Меню

Степень несоответствия результата измерения действительному значению измеряемой величины называют



Погрешности измерений. Погрешностью измерения называется отклонение результата измерения от истинного значения измеряемой физической величины

Погрешностью измерения называется отклонение результата измерения от истинного значения измеряемой физической величины. Так как истинное значение измеряемой величины неизвестно, то при количественной оценке погрешности пользуются действительным значением физической величины. Это значение находится экспериментальным путем и настолько близко к истинному значению, что для поставленной задачи может быть использовано вместо него.

По способу количественного выражения погрешности измерения делятся на абсолютные, относительные и приведенные. Абсолютной погрешностью Δ, выражаемой в единицах измеряемой величины, называется отклонение результата измерения Х от истинного значения Хи , или Хд , т. е Δ = =Хизм. – Хд;

По характеру (закономерности) изменения погрешности измерений подразделяются на систематические, случайные и грубые (промахи).

Установление числа наблюдений при измерениях: не следует приравнивать (отождествлять) понятие результат измерения с наблюдением при измерении. Наблюдение при измерении — экспериментальная операция, выполняемая в процессе измерений, в результате которой получают одно значение величины (отсчет) — результат наблюдения, подлежащее обработке для получения результата измерения. Поэтому результат измерения расчетная величина.

В процессе измерения, получая результаты наблюдений, у оператора всегда присутствуют два вида погрешностей, проявляющиеся одновременно в форме суммы: — Δ = Θ + S(х); или Δ = θ + σ; где первая составляющая суммы это систематическая погрешность, а вторая – случайная погрешность. Таким образом, при измерениях, показания СИ при любых наблюдениях можно представить как выражение из трех определений: Xизм. = Xд + Θ + S(х).

Остановимся сначала на систематических погрешностях, а случайную погрешность рассмотрим ниже, т.к. это связано со статистическими методами. Систематические погрешности Δс – составляющие погрешности измерений, остающиеся постоянными или закономерно изменяющиеся при многократных или повторных измерениях одной и той же физической величины в одних и тех же условиях.

Различают измерения с однократными и многократными наблюдениями. Наиболее распространены (в производстве) измерения с однократными наблюдениями. Это обусловлено обстоятельствами экспериментальной или производственной необходимости (разрушение объекта измерения в процессе наблюдения, невозможность повторения наблюдения, экономической целесообразностью и т.д.), а также, возможностью пренебречь случайными погрешностями, ситуациями, когда случайные погрешности доминируют, но доверительная граница погрешности результата измерения с однократным наблюдением не превышает допустимую погрешность измерений. Случайную погрешность считают пренебрежимо малой по сравнению с систематической (неисключенным остатком систематической погрешности — НСП) – старый термин. Термин по РМГ 29 – 99, НСП – неисключенная систематическая погрешность.

Граница НСП в практике пользования СИ часто трудно определима, тем более, когда надо определиться с тем понятием — однократное или многократное измерение необходимо произвести вот сейчас в данном, конкретном случае. В таких случаях два — три наблюдения при измерениях, имеющие различные значения и представляют причины для границ доверительной погрешности, в зависимости от предельных погрешностей метода измерения, который был Вами выбран, предельных погрешностей СИ, предельных погрешностей рабочих эталонов. Все эти составляющие систематических погрешностей входят в обозначение как N – число слагаемых и, согласно РМГ 29 – 99, определение НСП выполняется по формулам (7.1) и (7.2)

, (7.1)

где Qi — граница i – й составляющей неисключенной систематической погрешности при N £ 3;

N — число слагаемых, состоящих из пределов допускаемых основных и дополнительных погрешностей СИ, рабочих эталонов и т. д.

При N ³ 4 , расчет ведется по формуле (7.2)

, (7.2)

Для повышения надежности таких измерений, исключая промахи, делают два или три наблюдения, и за результат измерений принимают среднее арифметическое значение результатов этих наблюдений.

Измерения с числом наблюдений n ³ 4 относят, условно к измерениям с многократными наблюдениями и выполняют статистическую обработку ряда результатов наблюдений для получения информации о результате измерений и о случайной составляющей погрешности этого результата. Дальнейшее рассмотрение систематических погрешностей следует вести с учетом исключения их проявлений.

8 Учет систематической погрешности и способы их уменьшения

Систематические погрешности, как правило, не проявляются при выполнении наблюдений и вычислений результатов измерений, но способны существенно исказить результаты! При разработке выбора СИ и МВИ, т.е. еще до начала измерений систематические погрешности более или менее полно исключаются (например, введением аддитивных или мультипликативных поправок). Поэтому при выполнении наблюдений и оценке результатов измерений имеют дело с не исключенными остатками систематических погрешностей — НСП. Для обнаружения НСП рекомендуется: провести измерение другим, максимально отличным от использованного, методом и сравнить результаты. Резко изменить условия наблюдений. Использовать другие экземпляры СИ, сменить оператора замеров, изменить время суток наблюдений, когда выключено технологическое оборудование. Далее провести контрольное измерение в лаборатории другого предприятия, в другом городе, в метрологическом учреждении, в котором имеются более точные СИ и МВИ. Далее выполнить теоретическую (расчетную) оценку НСП с привлечением имеющихся априорных знаний об ОИ, более точных или других моделях ОИ, методе и СИ. Все это касалось метода непосредственных измерений — метода непосредственной оценки сравнения с мерой.

Запишите формулировку методов согласно РМГ 29 – 99:

а) метод непосредственной оценки – метод измерений, при котором значение величины определяют непосредственно по показывающему средству измерений;

Читайте также:  Как правильно измерить глубину ванны

б) метод сравнения с мерой – метод измерений, в котором измеряемую величину сравнивают с величиной, воспроизводимой мерой;

в) метод противопоставления — метод сравнения с мерой, в котором измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения, с помощью которого устанавливаются соотношение между этими величинами;

г) дифференциальный метод – метод измерений, при котором измеряемая величина сравнивается с однородной величиной, имеющей известное значение, незначительно отличающееся от значения измеряемой величины, и при котором измеряется разность между этими двумя величинами;

д) нулевой метод — метод сравнения с мерой, в котором результирующий эффект воздействия измеряемой величины и меры на прибор сравнения доводят до нуля. Пример — Измерение электрического сопротивления мостом с полным его уравновешиванием;

е) метод замещения — метод сравнения с мерой, в котором измеряемую величину замещают мерой с известным значением величины. Пример — Взвешивание с поочередным помещением измеряемой массы и гирь на одну и ту же чашку весов (метод Борда);

Пусть Мх — измеряемая масса. L1 и L2 — длины плеч коромысла весов. Сначала измеряемую массу помещают на одну из чашек весов и уравновешивают весы, помещая на другую чашку весов некоторый груз массой Т (например, гирю). При этом Мх = Т L2/L1. Затем снимают массу Мх и на эту же чашку помещают гири такой суммарной массы М, чтобы весы вновь уравновесились. При этом М = Т L2/L1. Из сопоставления этих выражений следует, что Мх = М при любом отношении L2/L1, причем не нужно знать значение Т;

ж) метод совпадений — метод сравнения с мерой, в котором разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют, используя совпадения отметок шкал или периодических сигналов. Например, измерение длины с помощью штангенциркуля с нониусом основано на использовании метода совпадений, наблюдают совпадение отметок на шкалах штангенциркуля и нониуса, при измерении частоты вращения стробоскопом — наблюдают совпадения положения какой-либо марки на вращающемся объекте в моменты вспышек известной частоты. Среди перечисленных методов существует метод компенсации погрешности по знаку — предусматривающий измерение с двумя наблюдениями, выполняемыми так, чтобы НСП входила в результат каждого из них с разными знаками. Пример — измеряется ЭДС с помощью потенциометра постоянного тока, имеющего паразитную термоЭДС. Проведя два наблюдения при противоположном направлении рабочего тока в потенциометре и взяв среднее значение, получим результат, свободный от этой погрешности. Еще пример — для исключения НСП из-за вариации, гистерезиса, мертвого хода верньерных механизмов, измерения проводят при подходе к определяемому отсчету слева и справа. Результат измерения вычисляют по формуле (8.1)

Х = (Хсл + Хспр) / 2 (8.1)

Кроме этого — метод рандомизации (перевод систематической погрешности в случайную) заключается в такой организации измерений, при которой фактор, вызывающий НСП, при каждом наблюдении действует по разному. Например:

а) для исключения влияния магнитного поля Земли наблюдения повторяют несколько раз, поворачивая ОИ каждый раз на некоторый угол, (обычно одинаковый) относительно силовых линий поля. За результат измерений принимают среднее арифметическое из всех наблюдений;

б) метод симметричных наблюдений применяется для устранения прогрессирующих систематических погрешностей, линейно меняющихся пропорционально времени;

в) используют следующее свойство любых двух наблюдений, симметричных относительно средней точки интервала наблюдений — среднее значение линейно прогрессирующей погрешности результатов любой пары симметричных наблюдений равно погрешности, соответствующей средней точке интервала;

г) ряд наблюдений выполняют через равные промежутки времени и вычисляют среднее арифметическое значение результатов симметрично расположенных наблюдений (симметрично относительно среднего по времени наблюдения). Как было сказано, они должны быть равны. Это дает возможность контролировать в ходе измерения, соблюдается ли условие линейности возрастания систематической погрешности.

Все приведенные методы (приемы), а также методы опосредованного сравнения с мерой должны учитываться при разработках МВИ.

После применения процедуры исключения систематических погрешностей в результат измерения вводятся поправки, или одна поправка, после чего измерения называются исправленными. После определения количества составляющих остатка систематических погрешностей делается расчет НСП. Неисключенные систематические погрешности отдельных наблюдений при измерениях включают в себя значение меры, используемой при поверке или калибровке СИ и искомой сумме составляющих систематической погрешности, следовательно, среднее значение измеряемой величины при N наблюдениях можно вычислить по формуле (8.2)

, (8.2)

где первый член суммы – погрешность меры;

второй – систематическая погрешность;

третий – показание СИ и случайная погрешность.

Для описания случайной погрешности, необходимо вспомнить «дифференциальную функцию распределения», математическое ожидание, дисперсию и среднеквадратическое отклонение, которые изучались в курсе теоретической метрологии.

Источник

Погрешность измерений

Отклонение результата измерения от истинного значения измеряемой величины

3.5 погрешность измерений: Отклонение результата измерения от истинного значения измеряемой величины.

3.15 погрешность измерений (uncertainty in measurement): Параметр результата измерения, который характеризует рассеивание значений и которое достоверно может быть приписано измеряемой величине.

1.1 погрешность измерений: Отклонение результата измерений от действительного (истинного) значения измеряемой величины.

Действительным значением физической величины называется ее значение, найденное экспериментально и настолько приближающееся к истинному значению, что для данной цели оно может быть использовано вместо него.

Читайте также:  Укажите единицу измерения чувствительности емкостного датчика

1.1 погрешность измерений: Отклонение результата измерений от действительного (истинного) значения измеряемой величины.

Действительным значением физической величины называется ее значение, найденное экспериментально и настолько приближающееся к истинному значению, что для данной цели оно может быть использовано вместо него.

Смотри также родственные термины:

3.15 погрешность измерений массы нефти: Обобщенная погрешность всех результатов измерений массы нефти при точном выполнении всех требований МВИ.

3.2 погрешность измерений массы продукта: Обобщенная погрешность всех результатов измерений массы продукта при точном выполнении всех требований МВИ.

3.2 погрешность измерений массы продукта: Обобщенная погрешность всех результатов измерений, получаемых с применением МВИ массы продукта, при условиях данной методики.

Словарь-справочник терминов нормативно-технической документации . academic.ru . 2015 .

Смотреть что такое «Погрешность измерений» в других словарях:

Погрешность результата измерений (погрешность измерений) — Отклонение результата измерения от истинного значения измеряемой величины. Примечания. 1. На практике всегда имеют дело с приближенной оценкой погрешности измерений, чаще всего получаемой как отклонение от действительного значения. 2. Термин… … Словарь-справочник терминов нормативно-технической документации

погрешность результата измерений (погрешность измерений) — Отклонение результата измерения от истинного значения измеряемой величины. Примечания 1. На практике всегда имеют дело с приближенной оценкой погрешности измерений, чаще всего получаемой как отклонение от действительного значения. 2. Термин… … Справочник технического переводчика

Погрешность измерений относительная — Погрешность измерений, выраженная отношением абсолютной погрешности измерений к значению измеряемой величины. Примечания: 1. Распространено представление относительной погрешности в процентах. 2. Понятие относительная погрешность применимо в… … Официальная терминология

Погрешность измерений абсолютная — Погрешность измерений, выраженная в единицах измеряемой величины. Примечание. Термин абсолютная погрешность применим к результатам измерений в шкалах разностей (интервалов), отношений и абсолютных. Источник: ШКАЛЫ ИЗМЕРЕНИЙ . ОСНОВНЫЕ ПОЛОЖЕНИЯ … Официальная терминология

погрешность измерений массы продукта — 3.2 погрешность измерений массы продукта: Обобщенная погрешность всех результатов измерений массы продукта при точном выполнении всех требований МВИ. Источник … Словарь-справочник терминов нормативно-технической документации

погрешность измерений массы нефти — 3.15 погрешность измерений массы нефти: Обобщенная погрешность всех результатов измерений массы нефти при точном выполнении всех требований МВИ. Источник … Словарь-справочник терминов нормативно-технической документации

Погрешность измерений динамическая — Погрешность результата измерений, свойственная условиям динамического измерения. Источник: Государственная система обеспечения единства измерения. Метрология. Основные термины и определения. РМГ 29 99 (введены Постановлением Госстандарта РФ от… … Официальная терминология

Погрешность измерений статистическая — Погрешность результата измерений, свойственная условиям статического измерения. Источник: Государственная система обеспечения единства измерения. Метрология. Основные термины и определения. РМГ 29 99 (введены Постановлением Госстандарта РФ от… … Официальная терминология

абсолютная погрешность измерений — 1.2 абсолютная погрешность измерений: Погрешность измерений, выраженная в единицах измеряемой величины, определяемая по формуле ΔМ = Мизм Мд, (1) где ΔМ абсолютная погрешность измерений,… … Словарь-справочник терминов нормативно-технической документации

Абсолютная погрешность измерений (абсолютная погрешность) — Погрешность измерений, выраженная в единицах измеряемой величины. Примечание. Термин «абсолютная погрешность» применим к результатам измерений в шкалах разностей (интервалов), отношений и абсолютных. Относительная погрешность измерений… … Словарь-справочник терминов нормативно-технической документации

Источник

Измерения

Погрешность средств измерения и результатов измерения.

Погрешности средств измерений – отклонения метрологических свойств или параметров средств измерений от номинальных, влияющие на погрешности результатов измерений (создающие так называемые инструментальные ошибки измерений).
Погрешность результата измерения – отклонение результата измерения от действительного (истинного) значения измеряемой величины.

Инструментальные и методические погрешности.

Методическая погрешность обусловлена несовершенством метода измерений или упрощениями, допущенными при измерениях. Так, она возникает из-за использования приближенных формул при расчете результата или неправильной методики измерений. Выбор ошибочной методики возможен из-за несоответствия (неадекватности) измеряемой физической величины и ее модели.

Причиной методической погрешности может быть не учитываемое взаимное влияние объекта измерений и измерительных приборов или недостаточная точность такого учета. Например, методическая погрешность возникает при измерениях падения напряжения на участке цепи с помощью вольтметра, так как из-за шунтирующего действия вольтметра измеряемое напряжение уменьшается. Механизм взаимного влияния может быть изучен, а погрешности рассчитаны и учтены.

Инструментальная погрешность обусловлена несовершенством применяемых средств измерений. Причинами ее возникновения являются неточности, допущенные при изготовлении и регулировке приборов, изменение параметров элементов конструкции и схемы вследствие старения. В высокочувствительных приборах могут сильно проявляться их внутренние шумы.

Статическая и динамическая погрешности.

  • Статическая погрешность измерений – погрешность результата измерений, свойственная условиям статического измерения, то есть при измерении постоянных величин после завершения переходных процессов в элементах приборов и преобразователей.
    Статическая погрешность средства измерений возникает при измерении с его помощью постоянной величины. Если в паспорте на средства измерений указывают предельные погрешности измерений, определенные в статических условиях, то они не могут характеризовать точность его работы в динамических условиях.
  • Динамическая погрешность измерений – погрешность результата измерений, свойственная условиям динамического измерения. Динамическая погрешность появляется при измерении переменных величин и обусловлена инерционными свойствами средств измерений. Динамической погрешностью средства измерений является разность между погрешностью средсва измерений в динамических условиях и его статической погрешностью, соответствующей значению величины в данный момент времени. При разработке или проектировании средства измерений следует учитывать, что увеличение погрешности измерений и запаздывание появления выходного сигнала связаны с изменением условий.
Читайте также:  Приборы для измерения тонировки стекол автомобиля

Статические и динамические погрешности относятся к погрешностям результата измерений. В большей части приборов статическая и динамическая погрешности оказываются связаны между собой, поскольку соотношение между этими видами погрешностей зависит от характеристик прибора и характерного времени изменения величины.

Систематическая и случайная погрешности.

Систематическая погрешность измерения – составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же физической величины. Систематические погрешности являются в общем случае функцией измеряемой величины, влияющих величин (температуры, влажности, напряжения питания и пр.) и времени. В функции измеряемой величины систематические погрешности входят при поверке и аттестации образцовых приборов.

Причинами возникновения систематических составляющих погрешности измерения являются:

  • отклонение параметров реального средства измерений от расчетных значений, предусмотренных схемой;
  • неуравновешенность некоторых деталей средства измерений относительно их оси вращения, приводящая к дополнительному повороту за счет зазоров, имеющихся в механизме;
  • упругая деформация деталей средства измерений, имеющих малую жесткость, приводящая к дополнительным перемещениям;
  • погрешность градуировки или небольшой сдвиг шкалы;
  • неточность подгонки шунта или добавочного сопротивления, неточность образцовой измерительной катушки сопротивления;
  • неравномерный износ направляющих устройств для базирования измеряемых деталей;
  • износ рабочих поверхностей, деталей средства измерений, с помощью которых осуществляется контакт звеньев механизма;
  • усталостные измерения упругих свойств деталей, а также их естественное старение;
  • неисправности средства измерений.

Случайной погрешностью называют составляющие погрешности измерений, изменяющиеся случайным образом при повторных измерениях одной и той же величины. Случайные погрешности определяются совместным действием ряда причин: внутренними шумами элементов электронных схем, наводками на входные цепи средств измерений, пульсацией постоянного питающего напряжения, дискретностью счета.

Погрешности адекватности и градуировки.

Погрешность градуировки средства измерений – погрешность действительного значения величины, приписанного той или иной отметке шкалы средства измерений в результате градуировки.

Погрешностью адекватности модели называют погрешность при выборе функциональной зависимости. Характерным примером может служить построение линейной зависимости по данным, которые лучше описываются степенным рядом с малыми нелинейными членами.

Погрешность адекватности относится к измерениям для проверки модели. Если зависимость параметра состояния от уровней входного фактора задана при моделировании объекта достаточно точно, то погрешность адекватности оказывается минимальной. Эта погрешность может зависеть от динамического диапазона измерений, например, если однофакторная зависимость задана при моделировании параболой, то в небольшом диапазоне она будет мало отличаться от экспоненциальной зависимости. Если диапазон измерений увеличить, то погрешность адекватности сильно возрастет.

Абсолютная, относительная и приведенная погрешности.

Абсолютная погрешность – алгебраическая разность между номинальным и действительным значениями измеряемой величины. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина, в расчетах её принято обозначать греческой буквой – ∆. На рисунке ниже ∆X и ∆Y – абсолютные погрешности.

Относительная погрешность – отношение абсолютной погрешности к тому значению, которое принимается за истинное. Относительная погрешность является безразмерной величиной, либо измеряется в процентах, в расчетах обозначается буквой – δ.

Приведённая погрешность – погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона. Вычисляется по формуле

где Xn – нормирующее значение, которое зависит от типа шкалы измерительного прибора и определяется по его градуировке:

– если шкала прибора односторонняя и нижний предел измерений равен нулю (например диапазон измерений 0. 100), то Xn определяется равным верхнему пределу измерений (Xn=100);
– если шкала прибора односторонняя, нижний предел измерений больше нуля, то Xn определяется как разность между максимальным и минимальным значениями диапазона (для прибора с диапазоном измерений 30. 100, Xn=Xmax-Xmin=100-30=70);
– если шкала прибора двухсторонняя, то нормирующее значение равно ширине диапазона измерений прибора (диапазон измерений -50. +50, Xn=100).

Приведённая погрешность является безразмерной величиной, либо измеряется в процентах.

Аддитивные и мультипликативные погрешности.

  • Аддитивной погрешностью называется погрешность, постоянную в каждой точке шкалы.
  • Мультипликативной погрешностью называется погрешность, линейно возрастающую или убывающую с ростом измеряемой величины.

Различать аддитивные и мультипликативные погрешности легче всего по полосе погрешностей (см.рис.).

Если абсолютная погрешность не зависит от значения измеряемой величины, то полоса определяется аддитивной погрешностью (а). Иногда аддитивную погрешность называют погрешностью нуля.

Если постоянной величиной является относительная погрешность, то полоса погрешностей меняется в пределах диапазона измерений и погрешность называется мультипликативной (б). Ярким примером аддитивной погрешности является погрешность квантования (оцифровки).

Класс точности измерений зависит от вида погрешностей. Рассмотрим класс точности измерений для аддитивной и мультипликативной погрешностей:

– для аддитивной погрешности:
аддитивная погрешность
где Х – верхний предел шкалы, ∆0 – абсолютная аддитивная погрешность.
– для мультипликативной погрешности:
мультипликативная погрешность
порог чувствительности прибора – это условие определяет порог чувствительности прибора (измерений).

Источник