сдвиг фаз), принцип действия (магнитоэлектрические, электромагнитные, электро- и ферродинамические), класс точности и условия эксплуатации.

Для расширения пределов измерения электрических приборов на постоянном токе используются шунты (для тока) и добавочные сопротивления Rd (для напряжения); на переменном токе трансформаторы тока (тт) и напряжения (тн).

Используемые приборы для измерения электрических величин.

Измерение напряжения осуществляется вольтметром (V), подключаемым непосредственно на зажимы исследуемого участка электрической цепи.

Измерение тока осуществляется амперметром (А), включаемым последовательно с элементами исследуемой цепи.

Измерение мощности (W) и сдвига фаз () в цепях переменного тока производится с помощью ваттметра и фазометра. Эти приборы имеют две обмотки: неподвижную токовую, которая включается последовательно, и подвижную обмотку напряжения, включаемую параллельно.

Для измерения частоты переменного тока (f) применяются частотометры.

Для измерения и учета электрической энергии — счетчики электрической энергии, подключаемые к измерительной цепи аналогично ваттметрам.

Основными характеристиками электроизмерительных приборов являются: погрешность, вариации показаний, чувствительность, потребляемая мощность, время установления показаний и надежность.

Основными частями электромеханических приборов являются электроизмерительная цепь и измерительный механизм.

Измерительная цепь прибора является преобразователем и состоит из различных соединений активного и реактивного сопротивлений и других элементов в зависимости от характера преобразования. Измерительный механизм преобразует электромагнитную энергию в механическую, необходимую для углового перемещения его подвижной части относительно неподвижной. Угловые перемещения стрелки а функционально связано с крутящим и противодействующим моментом прибора уравнением преобразования вида:

к — конструктивная постоянная прибора;

— электрическая величина, под действием которой стрелка прибора отклоняется на угол

На основании данного уравнения можно утверждать, что если:

  1. входная величина Х в первой степени (п=1), то а будет менять знак при изменении полярности, и на частотах, отличных от 0, прибор работать не может;
  2. n=2, то прибор может работать как на постоянном, так и на переменном токе;
  3. в уравнение входит не одна величина, то в качестве входной можно выбирать любую, оставляя остальные постоянными;
  4. две величины являются входными, то прибор можно использовать в качестве множительного преобразователя (ваттметр, счетчик) или делительного (фазометр, частотометр);
  5. при двух или более входных величинах на несинусоидальном токе прибор обладает свойством избирательности в том смысле, что отклонение подвижной части определяется величиной только одной частоты.

Общими элементами являются: отсчетное устройство, подвижная часть измерительного механизма, устройства для создания вращающего, противодействующего и успокаивающего моментов.

Отсчетное устройство имеет шкалу и указатель. Интервал между соседними метками шкалы называют делением.

Цена деления прибора представляет собой значение измеряемой величины, вызывающее отклонение стрелки прибора на одно деление и определяется зависимостями:

Шкалы могут быть равномерными и неравномерными. Область между начальным и конечным значениями шкалы называют диапазоном показаний прибора.

Показания электроизмерительных приборов несколько отличаются от действительных значений измеряемых величин. Это вызвано трением в измерительной части механизма, влиянием внешних магнитных и электрических полей, изменением температуры окружающей среды и т.д. Разность между измеренным Аи и действительным Ад значениями контролируемой величины называется абсолютной погрешностью измерений:

Так как абсолютная погрешность не дает представления о степени точности измерений, то используют относительную погрешность:

Поскольку действительное значение измеряемой величины при измерении неизвестно, для определения и можно воспользоваться классом точности прибора.

Амперметры, вольтметры и ваттметры подразделяются на 8 классов точности: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0. Цифра, обозначающая класс точности, определяет наибольшую положительную или отрицательную основную приведенную погрешность, которую имеет данный прибор. Например, для класса точности 0,5 приведенная погрешность составит ±0,5%.

Технические характеристики амперметров

Наименование параметра Амперметры Э47 Вольтметры Э47
Система электромагнитная электромагнитная
Способ вывода информации аналоговый аналоговый
Диапазон измерений 0. 3000 А 0. 600 В
Способ установки на панель щита на панель щита
Способ включения 100 А-через трансформатор тока с вторичным током 5 А непосредственный
Класс точности 1,5 1,5
Предел допускаемой основной погрешности приборов, % ±1,5 ±1,5
Номинальное рабочее напряжение, не более 400 В 600 В
Допустимая длительная перегрузка (не более 2 ч) 120% от конечного значения диапазона измерений 120% от конечного значения диапазона измерений
Средняя наработка до отказа, не менее, ч 65000 65000
Средний срок службы, не менее, лет 8 8
Температура окружающего воздуха, °С 20±5 20±5
Частота измеряемой величины, Гц 45. 65 45. 65
Положение монтажной плоскости вертикальное вертикальное
Габариты, мм 72x72x73,5 96x96x73,5 72x72x73,5 96x96x73,5

Электроизмерительные приборы (амперметры и вольтметры) серии Э47

Применяются в низковольтных комплектных устройствах в распределительных электрических сетях жилых, коммерческих и производственных объектов.

Амперметры Э47 — аналоговые электромагнитные электроизмерительные приборы — предназначены для измерения силы тока в электрических цепях переменного тока.

Вольтметры Э47 — аналоговые электромагнитные электроизмерительные приборы — предназначены для измерения напряжения в электрических цепях переменного тока.

Широкий диапазон измерений: амперметры до 3000 А, вольтметры до 600 В. Класс точности 1.5.

Амперметры, рассчитанные на измерение токов выше 50 А подключают к измеряемой цепи через трансформатор тока с номинальным вторичным рабочим током 5 А.

Принцип действия амперметров и вольтметров серии Э47

Амперметры и вольтметры Э47 относятся к приборам с электромагнитной системой. В составе имеют круглую катушку с помещенными внутрь подвижным и неподвижным сердечниками. При протекании тока через витки катушки, создается магнитное поле, намагничивающее оба сердечника. Вследствие чего.

одноименные полюса сердечников отталкиваются, и подвижный сердечник поворачивает ось со стрелкой. Для защиты от негативного влияния внешних магнитных полей, катушка и сердечники защищены металлическим экраном.

Принцип действия приборов магнитоэлектрической системы основан на взаимодействии поля постоянного магнита и проводников с током, а электромагнитной — на втягивании стального сердечника в неподвижную катушку при существовании в ней тока. Электродинамическая система имеет две катушки. Одна из катушек, подвижная, укрепляется на оси и располагается внутри неподвижной катушки.

Принцип действия прибора, возможность его работы в тех или иных условиях, возможные предельные погрешности прибора могут быть установлены по условным обозначениям, нанесенным на циферблат прибора.

Например: (А) — амперметр; (

) — переменный ток в пределах от 0 до 50А; () — вертикального положения, класс точности 1,0 и т.д.

Измерительные трансформаторы тока и напряжения имеют ферромагнитные магнитопроводы, на которых располагаются первичные и вторичные обмотки. Число витков вторичной обмотки всегда больше первичной.

Зажимы первичной обмотки трансформатора тока обозначают буквами Л1 и Л2 (линия), а вторичной — И1 и И2 (измерение). По правилам техники безопасности один из зажимов вторичной обмотки трансформатора тока, так же, как и трансформатора напряжения, заземляют, что делается на случай повреждения изоляции. Первичную обмотку трансформатора тока включают последовательно с объектом, у которого проводят измерения. Сопротивление первичной обмотки трансформатора тока мало по сравнению с сопротивлением потребителя. Вторичная обмотка замыкается на амперметр и токовые цепи приборов (ваттметр, счетчик и т. д.). Токовые обмотки ваттметров, счетчиков и реле рассчитывают на 5А, вольтметры, цепи напряжения ваттметров, счетчиков и обмоток реле — на 100 В.

Сопротивления амперметра и токовых цепей ваттметра невелики, поэтому трансформатор тока работает фактически в режиме короткого замыкания. Номинальный ток вторичной обмотки равен 5А. Коэффициент трансформации трансформатора тока равен отношению первичного тока к номинальному току вторичной обмотки, а у трансформатора напряжения — отношению первичного напряжения ко вторичному номинальному.

Сопротивление вольтметра и цепей напряжения измерительных приборов всегда велико и составляет не менее тысячи Ом. В связи с этим трансформатор напряжения работает в режиме холостого хода.

Показания приборов, включенных через трансформаторы тока и напряжения, необходимо умножать на коэффициент трансформации.

Трансформаторы тока ТТИ

Трансформаторы тока ТТИ предназначены: для применения в схемах учета электроэнергии при расчетах с потребителями; для применения в схемах коммерческого учета электроэнергии; для передачи сигнала измерительной информации измерительным приборам или устройствам защиты и управления. Корпус трансформатора выполнен неразборным и опломбирован наклейкой, что делает невозможным доступ ко вторичной обмотке. Клеммные зажимы вторичной обмотки закрываются прозрачной крышкой, что обеспечивает безопасность при эксплуатации. Кроме того, крышку можно опломбировать. Это особенно важно в схемах учета электроэнергии, так как позволяет исключить несанкционированный доступ к клеммным зажимам вторичной обмотки.

Встроенная медная луженая шина у модификации ТТИ-А — дает возможность подключения как медных, так и алюминиевых проводников.

Номинальное напряжениe — 660 В; номинальная частота сети — 50 Гц; класс точности трансформатора 0,5 и 0,5S; номинальный вторичный рабочий ток — 5А.

Технические характеристики трансформаторов ТТИ

Модификации трансформаторов Номинальный первичный ток трансформатора, А
ТТИ-А 5; 10; 15; 20; 25; 30; 40; 50; 60; 75; 80; 100; 120; 125; 150; 200; 250; 300; 400; 500; 600; 800; 1000
ТТИ-30 150; 200; 250; 300
ТТИ-40 300; 400; 500; 600
ТТИ-60 600; 750; 800; 1000
ТТИ-85 750; 800; 1000; 1200; 1500
ТТИ-100 1500; 1600; 2000; 2500; 3000
ТТИ-125 1500; 2000; 2500; 3000; 4000; 5000

Электронные аналоговые приборы представляют собой сочетание различных электронных преобразователей и магнитоэлектрического прибора и служат для измерения электрических величин. Они обладают высоким входным сопротивлением (малым потреблением энергии от объекта измерения) и высокой чувствительностью. Используются для измерения в цепях повышенной и высокой частоты.

Принцип действия цифровых измерительных приборов основан на преобразовании измеряемого непрерывного сигнала в электрический код, отображаемый в цифровой форме. Достоинствами являются малые погрешности измерения (0.1-0,01 %) в широком диапазоне измеряемых сигналов и высокое быстродействие от 2 до 500 измерений в секунду. Для подавления индустриальных помех они снабжены специальными фильтрами. Полярность выбирается автоматически и указывается на отсчетном устройстве. Содержат выход на цифропечатающее устройство. Используются как для измерения напряжения и тока, так и пассивных параметров — сопротивление, индуктивность, емкость. Позволяют измерять частоту и ее отклонение, интервал времени и число импульсов.

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector