Меню

Статистика сравнение относительных величин



Абсолютные и относительные статистические величины

Понятие абсолютных величин

Абсолютные величины — это результаты статистических наблюдений. В статистике в отличие от математики все абсолютные величины имеют размерность (единицу измерения), а также могут быть положительными и отрицательными.

Единицы измерения абсолютных величин отражают свойства единиц статистической совокупности и могут быть простыми, отражая 1 свойство (например, масса груза измеряется в тоннах) или сложными, отражая несколько взаимосвязанных свойств (например, тонно-километр или киловатт-час).

Единицы измерения абсолютных величин могут быть 3 видов:

  1. Натуральные — применяются для исчисления величин с однородными свойствами (например, штуки, тонны, метры и т.д.). Их недостаток состоит в том, что они не позволяют суммировать разнородные величины.
  2. Условно-натуральные — применяются к абсолютным величинам с однородными свойствами, но проявляющим их по-разному. Например, общая масса энергоносителей (дрова, торф, каменный уголь, нефтепродукты, природный газ) измеряется в т.у.т. — тонны условного топлива, поскольку каждый его вид имеет разную теплотворную способность, а за стандарт принято 29,3 мДж/кг. Аналогично общее количество школьных тетрадей измеряется в у.ш.т. — условные школьные тетради размером 12 листов. Аналогично продукция консервного производства измеряется в у.к.б. — условные консервные банки емкостью 1/3 литра. Аналогично продукция моющих средств приводится к условной жирности 40%.
  3. Стоимостные единицы измерения выражаются в рублях или в иной валюте, представляя собой меру стоимости абсолютной величины. Они позволяют суммировать даже разнородные величины, но их недостаток состоит в том, что при этом необходимо учитывать фактор инфляции, поэтому статистика стоимостные величины всегда пересчитывает в сопоставимых ценах.

Абсолютные величины могут быть моментными или интервальными. Моментные абсолютные величины показывают уровень изучаемого явления или процесса на определенный момент времени или дату (например, количество денег в кармане или стоимость основных фондов на первое число месяца). Интервальные абсолютные величины — это итоговый накопленный результат за определенный период (интервал) времени (например, зарплата за месяц, квартал или год). Интервальные абсолютные величины, в отличие от моментных, допускают последующее суммирование.

Абсолютная статистическая величина обозначается X, а их общее число в статистической совокупности — N.

Количество величин с одинаковым значением признака обозначается f и называется частота (повторяемость, встречаемость).

Cами по себе абсолютные статистические величины не дают полного представления об изучаемом явлении, так как не показывают его динамику, структуру, соотношение между частями. Для этих целей служат относительные статистические величины.

Понятие и виды относительных величин

Относительная статистическая величина — это результат соотношения двух абсолютных статистических величин.

Если соотносятся абсолютные величины с одинаковой размерностью, то получаемая относительная величина будет безразмерной (размерность сократится) и носит название коэффициент.

Часто применяется искусственная размерность коэффициентов. Она получается путем их умножения:

  • на 100 — получают проценты (%);
  • на 1000 — получают промилле (‰);
  • на 10000 — получают продецимилле (‰ O ).

Искусственная размерность коэффициентов применяется, как правило, в разговорной речи и при формулировании результатов, а в самих расчетах она не используется. Чаще всего применяются проценты, в которых принято выражать полученные значения относительных величин.

Чаще вместо названия относительная статистическая величина используется более краткий термин-синоним — индекс (от лат. index — показатель, коэффициент).

В зависимости от видов соотносимых абсолютных величин при расчете относительных величин, получаются разные виды индексов: динамики, планового задания, выполнения плана, структуры, координации, сравнения, интенсивности.

Индекс динамики

Индекс динамики (коэффициент роста, темп роста) показывает во сколько раз изменилось изучаемое явление или процесс во времени. Рассчитывается как отношение значения абсолютной величины в отчетный (анализируемый) период или момент времени к базисному (предыдущему):

.

Здесь и далее подиндексы означают: 1 — отчетный (анализируемый) период, 0 — базисный (прошлый) период.

Критериальным значением индекса динамики служит «1», то есть: если i Д >1 — имеет место рост явления во времени; если i Д =1 — стабильность; если i Д 0, то имеет место рост явления; Т=0 – стабильность, Т Д = 110/100 = 1,1, что означает рост продаж автомобилей автосалоном в 1,1 раза или на 10%

Читайте также:  Сравнение гувера с рузвельтом

Индекс планового задания

Индекс планового задания – это отношение планового значения абсолютной величины к базисному:

Например, автосалон в январе продал 100 автомобилей, а на февраль запланировал продать 120 автомобилей. Тогда индекс планового задания составит i пз = 120/100 = 1,2, что означает планирование роста продаж в 1,2 раза или на 20%

Индекс выполнения плана

Индекс выполнения плана – это отношение фактически полученного значения абсолютной величины в отчетном периоде к запланированному:

Например, автосалон в феврале продал 110 автомобилей, хотя на февраль было запланировано продать 120 автомобилей. Тогда индекс выполнения плана составит i вп = 110/120 = 0,917, что означает выполнение плана на 91,7%, то есть план недовыполнен на (100%-91,7%) = 8,3%.

Перемножая индексы планового задания и выполнения плана, получим индекс динамики:

В рассмотренном ранее примере про автосалон, если перемножим полученные значения индексов планового задания и выполнения плана, то получим значение индекса динамики: 1,2*0,917 = 1,1.

Индекс структуры

Индекс структуры (доля, удельный вес) — это отношение какой-либо части статистической совокупности к сумме всех ее частей:

Индекс структуры показывает, какую долю составляет отдельная часть совокупности от всей совокупности.

Например, если в рассматриваемой группе студентов 20 девушек и 10 молодых людей, тогда индекс стурктуры (доля) девушек будет равен 20/(20+10) = 0,667, то есть доля девушек в группе составляет 66,7%.

Индекс координации

Индекс координации — это отношение одно части статистической совокупности к другой ее части, принятой за базу сравнения:

Индекс координации показывает, во сколько раз больше или сколько процентов составляет одна часть статистической совокупности по сравнению с другой ее частью, принятой за базу сравнения.

Например, если в группе студентов из 20 девушек и 10 молодых людей, принять за базу сравнения численность девушек, тогда индекс координации численности молодых людей составит 10/20 = 0,5, то есть численность молодых людей составляет 50% от численности девушек в группе.

Индекс сравнения

Индекс сравнения — это отношение значений одной и той же абсолютной величины в одном и том же периоде или моменте времени, но для разных объектов или территорий:

где А, Б — признаки сравниваемых объектов или территорий.

Например, в январе 2009 года число жителей в Нижнем Новгороде составляло примерно 1280 тыс.чел., а в Москве — 10527 тыс.чел. Примем Москву за объект А (так как принято при расчете индекса сравнения большее число ставить в числителе), а Нижний Новгород — за объект Б, тогда индекс сравнения числа жителей этих городов составит 10527/1280 = 8,22 раза, то есть в Москве число жителей в 8,22 раза больше, чем в Нижнем Новгороде.

Индекс интенсивности

Индекс интенсивности — это отношение значений двух взаимосвязанных абсолютных величин с разной размерностью, относящихся к одному объекту или явлению.

Например, хлебный магазин продал 500 буханок хлеба и заработал на этом 10000 руб., тогда индекс интенсивности составит 10000/500 = 20 [руб./бух.хлеба], то есть цена продажи хлеба составила 20 руб. за буханку.

Большинство величин с дробной размерностью представляют собой индексы интенсивности.

  • Разработка интернет-магазина
  • Редизайн сайта эвакуации
  • Редизайн сайта доставки суши

Источник

Относительные величины.

Поможем написать любую работу на аналогичную тему

Относительными статистическими величинами называют величины, выражающие количественные соотношения между социально-экономическими явлениями или их признаками.

Они получаются в результате деления одной величины на другую. Чаще всего относительные величины являются отношениями двух абсолютных величин.

Величина, с которой производится сравнение (знаменатель дроби), обычно называется основанием относительной величины, базой сравнения или базисной величиной, а та, которая сравнивается, называется текущей, сравниваемой или отчетной величиной.

Относительная величина показывает, во сколько раз сравниваемая величина больше базисной или какую долю первая составляет от второй.

Читайте также:  Сравнение корма для собак мелких пород

С помощью относительных величин выражаются многие факты общественной жизни: процент выполнения плана, темпы роста и прироста и др.

По содержанию выражаемых количественных соотношений выделяют следующие типы относительных величин:

— относительная величина динамики;

— относительная величина планового задания;

— относительная величина выполнения задания;

— относительная величина структуры;

— относительная величина координации;

— относительная величина сравнения;

— относительная величина интенсивности.

Рассмотрим порядок определения относительных величин.

Относительные величины динамики. Характеризуют изменение изучаемого явления во времени и выявляют направление развития объекта. Получают в результате деления фактического уровня отчетного периода на фактический уровень базового периода:

(4.1)

Пример. Машиностроительный завод в 2000 году выпустил 630 станков, а в 1999 году — 500 станков. Необходимо определить фактическую динамику выпуска станков.

Таким образом, выпуск станков за 1 год вырос в 1,26 раза (коэффициент роста, индекс роста) или в процентном выражении – это 126,0% (темп роста). Иначе говоря, за один год выпуск станков увеличился на 26,0% (темп прироста).

Относительная величина планового задания. Ее получают в результате деления планового задания отчетного периода на фактический уровень базисного периода.

(4.2)

Пример. Машиностроительный завод в 2006 году выпустил 500 станков, а в 2007 году планировал выпустить 693 станка. Определить относительную величину планового задания выпуска станков.

Так, по плану на 2007 год предполагалось увеличить производство станков на 38,6% (плановый темп прироста), т.е. в 1,386 раза (плановый коэффициент роста), или выйти на 138,6% по сравнению с 2006 годом (плановый темп роста).

Относительная величина выполнения задания. Получают в результате деления фактически достигнутого уровня в отчетном периоде на плановое задание этого же периода:

(4.3)

Пример. Машиностроительный завод планировал в 2006 году выпустить 693 станка, а фактически выпустил 630 штук. Определим величину выполнения плана.

Следовательно, плановое задание было недовыполнено на 9,1%.

Относительная величина структуры. Характеризует состав изучаемой совокупности (долю, удельные веса элементов). Вычисляется как отношение абсолютной величины части совокупности к абсолютной величине всей совокупности:

(4.4)

Пример. В студенческой группе 27 человек, из них 9 — мужчины. Определим относительную величину структуры группы.

В группе 33,3% – мужчины и 66,7% – женщины.

Относительная величина координации. Характеризуют отношение частей данной совокупности к одной из них, принятой за базу сравнения и показывают во сколько раз одна часть совокупности больше другой, либо сколько единиц одной части приходится на 1, 10, 100, 1000. единиц другой части.

(4.5)

Пример. В 2001 году топливно-энергетические ресурсы (в у.т.) распределялись следующим образом: преобразование в другие виды энергии – 979,8 млн. у.т.; производственные и прочие нужды – 989,0 млн. у.т.; экспорт – 418,3 млн. у.т.; остаток на конец года – 242,1 млн. у.т. приняв за базу сравнения экспортные поставки, определим, сколько приходится на производство:

То есть на производство и прочие нужды затрачивается в 2,363 раза больше ресурсов, чем их поставляют на экспорт.

Относительная величина сравнения (территориально-пространственного). Характеризует сравнительные размеры одноименных показателей, но относящихся различным объектам или территориям и имеющих одинаковую временную определенность. Интерпретация этих величин зависит от базы сравнения.

(4.6)

Пример. Население г. Москвы в 2001 году составило 8,967 млн. чел., а население г. С.-Петербурга в этом же году составило 5,020 млн. чел.

То есть, население Москвы больше населения С.-Петербурга в 1,79 раза.

Относительная величина интенсивности. Показывает, сколько единиц одной совокупности приходится на единицу другой совокупности и характеризует степень распространения явления в определенной среде:

(4.7)

Пример. Определить производительность труда 100 рабочих, если общий объем готовой продукции 1200 изделий.

На каждого рабочего приходится 12 деталей, т.е. производительность труда составляет 12 деталей на 1 рабочего.

Источник

Относительная величина (относительный показатель) сравнения, координации, интенсивности

Следующий вид относительных величин – это относительная величина сравнения или как еще ее называют относительный показатель сравнения. По своему статусу величина сравнения занимает, скорее всего, пятое место среди всех относительных величин, после величин динамики, выполнения плана, планового задания и структуры. А вот по частоте использования, пожалуй, первое. Кроме того в этой части мы рассмотрим еще две относительные величины, которые также могут быть использованы в аналитических целях.

Читайте также:  Сравнение групп предметов раскраска

Относительная величина сравнения

Дело все в том, что относительная величина сравнения проводит сравнение одного показателя с другим. Получаем, что показатель сравнения это и есть сама относительная величина. Что такое относительные величины и как она рассчитывается можно посмотреть в этой лекции.
Относительная величина сравнения характеризует сравнительные размеры разных объектов или абсолютных величин, но отнесенных к одному и тому же явлению. Например, пакет молоко объемом 1 литр в одном магазине стоит 50 рублей, а в другом 60 рублей, то мы можем сравнить их стоимость, и выявить во сколько раз один стоит дороже другого. 60 : 50 = 1,2. То есть пакет молока во втором магазине стоит в 1,2 раза дороже.
Таким нехитрым действие и рассчитываются относительные величины сравнения, причем процесс расчета может состоять не из одного действия, а сразу из нескольких. Если в качестве сравниваемых величин будут использоваться несколько объектов, а база сравнения естественно будет одна.
Учитывая вышесказанное определить относительную величину сравнения (ОВСр) можно по следующей формуле

В данном случае, как и в любой относительной величине в числителе (сверху) находится сравниваемая величина, а в знаменателе (внизу) базисная величина. Базисная величина может меняться в зависимости от задания и целей расчета. Например, имеет данные о производстве мяса в Московской области, Тульской области, Брянской области, Смоленской области. Если за базу сравнения взять область Московскую, то все данные по другим областям мы будем делить на данные по Московской области. Если же за базу сравнения мы возьмем Тульскую, то, следовательно, данные по всем другим областям мы поделим на данные по Тульской области.
Пример. Имеются условные данные о производстве молока в четырех областях. Рассчитайте относительный показатель сравнения, приняв за базу сравнения данные по Московской области, а затем данные по Тульской области.

Кроме сравнения с данным по Московской и Тульской областям, аналогично можно производить сравнение с данными по Смоленской и Брянской областям. Все зависит от целей сравнения.

Кроме рассмотренных пяти относительных величин в статистике также используются еще две разновидности. Используются они реже, чем основные, но также достойны внимания.

Относительная величина координации

Относительный показатель координации используется в основном в узко аналитических целях. Для сравнения частей внутри статистической совокупности.
Относительная величина координации показывает соотношение частей целого между собой. Это базовое определение данной относительной величины.
Величина координации похожа на относительную величину структуры. Только если в структуре мы части делили на целое, то здесь часть будет делиться на другую часть, которую выбрали за базу сравнения.
Получаем соотношение основных базовых частей друг с другом, которые используются для конкретных целей анализа.
Формула расчет относительной величины координации (ОВК) имеет вид:

Возможны и другие варианты частей, например 3 с 1 и так далее.

Относительная величина интенсивности развития

Величина интенсивности показывает степень развития какого-то показателя в какой-то среде. Способ расчета показателя интенсивности классический, и похож на расчет величины сравнения.
Часто величина интенсивности рассчитывается в процентах, промиллях.
Обычно используется в статистике населения для характеристики демографических показателей. Например, уровней рождаемости.
Число родившихся в городе составило 15 человек на каждую тысячу живущих. Это и есть пример величины интенсивности развития.
Кроме того такой способ расчета используется и в экономике организации. Фондовооруженность показатель характеризующий величину основных фондов приходящихся на одного работника.
Чтобы вернуться к списку лекций нажмите на ссылку.

Источник