Меню

Средства контроля измерения приборы для измерения уровня



Контрольно-измерительные приборы

Контрольно-измерительный прибор — средстство измерения, предназначенное для получения значений измеряемой физической величины в установленном диапазоне. Часто контрольно-измерительным прибором называют средство измерений для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия оператора.

Назначение контрольно-измерительных приборов (КИП) состоит в том, чтобы целенаправленным образом преобразовать исследуемые величины в форму, которая окажется наиболее удобной при конкретном использовании (или непосредственном восприятии) машиной или человеком.
К примеру, говоря о назначении контрольно-измерительных приборов, связанных с электроизмерениями (амперметры, гальванометры, вольтметры и проч.), надо понимать, что изучаемые электрические величины (количественно оценить изменения которых органы человеческих чувств непосредственно не способны) с их помощью преобразуются в определенные механические перемещения соответствующих указателей, в качестве которых выступают стрелка или световой луч. Аналогично и для преобразуемых в механические перемещения физических величин (в частности, пружинные манометры, волосяные гигрометры, ртутные термометры и проч.).
Соответствующее назначение контрольно-измерительных приборов должно подкрепляться уверенностью в получаемых данных, в процедурах исследований и контроля, для чего необходимо подтверждение пригодности аппаратуры для использования с точностью и по принятым эталонам.

Все контрольно-измерительные приборы можно классифицировать на различные группы по следующим признакам:

род измеряемой величины;
— способ отсчета;
— вид шкалы;
— метрологическое назначение.

Выделяют следующие группы контрольно-измерительных приборов в соответствии с родом измеряемой величины:
приборы для измерения линейно-угловых величин (линейки, рулетки, курвиметры, угломеры, уровни, микрометры, штангенциркули);
весоизмерительная техника:
1) меры массы (гири);
2) весоизмерительные приборы (весы);
приборы для измерения температуры:
1) контактный метод (термометры);
2) бесконтактный метод (тепловизоры, пирометры);
приборы для измерения давления, а также расхода вещества (деформационные манометры, дифференциальные манометры, преобразователи давления, расходомеры);
приборы химического анализа (газоанализаторы, ph-метры, алкометры);
электроизмерительные приборы (амперметры, вольтмаетры, омметры);
геодезические приборы (нивелиры оптические, построители лазерных плоскостей, нивелиры ротационные, теодолиты оптические, теодолиты электронные);
приборы для измерения физико-химических величин (анемометры, влагомеры, гигрометры, ареометры);
— прочее.

По способу отсчета все контрольно-измерительные приборы можно подразделить на следующие группы:
компарирующие приборы — при измерении этими приборами необходимо участие человека, в них происходит сравнивание измеряемой величины с мерой, эталонной величиной (пример: рычажные весы);
показывающие приборы — величина измеряемого параметра уазывается отсчетным устройством (пример: дальномер);
регистрирующие приборы — значение измеряемой величины в них непрерывно или в отдельные промежутки времени записывается (пример: логгер);
суммирующие приборыили интеграторы — в них происходитнепрерывное суммирование мгновенных значений измеряемого параметра (пример: счетчик электроинергии);
комбинированные приборы — они могут одновременно показывать и записывать величину измеряемого параметра (пример: секундомер).

По виду шкалы все контрольно-измерительные приборы можно подразделить на следующие группы:
цифровые;
аналоговые:
1) с линейной шкалой;
2) с дуговой шкалой;
3) с профильной шкалой;
4) с барабанной шкалой;
Такие шкалы могут быть подвижные и неподвижные, равномерные и неравномерные.

По метрологическому назначению различают эталонные и рабочие контрольно-измерительные приборы.Рабочий прибор – средство измерений, предназначенное для измерений, не связанных с передачей размера единицы другим средствам измерений.
Эталонные приборы предназначены для передачи размера единицы другим измерительным приборам, что составляет главную задачу поверки. Поэтому эталонные приборы называют также средствами поверки. Средства поверки – эталоны, поверочные установки и другие средства измерений, применяемые при поверке в соответствии с установленными правилами.

Источник

Приборы для измерения уровня

Для измерения уровня жидкостей применяются специальные средства измерений – уровнемеры. Многообразие типов уровнемеров, принцип действия которых основан на различных физических методах, объясняется разнообразием свойств измеряемых жидкостей.

Наибольшее распространение получили следующие виды уровнемеров:

1. Уровнемеры с визуальным отсчетом;

2. Буйковые и поплавковые уровнемеры;

3. Гидростанические уровнемеры;

4. Пьезометрические уровнемеры;

5. Дифманометрические уровнемеры;

6. Радиоактивные уровнемеры;

7. Акустические и ультразвуковые уровнемеры;

8. Емкостные уровнемеры.

Уровнемер с визуальным отсчетом — уровнемер, основанный на визуальном измерении высоты уровня жидкости. Уровень жидкости измеряют в стеклянной трубке, сообщающейся с контролируемым сосудом в нижней, а иногда и в верхней части, или же при помощи прозрачной вставки, помещенной в стенке контролируемого сосуда, например, барабанно-парового котла

Буйковый уровнемер – уровнемер, принцип действия которого основан на измерении перемещения буйка или силы гидростатического давления, действующей на буек (силы Архимеда).

Буек в отличие от поплавка не плавает на поверхности жидкости, а погружен в жидкость и перемещается в зависимости от ее уровня.

Буйковые уровнемеры наиболее часто применяются для измерения уровня однородных, в том числе агрессивных, жидкостей, находящихся при высоких рабочих давлениях (до 32 МПа), широком диапазоне температур (от –200 до +600 °С) и не обладающих свойствами адгезии (прилипания) к буйкам.

Главной особенностью буйковых уровнемеров является возможность измерения уровня границы раздела двух жидкостей.

Недостатком буйковых уровнемеров являются зависимость их точности от плотности и температуры измеряемой среды, ограниченность использования для больших (свыше 16 м) диапазонов измерения уровней жидкостей и жидкостей, обладающих адгезией к буйку.

Пьезометрический уровнемер – уровнемер, принцип действия которого основан на преобразовании гидростатического давления жидкости в давление воздуха, подаваемого от постороннего источника и барботирующего через слой жидкости.

У этого уровнемера чувствительный элемент не находится в непосредственном контакте с измеряемой средой, а воспринимает гидростатическое давление через воздух, что является его достоинством.

Для пьезометрических уровнемеров также характерна погрешность измерения из-за изменения плотности измеряемой среды.

Гидростатический уровнемер – уровнемер, принцип действия которого основан на измерении манометром или напоромером гидростатического давления жидкости, зависящего от высоты ее уровня.

Уровнемеры этого вида обычно используют для измерения неагрессивных, незагрязненных жидкостей, находящихся под атмосферным давлением.

Для измерения уровней агрессивных сред используют специальные разделительные устройства.

Недостатком гидростатических уровнемеров является погрешность измерения при изменении плотности жидкости.

Поплавковый уровнемер – уровнемер, принцип действия которого основан на измерении перемещения поплавка, плавающего на поверхности жидкости (поплавок как бы отслеживает уровень жидкости).

Поплавковые уровнемеры не пригодны для вязких жидкостей (дизельного топлива, мазута, смол) из-за залипания поплавка, обволакивания его вязкой средой.

При измерении уровня криогенных жидкостей из-за кипения верхнего слоя возникает вибрация поплавка, что приводит к искажениям результатов измерения.

Наиболее часто поплавковые уровнемеры используют для измерения уровней в больших открытых резервуарах, а также в закрытых резервуарах с низким давлением.

Применение магнитной связи для передачи перемещения поплавка позволяет герметизировать вывод передачи в измерительный блок, упростить конструкцию, повысить надежность, измерять уровень в резервуарах под давлением.

Дифманометрический уровнемер — гидростатический уровнемер, в котором гидростатическое давление измеряют при помощи дифференциального манометра. Часто используется для измерения уровня в емкостях под избыточным давлением.

Акустический уровнемер — уровнемер, основанный на зависимости интенсивности поглощения или времени распространения акустических колебаний от высоты уровня жидкости или сыпучего вещества

Ультразвуковой уровнемер — акустический уровнемер, работающий на звуковых колебаниях высокой частоты

Емкостной уровнемер – уровнемер, принцип действия которого основан на различии диэлектрической проницаемости жидкости и воздуха.

В связи с этим по мере погружения электродов датчика уровнемера в жидкость изменяется емкость между ними пропорционально уровню жидкости в резервуаре.

Остановимся на некоторых типах уровнемеров подробней.

Уровнемеры буйковые

Настройка уровнемеров на заданные пределы измерения проводится с помощью грузов путем имитации гидростатической выталкивающей силы, соответствующей верхнему пределу измерений.

Расчетное значение давления, соответствующее верхнему пределу измерений,

Расчет массы грузов для буйковых уровнемеров:

для раздела фаз

где d – диаметр буйка испытываемого уровнемера, см; Hmax – верхний предел измерения уровня жидкости, см; ρж – плотность измеряемой жидкости, г/см3; ρ н.ж, ρ в.ж — плотности соответственно нижней и верхней измеряемой жидкости в случае измерения уровня раздела фаз, г/см3.

Пьезометрические уровнемеры.

В пьезометрических системах измерения уровня для продувания через трубку помещенную в жидкость, дозированного расхода воздуха. Принцип действия этого регулятора основан на автоматическом поддержании постоянного перепада давления на дросселе, в результате чего обеспечивается постоянный расход воздуха через этот дроссель.

Принципиальная пьезометрическая схема измерения уровня в открытом резервуаре представлена на рисунке 2, а, б, в, г.

На рисунке 2, д показана принципиальная пьезометрическая схема измерения уровня жидкости в резервуаре, находящемся под давлением. Для исключения влияния давления в резервуаре на показания прибора, измеряющего уровень жидкости, применяется дифференциальный метод измерения с двумя регуляторами расхода. От одного регулятора расхода воздух подается в пьезометрическую трубку, от другого в верхнюю часть резервуара над жидкостью. Разность давлений в трубках, пропорциональная уровню жидкости, измеряется дифманометром.

В системах измерения нижний конец пьезотрубки должен находится на нижнем контролируемом уровне жидкости, но не ниже 80 мм от дна резервуара.

Расход воздуха устанавливается минимальным, чтобы перепад давления на пьезотрубке был возможно меньшим, так как это определяет погрешность измерения пьезометрическим методом.

Минимальный расход воздуха обеспечивается постоянным, без запаздывания, выходом воздуха из пьезометрической трубки при изменениях уровня. Обычно расход воздуха принимается равным 0,1 – 0,2 м3/ч.

Если пренебречь перепадом давления на пьезометрической трубке, то уровень в резервуаре

где Р – давление на манометре М или перепад давления на дифманометре; ρ – плотность жидкости; g – ускорение свободного падения.

В случае, когда измеряется уровень в резервуаре, находящемся под избыточным давлением, давление питания регулятора расхода воздуха, подающего воздух в пьезотрубку, должно быть:

где Ризб – избыточное давление, кПа; Нмаксρg – максимальное гидростатическое давление столба жидкости, кПа.

Рисунок 2. Обвязка пьезометрических уровнемеров.

На рисунке 2, е показан пример обвязки и монтажа пьезометрического уровнемера с подачей промывочной воды в защитную трубу. В этом случае защищается от «обрастания» нижний конец пьезотрубки, который оказывается в зоне промывочной воды и не контактирует с измеряемой жидкостью.

Гидростатические датчики уровня.

Схемы обвязки и работы гидростатических датчиков уровня представлены на рисунке 3, причем правая обвязка применяется при измерении уровня жидкости в емкости, находящейся под избыточным давлением.

Рисунок 3. Обвязка гидростатических уровнемеров.

Читайте также:  Как измерить диагональ планшета линейкой

В этом случае импульсная трубка, идущая к минусовой полости чувствительного элемента, прокладывается от места отбора давления с уклоном в верх, а в нижней части устанавливаются отстойный сосуд и разделитель мембранный РМ.

Рисунок 4. Измерение уровня в котле (100% — 4 мА/0,2 кгс/см2, 0% — 20 мА/1 кгс/см2)

Очень хорошо себя показал данный принцип измерения уровня на очень сложной позиции при измерении уровня воды в котле (рисунок 4). Обвязка при этом не классическая, а на оборот т.е. на плюсовой отбор подается отбор с верней точки котла (импульсная трубка при этом должна быть заполнена водой), на минус с нижней, и задается обратная шкала прибора (на самом приборе или вторичном оборудовании).

Источник

Измерение уровня методы измерения приборы. Методы измерения и контроля уровня. Виды уровнемеров. Сравнение и обзор уровнемеров. Список использованных источников

Уровнем называют высоту заполнения технологического аппарата рабочей средой — жидкостью или сыпучим телом . Уровень рабочей среды является технологическим параметром, информация о котором необходима для контроля режима работы технологического аппарата, а в ряде случаев для управления производственным процессом.

Путем измерения уровня можно получать информацию о массе жидкости в резервуарах. Подобная информация широко используется для проведения товароучетных операций и для управления производственным процессом. Уровень измеряют в единицах длины. Средства измерений уровня называют уровнемерами.

Экологические стандарты для очистных сооружений становятся все более жесткими. Хотя правоприменение варьируется от региона к региону, теперь как государственные, так и частные операторы очистных сооружений могут теперь нести юридическую ответственность за надлежащую эксплуатацию своих очистных сооружений. Новые правила постоянно внедряются с более высокими и более высокими стандартами безопасности и эффективности процесса обработки. Защита от переполнения резервуара и комбинированный контроль переполнения канализационных сетей являются текущими примерами, когда регуляторы предъявляют новые требования к средствам контроля уровня и приборов.

Различают уровнемеры, предназначенные для измерения уровня рабочей среды; измерений массы жидкости в технологическом аппарате; сигнализации предельных значений уровня рабочей среды — сигнализаторы уровня.

По диапазону измерения различают уровнемеры широкого и узкого диапазонов. Уровнемеры широкого диапазона (с пределами измерений 0,5-20 м) предназначены для проведения товароучетных операций, а уровнемеры узкого диапазона [пределы измерений (0÷±100) мм или (0÷ ±450) мм] обычно используются в системах автоматического регулирования.

Датчик гидростатического давления является примером преобразователя. Датчик показаний ультразвукового уровня является примером инструмента. Аналоговый сигнал 4-20 мА является наиболее распространенным, когда каждый передатчик использует пару проводов для подачи аналогового тока, пропорционального измеряемой величине. Современные серийные или цифровые передатчики быстро выходят на рынок, где ряд «многоточечных» передатчиков может передавать один и тот же провод по очереди или путем передачи данных только при «опросе» с помощью пульта дистанционного управления.

В настоящее время измерение уровня во многих отраслях промышленности осуществляют различными по принципу действия уровнемерами, из которых распространение получили поплавковые, буйковые, гидростатические, электрические, ультразвуковые и радиоизотопные. Применяются и визуальные средства измерений.

12.2. Визуальные средства измерений уровня

К визуальным средствам измерений уровня относятся мерные линейки, рейки, рулетки с лотами (цилиндрическими стержнями) и уровнемерные стекла.

Контроль насосов в влажных скважинах и отстойниках — Запасы химического хранилища — Уровень аэрации — Уровень аэробного дистибала — Уровень контактного резервуара хлора — Уровень резервуара осадка. Принцип работы приборов ультразвукового уровня довольно прост. Они используют преобразователь с комбинированной передачей и приемом. Прибор измеряет время, необходимое для того, чтобы звуковой импульс перемещался от преобразователя к цели, а затем для возврата эха. Поскольку мы знаем скорость звука в воздухе, расстояние до цели можно точно рассчитать.

В производственной практике широкое применение получили уровнемерные стекла. Измерение уровня с помощью уровнемерных стекол (рис. 12.1, а) основано на законе сообщающихся сосудов. Указательное стекло 1 с помощью арматуры соединяют с нижней и верхней частями емкости. Наблюдая за положением мениска жидкости в трубке 1, судят о положении уровня жидкости в емкости, Для исключения дополнительной погрешности, обусловленной различием температуры жидкости в резервуаре и в стеклянной трубке, перед измерением осуществляют промывку уровнемерных стекол. Для этого предусмотрен вентиль 2. Арматура уровнемерных стекол оснащается предохранительными клапанами, обеспечивающими автоматическое перекрывание каналов, связывающих указательное стекло с технологическим аппаратом при случайной поломке стекла. Из-за низкой механической прочности уровнемерные стекла обычно выполняют длиной не более 0,5 м. Поэтому для измерения уровня в резервуарах (рис. 12.,6) устанавливается несколько уровнемерных стекол с тем расчетом, чтобы они перекрывали друг друга. Абсолютная погрешность измерения уровня уровнемерными стеклами ± (1-2) мм. При измерении возможны дополнительные погрешности, связанные с влиянием температуры окружающей среды. Уровнемерные стекла применяются до давлений 2,94 МПа и до температуры 300°С.

Ультразвуковые приборы уровня стали одной из самых популярных технологий, используемых при обработке сточных вод. Очевидным преимуществом является то, что они используют бесконтактный акустический датчик. Это означает минимальное загрязнение датчиков и, как следствие, незначительное или полное отсутствие технического обслуживания. Ультразвук также обеспечивает относительно высокую точность при низких затратах.

Непрерывное измере­ние уровня

Принятие ультразвуковых инструментов в очистке сточных вод не получилось легко. Ранние преобразования в ультразвуковые приборы были пионерами, часто развивая навыки калибровки, установки и обслуживания, которые были переданы производителям. С появлением микропроцессоров ультразвуковая технология перешла в основное русло измерительной техники, где сегодня она является одной из наиболее распространенных и предпочтительных техник, используемых на очистных сооружениях. Многие из характеристик, уникальных для ультразвука, могут управляться автоматически с помощью алгоритмов обработки сигналов, запрограммированных в каждом инструменте.

Практическая работа № 2

Тема: изучение принципа действия уровнемеров.

Цель: изучить принцип действия уровнемеров.

Уровнемер — прибор, предназначенный для определения уровня содержимого в открытых и закрытых резервуарах, хранилищах и так далее. Под содержимым подразумеваются разнообразные виды жидкостей, в том числе и газообразующие, а также сыпучие и другие материалы. Уровнемеры так же называют датчиками/сигнализаторами уровня, преобразователями уровня. Главное отличие уровнемера от сигнализатора уровня — это возможность измерять градации уровня, а не только его граничные значения.

Выбор метода измерения с учетом применения

Сегодняшние операторы могут успешно использовать ультразвуковой прибор, если предполагается, что прибор правильно применен и установлен. Более низкие частоты используются датчиками, измеряющими наибольшие диапазоны, в то время как более высокие частоты лучше всего подходят для коротких диапазонов измерений.

Ультразвуковые приборы уровня имеют прямое слепое пространство перед датчиком. Производители часто описывают его как «мертвую зону» датчика или «зону гашения». Как правило, чем ниже частота, тем дальше будет расширяться это глухое пространство. Ультразвуковые преобразователи генерируют звук, когда керамический кристалл активируется импульсом электричества. Кристалл вибрирует и излучает акустическую волну давления — как стереодинамик. Но, следуя закону импульса, когда он приводится в движение, кристалл продолжает колебаться в течение короткого периода времени — на миллисекундах.

Существует несколько методов измерения уровня жидкости, имеющих свои технологические возможности, основанных на различных физических принципах действия и обладающих как рядом преимуществ, так и недостатками. По принципу действия уровнемеры для жидкостей разделяются на механические, гидростатические, электрические, акустические, радиоактивные.

Эхосигналы, полученные от мишеней, слишком близких к преобразователю, будут возвращаться очень быстро и поступать до того, как кристалл перестанет вибрировать от его передаваемого импульса. Отсюда слепое пространство или «мертвая зона». Ультразвуковые датчики также имеют «ширину луча» или «угол луча», которые вы найдете в спецификациях производителя. Этот фактор в ультразвуке часто неправильно понимается, но имеет решающее значение для успешной работы ультразвуковых приборов.

Приборы для измерения уровня

По соглашению изготовители определяют угол ширины луча датчика на -3 дБ. Но звуковая энергия очень легко рассеивается. Он заполняет соседнее пространство и отражается от всех жестких поверхностей, с которыми он контактирует. Хорошим повседневным примером является то, что вы можете столкнуться лицом к стене и поговорить в закрытой комнате, и кто-нибудь из вас в комнате не составит труда услышать вас.

В настоящий момент существуют следующие устройства для измерения уровня жидкости:

Поплавковые, в которых для измерения уровня используется поплавок или другое тело, находящееся на поверхности жидкости;

Буйковые, в которых для измерения уровня используется массивное тело (буёк), частично погружаемое в жидкость;

Ёмкостный метод определенияпредельного уровня

Поэтому изготовители ультразвуков проектируют свои преобразователи, чтобы сосредоточить как можно больше энергии в узком конусе, исходящем от датчика. Ширина этого конуса при половине мощности — это «угол луча». Программное обеспечение обработки сигнала инструмента играет не менее важную роль в минимизации эхо-сигналов от смежных целей. Каждый производитель разработал собственные методы обработки сигналов, которые часто запатентованы или тесно связаны с коммерческой тайной. Ультразвуковая технология также используется для точечного контроля уровня с датчиками типа «зазор», где может быть обнаружено присутствие жидкости в зазоре между кристаллами передачи и приема.

Гидростатические, основанные на измерении гидростатического давления столба жидкости;

Электрические, в которых величины электрических параметров зависят от уровня жидкости;

Ультразвуковые, основанные на принципе отражения от поверхности звуковых волн;

Радарные и волноводные, основанные на принципе отражения поверхности сигнала высокой частоты (СВЧ);

Дискретное измерение уровня

Применения в очистке сточных вод предназначены для сигнализации высокого уровня в резервуарах для хранения химических веществ. Аналогичные ультразвуковые датчики с зазором могут также использоваться для измерения уровня осадка. Влажные колодцы и отстойники — инвентарь химического резервуара.

Визуальные средства измерений уровня

Имея доступ к нижней части резервуара, уровни жидкости часто измеряются датчиками давления. Они работают, измеряя вес или давление, оказываемое на сенсорную мембрану жидкостью над датчиком. Доступны три типа датчиков давления. Дифференциал — когда открытая сторона диафрагмы соединена с давлением, отличным от атмосферы.

Радиоизотопные, основанные на использовании интенсивности потока ядерных излучений, зависящих от уровня жидкости.

Помимо классификации уровнемеров по принципу действия, эти приборы делятся на:

Приборы для непрерывного слежения за уровнем (непрерывное измерение);

Читайте также:  Как можно измерить температуру обычным градусником

Приборы для сигнализации о предельных значениях уровня (дискретный контроль).

Абсолютный — где открытая сторона закрыта. Чем выше уровень жидкости, тем больше сила, действующая на диафрагму датчика давления. Типичная точность ± 25% от полной шкалы датчика. Резервуары под давлением можно также измерить, подключив вентиляционную сторону «дифференциального» датчика давления к паровому пространству в верхней части бака.

Более легкие весовые жидкости оказывают меньшее давление на датчик давления, чем тяжелые жидкости, поэтому для правильного расчета уровня необходимо знать удельный вес жидкости. Жидкости также расширяются и сжимаются относительно температуры. Датчики давления не могут обнаружить это изменение, потому что вес или давление, оказываемые на датчик, не изменятся.

К приборам непрерывного слежения относятся — уровнемеры-указатели, преобразователи уровня, указатели уровня жидкости.

К приборам для сигнализации о предельных значениях уровня относятся — сигнализаторы уровня, реле уровня, переключатели уровня, датчики предельного уровня. Рассмотрим каждый вид уровнемеров на предмет их принципа действия, области применения и их достоинства и недостатки.

Некоторые модели включают в себя регулировочные потенциометры, позволяющие операторам обрезать выходные данные в соответствии с их применением. Кабель укреплен так, что нет растяжения, а также содержит небольшую воздушную трубку, чтобы датчик мог ссылаться на давление жидкости до атмосферного давления. Наращивание твердых тел на поверхности или вокруг поверхности датчика давления уменьшит его чувствительность и вызовет ошибки измерения. Датчики давления обычно выбираются для относительно чистых жидкостей.

Измерение уровня в емкостях и резервуарах

Некоторые производители разработали конструкции с диафрагмами с заподлицой и диафрагмами большего диаметра или методами установки, которые защищают сенсорную мембрану от накопления твердых частиц. С помощью этой функции датчики давления могут использоваться в системах с высоким содержанием твердых веществ, таких как уровень осадка.

Простейший уровнемер (визуальный) — водомерное стекло, в котором использован принцип сообщающихся сосудов, служит для непосредственного наблюдения за уровнем жидкости в закрытом сосуде. Указательное стекло соединяют с сосудом нижним концом (для открытых сосудов) или обоими концами (для сосудов с избыточным давлением или разрежением). Наблюдая за положением уровня жидкости в стеклянной трубке, можно судить об изменении уровня в сосуде. Стёкла комплектуют вентилями или кранами для отключения их от сосуда и продувки системы.

Поскольку датчики давления полагаются на физическое отклонение или деформацию материала, поддерживающего тензодатчик, со временем может наблюдаться некоторый дрейф. Большинство производителей ссылаются на этот эффект в своих спецификациях. Типичная «стабильность» датчиков давления составляет ± 5% от диапазона в течение 6 месяцев. В тех случаях, когда точность важна, технические специалисты прибора устанавливают график технического обслуживания, чтобы датчики давления периодически откалибровали. Большинство операторов сообщают общую установленную точность ± 1% от полной шкалы.

Не рекомендуется использовать указательные стекла длиной более 0,5 м, поэтому при контроле уровня, изменяющегося больше чем на 0,5 м, устанавливают несколько стекол таким образом, чтобы верх предыдущего стекла перекрывал низ последующего.

В настоящее время водомерные стекла используются на предприятиях, где применяются паровые агрегаты (например котельные, компрессорные, теплостанции и другие).

Влажные колодцы и отстойники — Дифференциальный уровень экрана экрана. Бульберы измеряют глубину жидкости, заставляя воздух опускать трубку, установленную в бак или влажную скважину. Воздух сбрасывается или пузырится из трубки на его отверстии около дна сосуда. Давление, необходимое для забора воздуха по трубе, пропорционально уровню жидкости.

Ленточные уровнемеры и системы

Бульберы часто используются в очистке сточных вод для бассейновых и влажных скважин. Они идеально подходят для глубоких влажных скважин, узких сосудов или резервуаров с большим количеством препятствий. Пузырьковая трубка может быть опущена и механически закреплена на боковине. Большинство жидкостей, в том числе сточных вод с высоким содержанием твердых веществ, образуют кристаллизованные отложения в точке сброса пузырьковой трубки. Наращивание отложений вызовет неустойчивые показания и, в конечном счете, заблокирует пузырьковую трубку.

Поплавковые и буйковые уровнемеры

Поплавковые и буйковые уровнемеры относятся к механическим.

Поплавковые — уровнемеры с чувствительным элементом (поплавком), тогда измерение происходит по оценке положения предмета на поверхности жидкости относительно двух точек измерений.

Буйковые уровнемеры, принцип действия которых основан на измерении выталкивающей силы, действующей на буёк (закон Архимеда). Перемещение поплавка или буйка через механические связи или систему дистанционной (электрической или пневматической) передачи сообщается измерительной системе прибора.

Большинство моделей предлагают регулировку времени между циклами — от нескольких секунд до часа. Между циклами измеряется статическое давление в пузырьковой трубке. Сведение к минимуму количества воздуха, выходящего из пузырьковой трубки, уменьшает образование отложений в пузырьковой трубке. Типичная точность ± 5% от полной шкалы. Приложения общего уровня — инвентарь химического резервуара.

Емкостные датчики доступны для обнаружения точечного уровня или для непрерывного измерения уровня с длинным зондом, погруженным в резервуар или силос. Датчики емкостей обычно состоят из изолированных электрических проводников и используют радиосигнал на датчике. Для расчета уровня они измеряют изменение электрической емкости между датчиком и землей — обычно стенкой резервуара. Это изменение относится к уровню или глубине погружения датчика.

1 – поплавок, 2 – поплавковый гибкий трос, 3 – груз, 4 – шкала.

Рис. 2. Поплавковые уровнемеры с плавающим поплавком

Поплавковые измерительные приборы делятся на уравнемеры узкого и широкого диапазонов.

Поплавковые уровнемеры узкого диапазона представляют собой устройства, содержащие шарообразный поплавок, выполненный из нержавеющей стали, который плавает на поверхности жидкости и через штангу и специальное уплотнение соединяется или со стрелкой измерительного прибора, или с преобразователем угловых перемещений в унифицированный электрический или пневматический сигналы.

Поплавковые уровнемеры широкого диапазона представляют из себя поплавок, связанный с противовесом гибким тросом, в нижней части противовеса укреплена стрелка, указывающая значения уровня жидкости в резервуаре.

Важной характерной особенностью поплавковых уровнемеров, является высокое разрешение прибора 0,1 мм и точность измерений — 1 мм.

Область применения поплавкового метода измерения уровня очень широка. Его нельзя применять только в средах, образующих налипание, а также -отложение осадка на поплавок.

Типичным применением поплавковых уровнемеров является измерение уровня топлива, масел, легких нефтепродуктов в относительно небольших емкостях и цистернах. Поплавковый метод может с успехом применяться в случае пенящихся жидкостей, а для липких сред существуют вибрационные поплавковые указатели уровня жидкости.

Вывод: выполняя данную работу, я я ознакомилась с принципом действия уровнемеров.

Измерение уровня гидростатическими уровнемерами основано на уравновешивании давления столба жидкости в резервуаре давлением столба жидкости, которая заполняет измерительный прибор, или реакцией пружинного механизма прибора.

Рис. 3. Уровнемер-манометр с трубчатой пружиной

Измерение гидростатического давления осуществляется:

датчиком избыточного давления (манометром), подключаемым на высоте, соответствующей нижнему предельному значению уровня;

дифференциальным манометром, подключаемым к резервуару на высоте, соответствующей нижнему предельному значению уровня, и к газовому пространству над жидкостью;

измерением давления газа (воздуха), прокачиваемого по трубке, опущенной в заполняющую резервуар жидкость на фиксированное расстояние (пьезометрический метод).

Наиболее широкое распространение получили приборы измерения уровня с использованием дифференциальных датчиков давления (дифманометров). Эти схемы с успехом применяются для измерения уровня жидкости в технологических агрегатах, находящихся под избыточным давлением.

По конструкции гидростатические датчики делятся на два типа: стационарные (мембранные) или погружные (колокольные). В первом случае датчик соединен с мембраной и прибор устанавливается внизу емкости. В случае погружного датчика чувствительный элемент погружен в рабочую среду и передает давление жидкости на сенсор через столб воздуха запаянный в подводящей трубке.

Типичное применение гидростатических уровнеметров — для однородных жидкостей в емкостях без существенного движения рабочей среды, а также ждя паст и вязких жидкостей. С помощью дифференциальных датчиков давления возможно также измерение уровня жидкости в открытых резервуарах, уровня раздела жидкостей.

К достоинствах данных уровнемеров можно отнести простоту конструкции и дешевизну. Однако у гидрастатических указателей уровня жидкости есть существенные недостатки — относительно низкая (по сравнению с другими методами) точность измерения и ограниченность применения из-за того, что монтаж устройства на дне резервуара требует постоянной плотности среды.

В электрических уровнемерах уровень жидкости преобразуется в какой-либо электрический сигнал. Электрические уравнемеры бывают ёмкостные и кондуктометрические.

В ёмкостных уровнемерах чувствительным элементом служит преобразователь — конденсатор, ёмкость которого меняется пропорционально изменению уровня жидкости. Преобразователи выполняют цилиндрического и пластинчатого типов, а также в виде жесткого стержня. При измерении уровня агрессивных, но неэлектропроводных жидкостей обкладки преобразователя выполняют из химически стойких сплавов или покрывают тонкой антикоррозионной пленкой. Покрытие обкладок тонкими пленками применяют также при измерении уровня электропроводных жидкостей.

Действие кондуктометрического (омического) указателя уровня жидкости основано на измерении сопротивления между электродами, помещенными в измеряемую среду (одним из электродов может быть стенка резервуара или аппарата). Прибор представляет собой электромагнитное реле, включаемое в цепь между электродом и контролируемым материалом.

Омические уровнемеры используют для сигнализации и поддержания в заданных пределах уровня исключительно электропроводных жидкостей в емкостях, бойлерах, контейнерах или открытых каналах, а также для управления насосами в дренажах, водных установках и емкостях.

В акустических, или ультразвуковых, уровнемерах используется явление отражения ультразвуковых колебаний от плоскости раздела контролируемая среда (жидкость) — газ. Эти приборы отличаются по диапазонам измерения, версиями датчика и имеют разные технологические присоединения.

Прибор состоит из электронного блока (ЭБ), пьезоэлектрического излучателя (преобразователя) и вторичного прибора.

Электронный блок состоит из генератора, задающего частоту повторения импульсов, генератора импульсов, посылаемых в измеряемую среду, приемного усилителя и измерителя времени. Электрический импульс, преобразованный в ультразвуковой в излучателе, распространяется в газовой среде, отражается от границы раздела «жидкость — воздух» и возвращается обратно, воздействуя спустя некоторое время на тот же излучатель. Далее преобразуется в электрический сигнал. Оба импульса: и посланный и отраженный, разделенные во времени, поступают на усилитель.

Свойства среды не влияют на точность измерения, полученного ультразвуковым методом, поэтому ультразвуковым уровнемером может измеряться уровень агрессивных, абразивных, вязких и клейких веществ. Однако необходимо помнить, что на скорость распространения ультразвука оказывает влияние температура воздуха в среде его работы. Скорость ультразвука зависит и от состава воздуха и его влажности.

Читайте также:  Квант это единица измерения

К несомненным преимуществам использования акустических указателей уровня жидкости относятся: безконтактность, возможность использования в загрязненной среде, а также в различного вида жидкостях, отсутствие высоких требований к износостойкости и прочности оборудования, независимость от плотности жидкости.

Но есть и недостатки, на которые стоит обратить внимание: большое расхождение конуса излучения, возможность возникновения ошибок измерения при отражении от нестационарных препятствий (например, мешалок), может использоваться только в резервуарах с нормальным атмосферным давлением (что ограничевает область применения), на сигнал оказывают влияние пыль, пар, газовые смеси и пена, образующаяся на поверхности.

На данный момент есть множество самых различных методов измерения уровня, дающих возможность получать информацию как о предельных, так и о текущих его значениях. Однако не многие в могут быть реализованы в промышленных системах. Некоторые из реализованных методов являются уникальными, и случаи их применения можно пересчитать по пальцам, другие гораздо более универсальны и потому широко используются. Но есть и методы, удачно сочетающие в себе и уникальность, и универсальность. Именно к ним относится микроволновый бесконтактный метод, в просторечии именуемый радарным.

Радарный уровнемер наиболее используемый в современном производстве. Принцип действия его основан на измерении времени переотражения от поверхности раздела газ — контролируемая среда высокочастотных радиоволн.

Результатом обработки является значение того или иного параметра объекта: дальность, скорость, направление движения или других. В радарных уровнемерах применяются СВЧ-сигналы с несущей частотой, лежащей в диапазоне от 5,8 до 26 ГГц.

В настоящее время в радарных системах контроля уровня применяются в основном две технологии: с непрерывным частотно-модулированным излучением (FMCW — frequency modulated continuous wave) и импульсным излучением сигнала.

Технология FMCW основана на реализации косвенного метода измерения расстояния. Уровнемер излучает микроволновый сигнал, частота которого изменяется непрерывно по линейному закону между двумя значениями. Отраженный от поверхности жидкости, сигнал принимается той же антенной и анализируется с помощью программного обеспечения. Его частота сравнивается с частотой сигнала, излучаемого в данный момент времени. Значение разности частот прямо пропорционально расстоянию до контролируемого объекта.

В радарах же импульсного типа применяется метод определения расстояния, основанный на непосредственном измерении времени прохождения СВЧ-импульса от излучателя до поверхности жидкости и обратно. Время прохождения сигналом расстояния в несколько метров составляет единицы наносекунд, поэтому получение точного измерения настолько малых значений требуют специальных методов обработки сигнала. Для решения этой задачи используется преобразование микроволнового импульса в ультразвуковой сигнал. В результате преобразования к обработке сигналов радарного уровнемера легко применяются схемы, которые используются в акустических указателях уровня жидкости.

При сравнении характеристик двух типов микроволновых указателей уровня, можно увидеть, что радарные уровнемеры импульсного типа обладают рядом преимуществ перед устройствами, использующими технологию FMCW: экономичность энергопотребления, меньшая стоимость, более высокая надежность (за счет меньшего количества комплектующих).

Важнейшим элементов радарного уровнемера, влияющим на формирование сигнала, является размер и тип антенны. От антенны зависит, какая часть излучённого сигнала достигнет поверхности контролируемой среды и какая часть отражённого сигнала будет принята и передана на электронный блок для обработки. В микроволновых системах контроля уровня используются антенны пяти типов: рупорная (или коническая); стержневая; трубчатая; параболическая; планарная.

Самой универсальной является рупорная. Этот тип антенны может использоваться в больших емкостях, применяется в различных (в том числе сложных) условиях, обеспечивает измерения до 35. 40 м (в условиях спокойной поверхности), позволяет работать с большим диапазоном сред по диэлектрической проницаемости.

Стержневая антенна также широко применима. Радарные уровнемеры с этим видом антенны используются в небольших емкостях: агрессивными средами, химическими веществами, гигиеническими продуктами. Стержневая антенна применима и в случае, когда доступ в емкость ограничен малыми размерами патрубка. Антенны покрыта слоем защитной изоляции, производит измерения на расстояниях до 20 м.

Трубчатая антенна — это надстроенный удлиненный волновод, из-за этого она позволяет выпускать наиболее сильный сигнал за счет снижения рассеивания. Такие антенны применяют в тех случаях, когда проведение измерения посредством рупорной или стержневой антенны связано с большими трудностями или попросту невозможно (наличин пены, сильного испарения или высокой турбулентности жидкости).

В системах коммерческого учета применяются антенны параболического и планарного типов, так как они обеспечивают особо высокую точность измерений.

На сегодняшний день радарные уровнемеры являются самыми универсальными, так как их эксплуатация обеспечивает минимальный контакт измерительного устройства с контролируемой средой, они могут работают вне зависимости от изменений температуры и давления (причем радарные указатели уровня жидкости применимы в таких условиях, в каких невозможно использование других методов).

Радарные уровнемеры имеют большую устойчивость к таким факторам как запыленность, испарения с контролируемой поверхности, пенообразование, обладают высочайшей точностью. Однако недостатком радарного метода является дороговизна таких приборов.

Волноводные уровнемеры применяются в малых и узких резервуарах, поскольку радиоимпульсы направляются по зонду, а не свободно распространяются в пространстве резервуара. В случае необходимости съемная голова датчика позволяет заменять модуль электроники, не нарушая герметичности резервуара, что может быть важно при измерении уровня сжиженных газов и аммиака.

Волноводный уровнемер состоит из следующих основных элементов: корпус, электронный модуль, фланцевое или резьбовое соединение с резервуаром и зонд. Корпус уровнемера, состоящий из двух независимых отсеков (отсек электроники и клеммный отсек для подключения кабелей), может быть снят с зонда, при этом, что немаловажно, открывать резервуар не нужно. Кроме того, корпус такой конструкции повышает надежность и безопасность уровнемера при эксплуатации в опасных производствах. Электронный модуль излучает электромагнитные импульсы, которые распространяются по зонду, выполняет обработку отраженного (принятого) сигнала и выдает информацию в виде аналогового или цифрового сигнала на встроенный жидкокристаллический индикатор или в систему измерения.

В зависимости от условий процесса производства и свойств среды, подлежащей измерению, используется один из пяти типов зондов: коаксиальный, жесткий двухстержневой, жесткий одностержневой, гибкий двухпроводный и гибкий однопроводный.

Коаксиальный зонд применяется, когда необходимо измерение уровня внешней поверхности и уровня раздела двух жидкостей, например, растворителей, спиртов, водных растворов, сжиженных газов и жидкого аммиака. Этот зонд обеспечивает самое высокое отношение сигнал/шум. Рекомендуется для измерения уровня жидкостей с низкой диэлектрической проницаемостью, в условиях турбулентности, в в условиях возникновения пены или потоков жидкости или пара вблизи зонда, так как оболочка коаксиального зонда работает как успокоительный колодец.

Двухстержневой жесткий или двухпроводной гибкий зонды рекомендуются для измерении уровня жидкостей (нефтепродукты, растворители, водные растворы и т.п.). Возможно применение для измерения уровня и раздела жидких сред. Могут применяться с более вязкими жидкостями, чем рекомендовано для коаксиального зонда. Однако не стоит применять его при наличии липких сред.

Одностержневой жесткий или однопроводной гибкий зонды менее восприимчивы к налипанию среды и образованию наростов. Они могут применяться для вязких жидкостей, взвесей, водных растворов и алкогольных напитков, а также использоваться в фармацевтической промышленности. Применяются для измерения уровня вязких жидкостей, например, сиропа, меда и т.п., а также водных растворов.

Уровнемеры с радиоизотопными излучателями делятся на две группы:

со следящей системой, для непрерывного измерения уровня;

сигнализаторы (индикаторы) отклонения уровня от заданного значения.

Принцип действия таких устройств основан на степени поглощения проходящего через вещество в резервуаре гамма-лучей, проходящих выше или ниже уровня раздела двух сред разной плотности. Приемник и излучатель радиационного излучения перемещаются по всей высоте емкости на специальных лентах с помощью реверсивного электромотора. Комплект прибора состоит из трех блоков: преобразователя, содержащего источник и приемник излучения; электронного блока; показывающего прибора.

Использование приборов с радиоизотопными излучателями целесообразно там, где другие методы измерения непригодны, так как этот метод радиационно опасен и требует дополнительных средств безопасности для персонала.

Как мы видим, при выборе уровнемера необходимо учитывать такие физические и химические свойства контролируемой среды, как температура, абразивные свойства, вязкость, электрическая проводимость, химическая агрессивность и т.д. Кроме того, следует принимать во внимание рабочие условия в резервуаре или около него: давление, вакуум, нагревание, охлаждение, способ заполнения или опорожнения (пневматический или механический), наличие мешалки, огнеопасность, взрывоопасность, пенообразование и прочие другие.

Для каждой промышленной отрасли существуют свои методы и приборы. Ознакомившись с устройством и условиями эксплуатации различных уравнемеров, можно делать выбор в пользу того или иного метода измерения уровня жидкости. Также стоит учитывать надежность, качество и стоимость приборов.

Уровнемер — прибор, для определения уровня содержимого в закрытых и открытых резервуарах, сосудах, хранилищах и других ёмкостях. Под содержимым подразумеваются разнообразные виды жидкостей, в том числе и газообразующие, а также сыпучие и другие материалы. Уровнемеры так же называют датчиками/сигнализаторами уровня, преобразователями уровня. Главное отличие уровнемера от сигнализатора уровня — это возможность измерять градации уровня, а не только его граничные значения.

Существуют разнообразные методы измерения уровня – контактные и бесконтактные.

Уровнемеры с контактными методами измерения уровня:

волноводный (стержневой) уровнемер;

Уровнемеры с бесконтактными методами измерения уровня:

уровнемеры, зондирующие звуком;

уровнемеры, зондирующие электромагнитным излучением;

уровнемеры, зондирование радиационным излучением.

Стержневой уровнемер использует микроимпульсный метод измерения уровня. Стержневой уровнемер – это надежное решение для непрерывного измерения даже в условиях турбулентности и наличия пены на поверхности продукта. Особенность конструкции стержневого уровнемера такова, что на точность измерения не влияют влажность среды, пыль, давление пара, плотность, температура, проводимость продукта и внутренние конструкции резервуара. В зависимости от модели стержневого уровнемера и исполнения возможно измерение общего и межфазного уровня.

Стержневой микроимпульсный уровнемер работает с высокочастотными электромагнитными импульсами, проходящими по всей длине измерительного зонда. Как только импульс достигает поверхности продукта, изменяется волновое сопротивление и часть энергии импульса отражается. Время между излучением и получением отраженного импульса измеряется и анализируется прибором, и на его основе вычисляется прямое значение уровня от присоединения к процессу до поверхности продукта.

Источник