Меню

Средство измерения тепловых параметров



Средство измерения тепловых параметров

ГОСТ Р 8.778-2011

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственная система обеспечения единства измерений

СРЕДСТВА ИЗМЕРЕНИЙ ТЕПЛОВОЙ ЭНЕРГИИ ДЛЯ ВОДЯНЫХ СИСТЕМ ТЕПЛОСНАБЖЕНИЯ

Метрологическое обеспечение. Основные положения

State system for ensuring the uniformity of measurements. Measuring instruments of heat energy hot-water heating systems. Metrological assurance. Main principles

Дата введения 2013-03-01

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0-2004* «Стандартизация в Российской Федерации. Основные положения»
________________
* На территории Российской Федерации документ не действует. Действует ГОСТ Р 1.0-2012. — Примечание изготовителя базы данных.

Сведения о стандарте

1 РАЗРАБОТАН Федеральным бюджетным учреждением «Государственный региональный центр стандартизации, метрологии и испытаний в Томской области» (ФБУ «Томский ЦСМ»)

2 ВНЕСЕН Управлением метрологии Федерального агентства по техническому регулированию и метрологии

4 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

1 Область применения

1 Область применения

Настоящий стандарт распространяется на средства измерений тепловой энергии и параметров теплоносителя в водяных системах теплоснабжения и устанавливает основные положения, относящиеся к их метрологическому обеспечению на стадиях жизненного цикла.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р 8.563-2009 Государственная система обеспечения единства измерений. Методики (методы) измерений

ГОСТ Р 8.591-2002 Государственная система обеспечения единства измерений. Теплосчетчики двухканальные для водяных систем теплоснабжения. Нормирование пределов допускаемой погрешности при измерениях потребленной абонентами тепловой энергии

ГОСТ Р 8.592-2002 Государственная система обеспечения единства измерений. Тепловая энергия, потребленная абонентами водяных систем теплоснабжения. Типовая методика выполнения измерений

ГОСТ Р 8.596-2002 Государственная система обеспечения единства измерений. Метрологическое обеспечение измерительных систем. Основные положения

ГОСТ Р 8.642-2008 Государственная система обеспечения единства измерений. Метрологическое обеспечение измерительных систем узлов учета тепловой энергии. Основные положения

ГОСТ Р 8.654-2009 Государственная система обеспечения единства измерений. Требования к программному обеспечению средств измерений. Основные положения

ГОСТ Р 8.674-2009 Государственная система обеспечения единства измерений. Общие требования к средствам измерений и техническим системам и устройствам с измерительными функциями

ГОСТ Р 51649-2000 Теплосчетчики для водяных систем теплоснабжения. Общие технические условия

ГОСТ Р ЕН 1434-1-2011 Теплосчетчики. Часть 1. Общие требования

ГОСТ Р ЕН 1434-2-2011 Теплосчетчики. Часть 2. Требования к конструкции

ГОСТ Р ЕН 1434-3-2011 Теплосчетчики. Часть 3. Обмен данными и интерфейсы

ГОСТ Р ЕН 1434-4-2011 Теплосчетчики. Часть 4. Испытания с целью утверждения типа

ГОСТ Р ЕН 1434-5-2011 Теплосчетчики. Часть 5. Первичная поверка

ГОСТ Р ЕН 1434-6-2011 Теплосчетчики. Часть 6. Установка, ввод в эксплуатацию, контроль, техническое обслуживание

ГОСТ 8.009-84 Государственная система обеспечения единства измерений. Нормируемые метрологические характеристики средств измерений

ГОСТ 8.586.2-2005 (ИСО 5167-2:2003) Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 2. Диафрагмы. Технические требования

ГОСТ 26.011-80 Средства измерений и автоматизации. Сигналы тока и напряжения электрические непрерывные входные и выходные

ГОСТ 34.201-89 Информационная технология. Комплекс стандартов на автоматизированные системы. Виды, комплектность и обозначение документов при создании автоматизированных систем

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

ГОСТ 34.602-89 Информационная технология. Комплекс стандартов на автоматизированные системы. Техническое задание на создание автоматизированной системы

ГОСТ 6651-2009 Государственная система обеспечения единства измерений. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Основные термины и определения

В настоящем стандарте применены термины по ГОСТ Р 8.596, рекомендациям [1], а также следующие термины с соответствующими определениями:

коммерческий учет тепловой энергии, теплоносителя: Установление количества и качества тепловой энергии, теплоносителя, производимых, передаваемых или потребляемых за определенный период, с помощью приборов учета тепловой энергии, теплоносителя или расчетным путем в целях использования сторонами при расчетах в соответствии с договорами.

[Федеральный закон от 27 июля 2010 г. N 190-ФЗ «О теплоснабжении» [2], статья 2, определение 13]

3.2 автоматизированная информационно-измерительная система коммерческого учета тепловой энергии; АИИС КУТЭ: Совокупность функционально объединенных измерительно-информационных и информационно-вычислительных комплексов точек учета тепловой энергии и параметров теплоносителя, информационно-вычислительного комплекса и системы обеспечения единого времени, выполняющая функции проведения измерений, информирования о состоянии объектов и средств измерений, а также передачи полученной информации в интегрированную автоматизированную систему управления коммерческим учетом тепловой энергии и параметров теплоносителя в автоматизированном режиме.

система теплоснабжения: Совокупность источников тепловой энергии и теплопотребляющих установок, технологически соединенных тепловыми сетями.

[Федеральный закон от 27 июля 2010 г. N 190-ФЗ «О теплоснабжении» [2], статья 2, определение 14]

Примечание — Системы теплоснабжения, в качестве теплоносителя в которых используют воду, называют водяными системами теплоснабжения.

тепловая энергия: Энергетический ресурс, при потреблении которого изменяются термодинамические параметры теплоносителей (температура, давление).

[Федеральный закон от 27 июля 2010 г. N 190-ФЗ «О теплоснабжении» [2], статья 2, определение 1]

Примечание — В настоящем стандарте термины «тепловая энергия» и «количество теплоты» приняты как эквивалентные.

теплосчетчик: Техническое средство, предназначенное для измерения тепловой энергии, отдаваемой жидкостью (теплоносителем), а также хранения, отображения и передачи результатов измерений.

Теплосчетчик представляет собой техническое средство в виде единой законченной конструкции либо в виде соединения составных частей: датчика расхода, датчиков температуры, вычислителя.

[Методические рекомендации по техническим требованиям к системам и приборам учета воды, газа, тепловой энергии, электрической энергии (утверждены приказом Минпромторга России от 21 января 2011 г. N 57) [3]]

точка учета тепловой энергии, теплоносителя (точка учета): Место в системе теплоснабжения, в котором с помощью приборов учета или расчетным путем устанавливаются количество и качество производимых, передаваемых или потребляемых тепловой энергии, теплоносителя для целей коммерческого учета.

[Федеральный закон от 27 июля 2010 г. N 190-ФЗ «О теплоснабжении» [2], статья 1, определение 24]

4 Сокращения

В настоящем стандарте использованы следующие сокращения:

АИИС КУТЭ — автоматизированная информационно-измерительная система коммерческого учета тепловой энергии;

ВСТС — водяная система теплоснабжения;

ЖКХ — жилищно-коммунальное хозяйство;

ИВК — измерительно-вычислительный комплекс;

ИК — измерительный канал;

ИС — измерительная система;

Читайте также:  Трубка стеклянная для измерения уровня электролита

ИС ТЭ — измерительная система тепловой энергии;

МО — метрологическое обеспечение;

МХ — метрологические характеристики;

ПО — программное обеспечение;

РТС — районная тепловая станция;

СИ — средство измерений;

СОЕВ — система обеспечения единого времени;

ТЭ — тепловая энергия;

ТЭЦ — теплоэлектроцентраль;

ЦТП — центральный тепловой пункт.

5 Общие положения

5.1 Для измерений ТЭ и параметров теплоносителя могут быть применены различные средства измерительной техники (приложение А) в зависимости от вида и сложности систем водяного теплоснабжения, целей учета энергоносителей, экономических критериев:

— измерительные преобразователи — преобразователи расхода (массового или объемного), температуры, разности температур, давления;

— измерительные приборы — теплосчетчики по 3.5 (одноканальные, многоканальные);

— измерительно-вычислительные комплексы — тепловычислители, ИВК;

— измерительные системы — ИС ТЭ, АИИС КУТЭ.

5.2 СИ для измерений ТЭ и параметров теплоносителя в водяных системах теплоснабжения разрабатывают в соответствии с требованиями Федерального закона [4], методических рекомендаций [3], ГОСТ Р 8.591, ГОСТ Р 8.592, ГОСТ Р 8.596, ГОСТ Р 8.642, ГОСТ Р 8.654, ГОСТ Р 8.674, ГОСТ Р 51649, ГОСТ Р ЕН 1434-1 — ГОСТ Р ЕН 1434-6, ГОСТ 8.586.2, ГОСТ 34.201, ГОСТ 34.601, ГОСТ 34.602, нормативных документов на средства измерений расхода теплоносителя, температуры, давления, тепловой энергии, а также требованиями настоящего стандарта.

5.3 СИ для измерений тепловой энергии и параметров теплоносителя в ВСТС в целях коммерческого учета тепловой энергии, теплоносителя должны соответствовать техническим и метрологическим требованиям, установленным законодательством Российской Федерации [2]-[4].

5.4 Метрологическое обеспечение СИ для измерений тепловой энергии и параметров теплоносителя в ВСТС включает в себя следующие виды деятельности:

— нормирование и расчет метрологических характеристик СИ, в том числе теплосчетчиков, измерительных каналов ИС ТЭ и АИИС КУТЭ;

— метрологическую экспертизу технической документации;

— испытания в целях утверждения типа, утверждение типа СИ;

— разработку и аттестацию методики (метода) измерений тепловой энергии;

— поверку или калибровку СИ;

— метрологический контроль и надзор.

5.4.1 Требования к метрологическому обеспечению ИС ТЭ в зависимости от различных классификационных признаков приведены в приложении Б. Виды деятельности, относящиеся к МО на стадиях жизненного цикла ИС ТЭ, приведены в приложении В.

5.4.2 Требования к метрологическому обеспечению АИИС КУТЭ приведены в приложении Г.

6 Нормирование метрологических характеристик

6.1 Метрологические характеристики нормируют для СИ измерений тепловой энергии и параметров теплоносителя в ВСТС с учетом требований ГОСТ 8.009 и ГОСТ Р 8.674.

6.2 Нормирование МХ СИ должно обеспечивать:

— расчет погрешности измерений тепловой энергии и параметров теплоносителя с помощью СИ в нормальных условиях;

— расчет приписываемых характеристик погрешности измерений тепловой энергии и параметров теплоносителя с помощью СИ в рабочих условиях эксплуатации, который выполняют с учетом требований ГОСТ Р 8.563;

— определение метрологических характеристик СИ при испытаниях в целях утверждения типа;

— контроль МХ при поверке СИ.

6.3 Для СИ должны быть нормированы следующие МХ:

— пределы допускаемой погрешности измерений в рабочих условиях эксплуатации или пределы допускаемых основной и дополнительных погрешностей (или функции влияния внешних воздействующих факторов);

— погрешности измерений времени и интервалов времени.

6.3.1 Нормирование МХ ИС не исключает нормирования МХ отдельных СИ (измерительных преобразователей, приборов, ИК ИС ТЭ, ИК АИИС КУТЭ).

6.3.2 Требования к регламентации состава и характеристик ИС ТЭ приведены в приложении Г.

6.4 Программное обеспечение СИ должно соответствовать общим требованиям по ГОСТ Р 8.654.

6.5 Интервалы между поверками и между калибровками СИ для измерений тепловой энергии и параметров теплоносителя в водяных системах теплоснабжения устанавливают и корректируют в соответствии с рекомендациями [5].

7 Метрологическая экспертиза технической документации

7.1 Метрологическую экспертизу технической документации на СИ для измерений тепловой энергии и параметров теплоносителя в ВСТС проводят в соответствии с требованиями Федерального закона [4].

7.2 В общем случае метрологической экспертизе подвергают следующую документацию:

— техническое задание или заменяющий его документ на разработку СИ;

— проектную, рабочую, конструкторскую, технологическую и эксплуатационную документацию, содержащую требования к монтажу, установке, настройке и эксплуатации СИ, а также документацию на программное обеспечение;

— проект методики (метода) измерений тепловой энергии и параметров теплоносителя с помощью СИ, представленный на аттестацию по ГОСТ Р 8.563.

8 Испытания в целях утверждения типа. Утверждение типа

8.1 Для СИ для измерений тепловой энергии и параметров теплоносителя в ВСТС, предназначенных для применения в сфере государственного регулирования в области обеспечения единства измерений, должны быть в установленном порядке проведены испытания в целях утверждения типа и утверждение типа в соответствии с требованиями Федерального закона [4].

8.2 Испытания в целях утверждения типа СИ проводят по программам и в порядке, изложенном в рекомендациях [6]-[9], документе [10].

8.3 Проверку ПО в рамках испытаний в целях утверждения типа СИ проводят в соответствии с ГОСТ Р 8.654, рекомендациями [7]-[9].

8.4 При необходимости и при выполнении измерений тепловой энергии и параметров теплоносителя в водяных системах теплоснабжения в соответствии с частью 2 статьи 5 Федерального закона [4] методики (методы) измерений с использованием СИ аттестуют в установленном порядке по ГОСТ Р 8.563, ГОСТ Р 8.591, ГОСТ Р 8.592.

9 Поверка. Калибровка

9.1 СИ для измерений тепловой энергии и параметров теплоносителя в ВСТС, предназначенные для применения в сфере государственного регулирования в области обеспечения единства измерений, должны быть подвергнуты в установленном Федеральным законом [4] порядке процедуре поверки.

9.2 Первичную поверку СИ выполняют перед вводом в промышленную (постоянную) эксплуатацию и после ремонта.

9.3 Периодическую поверку СИ выполняют в процессе эксплуатации через установленный интервал между поверками.

9.4 При поверке проверяют соответствие идентификационных признаков используемого в составе СИ ПО идентификационным признакам, указанным в описании типа.

9.5 СИ, не предназначенные для применения в сфере государственного регулирования в области обеспечения единства измерений, должны быть подвергнуты калибровке в том порядке, который установлен изготовителем или владельцем СИ и регламентирован в эксплуатационных документах на СИ или методике калибровки по правилам [11].

10 Метрологический надзор

10.1 За СИ, предназначенными для применения в сфере государственного регулирования в области обеспечения единства измерений, необходимо осуществлять государственный метрологический надзор в соответствии со статьями 15, 16 Федерального закона [4].

10.2 Внутренний метрологический надзор осуществляют метрологические службы юридических лиц в установленном порядке согласно рекомендациям [12].

Приложение А (рекомендуемое). Классификация средств измерений тепловой энергии и параметров теплоносителя в водяных системах теплоснабжения

Средства измерений (в соответствии с рекомендациями [1])

Источник

Температура. Измерение и контроль температуры. Методы и средства измерения температуры.

Температурой называется статистическая величина, характеризующая тепловое состояние тела и пропорциональная средней кинематической энергии молекул тела. За единицу температуры принимают кельвин (К). Температура может быть также представлена в градусах Цельсия (°С). Нуль шкалы Кельвина равен абсолютному нулю, поэтому все температуры по этой шкале положительные. Связь между температурами t по Цельсию и T по Кельвину определяется следующим уравнением:

Измерить температуру непосредственно, как, например, линейные размеры, невозможно. Поэтому температуру определяют косвенно — по изменению физических свойств различных тел, получивших название термометрических.

Измерение температуры связано с преобразованием сигнала измерительной информации (температуры) в какое-либо свойство, связанное с температурой.

Читайте также:  Как измерить свой рост без сантиметра

Для практических целей, связанных с измерением температуры, принята Международная температурная шкала (МТШ-90) (рис. 2.89), которая является обязательной для всех метрологических органов. Она основывается на ряде воспроизводимых состояний равновесия (реперных точек) некоторых веществ, которым присвоены определенные значения температуры.

Рис. 2.89. Международная Температурная шкала (МТШ-90) с реперными точками (подчеркнуты)

Для измерения температуры наибольшее распространение получили следующие методы, основанные:

— на тепловом расширении жидких, газообразных и твердых тел (термомеханический эффект);

— изменении давления внутри замкнутого объема при изменении температуры (манометрические);

— изменении электрического сопротивления тел при изменении температуры (терморезисторы);

— использовании электромагнитного излучения нагретых тел.

Приборы, предназначенные для измерения температуры, называются термометрами. Они подразделяются на две большие группы: контактные и бесконтактные.

Контактное измерение температуры.

Термометры расширения нашли широкое распространение в практике контактных измерений температуры. Основные типы механических контактных термометров, их метрологические характеристики, преимущества, недостатки и область применения представлены в табл. 2.18.

Таблица 2.18. Основные метрологические характеристики механических контактных термометров

Наименование прибора

Тип прибора

Пределы измерений,°С

Погрешность измерения,%

Инерцион ность

Преимущества

Недостатки

Область применения

Металли ческие термометры расширения

Дилато метриче ские

Дешевые, надежные, малое время срабатывания; очень большие перестановочные усилия

Малая точность, высокая инерционность

Дешевые, надежные; большие перестановочные усилия

Оценочный контроль температуры, температурные выключатели

Жидкостные термометры

Малая механическая прочность, нет дистанцион- ности

Лабораторные термометры, бытовые термометры

Дешевые, надежные, не требуют внешних источников энергии; дистан- ционность до 50 м, большие перестановочные усилия

Температура соединительного капилляра влияет на показания прибора

Промышленные термометры, термореле

Конденса ционные манометри ческие

Нелинейная статическая характеристика

Газовые термометры

С гелиевым заполнением

Принцип измерения соответствует определению термодинамической температуры

Малая механическая прочность, большая трудоемкость процесса измерения

Поверочные (калибровочные) работы

Жидкостные стеклянные термометры конструктивно подразделяются на палочные (рис. 2.90, а) и технические со вложенной шкалой (рис. 2.90, б). Принцип их действия основан на зависимости между температурой и объемом термометрической жидкости, заключенной в стеклянной оболочке. Жидкостный термометр состоит из стеклянной оболочки 1, капиллярной трубки 3, запасного резервуара 4 и шкалы 2. Термометрическая жидкость заполняет резервуар и часть капиллярной трубки. Свободное пространство в капилляре заполняется инертным газом или из него удаляется воздух.

Рис. 2.90. Жидкостные стеклянные термометры:

а — палочный; б — технический со вложенной шкалой; 1 — стеклянная оболочка; 2 — шкала; 3 — капиллярная трубка; 4 — запасной резервуар

В качестве термометрической жидкости применяют органические заполнители: толуол, этиловый спирт, керосин, пентан. Наиболее широкое распространение получили термометры с ртутным наполнением. Это объясняется свойствами ртути находиться в жидком состоянии в широком диапазоне температур и не смачивать стекло, что позволяет использовать капилляры с небольшим диаметром канала (до 0,1 мм) и обеспечивать высокую точность измерения. Так, ртутные образцовые термометры 1-го разряда имеют погрешность 0,002. 2°С.

Органические заполнители характеризуются более низкой температурой применения, меньшей стоимостью, большей погрешностью измерения.

Стеклянные термометры в зависимости от назначения и области применения подразделяются на образцовые, лабораторные, технические, бытовые, метеорологические.

Лабораторные термометры обеспечивают измерение в интервале температур 0. 500°С, который разбит на четыре диапазона, что позволяет получить погрешность измерений, не превышающую ±0,01 °С (0. 60 °С); ±0,02 °С (55. 155 °С); ±0,05°С (140. 300 °С) и ±0,1 °С (300. 500°С).

В качестве технических применяют только термометры со вложенной шкалой, которые имеют две модификации: прямые и угловые. Допускаемая погрешность обычно равна цене деления. При стационарной эксплуатации в различных точках технологических агрегатов термометры устанавливают в специальных металлических защитных чехлах (кожухах).

Для обеспечения задач позиционного регулирования и сигнализации в лабораторных и промышленных установках применяют специальные электроконтактные технические термометры двух типов:

1) с постоянными впаянными контактами, которые обеспечивают замыкание и размыкание электрических цепей при одной, двух или трех заранее заданных температурах;

2) с одним подвижным контактом (перемещается внутри капилляра с помощью магнита) и вторым неподвижным, впаянным в капилляр, что обеспечивает замыкание и размыкание электрической цепи при любом значении выбранной температуры.

Перемещающаяся в капилляре ртуть размыкает или замыкает цепи между контактами, к которым подводится напряжение постоянного или переменного тока и нагрузка на которые не должна превышать 0,5 мА при напряжении не более 0,3 В.

Биметаллические и дилатометрические термометры основаны на свойстве твердых тел в различной степени изменять свои линейные размеры при изменении их температуры.

В основном металлы и их сплавы относятся к материалам с высоким температурным коэффициентом линейного расширения. Так, для латуни он равен (18,3. 23,6)*10 -6 °С -1 , для никелевой стали 20*10 -6 °С -1 . В то же время есть сплавы, имеющие низкий коэффициент линейного расширения: сплав инвар — 0,9*10 -6 °С -1 , плавленый кварц — 0,55*10 -6 °С -1 .

На рис. 2.91, а представлена конструкция биметаллического термометра, в котором в качестве термочувствительного элемента используется двухслойная пластинка, состоящая из металлов с существенно различными коэффициентами линейного расширения: латуни 1 и инвара 2. При увеличении температуры свободный конец пластины будет изгибаться в сторону металла с меньшим коэффициентом, по величине этого перемещения судят о температуре.

Данный тип устройств часто используется как термореле в системах сигнализации и автоматического регулирования, а также в качестве температурных компенсаторов в измерительных устройствах, например в радиационных пирометрах, манометрических термометрах и т. п.

На рис. 2.91, б приведена конструкция чувствительного элемента пневматического дилатометрического преобразователя температуры.

Рис. 2.91. Термометры:

а — биметаллический: 1 — латунь; 2 — инвар; б — дилатометрический: 1 — корпус; 2 — стержень; 3 — трубка; 4 — шарик; 5 — толкатель; 6 — пружина; 7 — преобразователь

В корпусе 1, изготовленном из латуни (нержавеющей стали) расположены трубка 3 и стержень 2, выполненный из инвара (кварца). Стержень 2 через трубку 3 и толкатель 5 с помощью пружины 6 постоянно поджимается к нижнему концу корпуса 1. Шарик 4 исключает появление люфтов между стержнем и компенсационной трубкой, которая выполнена также из латуни и предназначена для исключения температурной погрешности при установке на объектах с различной толщиной тепловой изоляции. Изменение разности удлинений корпуса 1 и стержня 2, пропорциональное изменению температуры измеряемой среды, трансформируется в пневматический сигнал в преобразователе 7, усиливается и поступает на регистрирующий прибор.

Дилатометрические преобразователи выпускают и с электрическим выходным сигналом. Класс точности устройств 1,5 и 2,5 с диапазоном измеряемых температур от -30 до +1000 °С.

Жидкостные манометрические термометры (рис. 2.92) основаны на использовании зависимости между температурой и давлением термометрического вещества (газа, жидкости), заполняющего герметически замкнутую термосистему термометра. Термосистема состоит из термобаллона 4, капилляра 5 и манометрической одно- или многовитковой пружины 6. Капилляр 5 соединяет термобаллон с неподвижным концом манометрической пружины. Подвижный конец пружины запаян и через шарнирное соединение 7, поводок 3, сектор 2 связан со стрелкой прибора 1.

Рис. 2.92. Конструкция манометрического термометра:

1 — стрелка; 2 — сектор; 3 — поводок; 4 — термобаллон; 5— капилляр; 6 — пружина; 7 — шарнирное соединение

При изменении температуры среды изменяется давление термометрического вещества в замкнутом пространстве, в результате чего чувствительный элемент (манометрическая пружина) деформируется и ее свободный конец перемещается. Данное перемещение преобразуется в поворот регистрирующей стрелки относительно шкалы прибора.

В зависимости от термометрического вещества манометрические термометры подразделяются на газовые, конденсационные и жидкостные.

В газовых термометрах термобаллон, капилляр и манометрическая пружина заполняются каким-либо инертным газом (азотом, гелием и др.). Диапазон измерения весьма широк и лежит в пределах от критической температуры газа (азот — 147 °С, гелий — 267 °С) до температуры, определяемой теплостойкостью материала термобаллона.

В конденсационных термометрах насыщенные пары некоторых низкокипящих жидкостей (ацетон, метилхлорид, этилхлорид) меняют давление при изменении температуры. Диапазон измерения этих приборов от 0 до +400 °С при погрешности измерений ±1 %.

В жидкостных термометрах термосистема заполнена хорошо расширяющейся жидкостью (ртутью, керосином, лигроином и др.). Диапазон измерения этих приборов от -30 до +600 °С при погрешности измерений ±1 %.

На показания манометрических термометров значительное влияние оказывают внешние условия: изменения температуры окружающего воздуха, различная высота расположения термобаллона и пружины, колебания атмосферного давления.

Манометрические термометры имеют ограниченную длину линии связи от термобаллона к показывающему прибору, большую инерционность и динамическую погрешность.

Класс точности манометрических термометров 1,0; 1,5; 2,5 и 4,0 при работе в интервале температур окружающего воздуха от 5 до 50 °С и относительной влажности до 80 %.

Манометрические термометры применяют для измерения температуры охлаждающей воды, воздуха, жидкого и газообразного топлива, на установках для заправки и т. п.

Термометры сопротивления.

Термометр сопротивления состоит из чувствительного элемента в виде терморезистора, защитного чехла и соединительной головки.

Принцип действия чувствительного элемента основан на использовании зависимости электрического сопротивления вещества от температуры. В качестве материалов для их изготовления используют чистые металлы: платину, медь, никель и полупроводники. Платина является основным материалом для изготовления термометров сопротивления. В качестве чувствительного элемента в полупроводниковых термометрах сопротивления используют германий, окиси меди и марганца, титана и магния.

Основные метрологические характеристики термометров сопротивления, их принципиальные схемы, преимущества, недостатки и область применения представлены в табл. 2.19.

Таблица 2.19. Основные метрологические характеристики электрических контактных термометров

Таблица 2.19. Основные метрологические характеристики электрических контактных термометров

Характеристики

Термометры сопротивления

Термоэлектрические термометры

Пределы измерений, °С

Погрешность измерения, %

Инерционность

Преимущества

Высокая точность, линейная статическая характеристика

Высокая чувствительность, возможны измерения в точке

Дешевые, хорошая линейность статической характеристики

Прочность, малая тепловая инерция, линейная статическая характеристика

Недостатки

Невозможно измерение температуры в точке

Нелинейная статическая характеристика, большой разброс параметров, низкая стабильность параметров во времени

Большая тепловая инерция

Область применения

Энергетика, непрерывные технологические процессы в химии, пищевая промышленность

Энергетика, технологические процессы в химии, производство искусственных материалов, медицина

Энергетика, непрерывные производства, пищевая промышленность

Энергетика, непрерывные производства, химия, медицина, строительство, производство искусственных материалов

Для решения различных задач термометры сопротивления подразделяются на эталонные, образцовые и рабочие, которые, в свою очередь, подразделяются на лабораторные и технические.

Эталонные термометры сопротивления предназначены для воспроизведения и передачи шкалы МПТШ в интервале 13,81. . 903,89 К. В качестве эталонных, образцовых и лабораторных приборов повышенной точности применяют платиновые термометры сопротивления.

Технические термометры сопротивления в зависимости от конструкции подразделяются: на погружаемые, поверхностные и комнатные; защищенные и не защищенные от действия агрессивной среды; стационарные и переносные; термометры 1-го, 2-го и 3-го класса точности и т.д.

Одна из конструкций промышленных термометров сопротивления, используемых для измерения температур жидких и газообразных сред, представлена на рис. 2.93, а. Термометр состоит из чувствительного элемента 5, расположенного в стальном защитном кожухе 3, на котором приварен штуцер 2. Провода 9, армированные фарфоровыми бусами 4, соединяют выводы чувствительного элемента 5 с клеммной колодкой б, находящейся в корпусе головки 1. Сверху головка 1 закрыта крышкой 10, снизу имеется сальниковый ввод 7, через который осуществляется подвод монтажного кабеля 8.

Чувствительный элемент термометра сопротивления (рис. 2.93, б) выполнен из металлической тонкой проволоки толщиной 0,03. 0,1 мм с безындукционной каркасной или бескаркасной намоткой.

Рис. 2.93. Термометр сопротивления:

а — конструкция термометра: 1 — корпус головки; 2 — штуцер; 3 — защитный кожух; 4 — фарфоровые бусы; 5 — чувствительный элемент; 6 — клеммная колодка; 7 — сальниковый ввод; 8 — монтажный кабель; 9 — провода; 70 — крышка; б — конструкция чувствительного элемента термометра: 1 — глазурь; 2 — пространство; 3 — каркас; 4 — платиновые спирали; 5 — выводы

В качестве каркаса для платиновых термометров применяют плавленный кварц и керамику на основе окиси алюминия. В каналах каркаса 3 расположены четыре (или две) последовательно соединенные платиновые спирали 4. К верхним концам спиралей припаяны выводы 5, выполненные из платины или сплава иридия с радием. Пространство 2 между спиралями и каркасом заполнено порошком окиси алюминия. Крепление спиралей и выводов в каркасе производится глазурью 1.

При применении термометров сопротивления о температуре можно судить по изменению электрического сопротивления его чувствительного элемента, падению напряжения на нем при постоянном токе или значению тока при постоянном напряжении.

Наибольшее распространение получила первая схема, когда изменение сопротивления служит мерой температуры (рис. 2.94). В этом случае терморезистор 1 включают в одну из диагоналей моста последовательно с регулировочным резистором Rv, служащим для приведения к определенному значению сопротивления подводящих проводов. Показания гальванометра 3, включенного в диагональ моста, зависят также от напряжения питания моста, для поддержания постоянства которого в цепь питания включен регулировочный резистор.

Рис. 2.94. Схема включения термометра сопротивления:

1 — терморезистор (термометр сопротивления); 2 — уравнительный резистор RA; 3 — гальванометр; 4 — измерительный мост с резисторами Rv, R2, R3, Я4, RA; 5 — источник питания; 6 — регулировочный резистор Rv

Термоэлектрические термометры состоят из термопары, защитного чехла и соединительной головки, они основаны на термоэлектрических свойствах чувствительного элемента.

Сущность термоэлектрического метода заключается в возникновении электродвижущей силы в спае двух разнородных проводников (например, хромель — копель), температура которого отличается от температуры вторых выводов. Для получения зависимости термоЭДС от одной температуры t2 необходимо температуру t1 поддерживать на постоянном уровне, обычно при 0 или +20 °С. Спай, помещаемый в измеряемую среду, называют горячим, или рабочим, концом термопары, а спай, температуру которого поддерживают постоянной, — холодным, или свободным, концом.

Для увеличения чувствительности термоэлектрического метода измерения температуры в ряде случаев применяют термобатарею: несколько последовательно включенных термопар, рабочие концы которых находятся при температуре t2, а свободные — при известной и постоянной температуре t1.

Основные метрологические характеристики термоэлектрических термометров, их принципиальные схемы, преимущества, недостатки и область применения см. в табл. 2.19.

В качестве термопар (ТП) наиболее часто применяют комбинации материалов, имеющих высокое значение развиваемой термо- ЭДС, стабильность характеристик при различных температурах, воспроизводимость и линейную зависимость термоЭДС от температуры, простоту технологической обработки и получения спая, а именно: хромель-копелевые (TBP)[AJ], хромель-алюмелевые (TXK)[L], платинородий-платиновые (ТХА)[К], вольфрам-рениевые (Tnn)[S] и др. В квадратных скобках приведены условные обозначения номинальных статистических характеристик преобразования. Наиболее точной является термопара ТПП, которая используется в качестве рабочих эталонов и образцовых термометров 1-го, 2-го и 3-го разряда.

Основные характеристики термоэлектрических термометров представлены в табл. 2.20.

Таблица 2.20. Основные характеристики термоэлектрических термометров

Термопара

Градуировка

Химический состав термоэлектрода

Пределы применения, C

Пределы допускаемой погрешности, С, при температуре, С

Источник

Сравнить или измерить © 2021
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.