Суммарная погрешность измерений для технических измерений



Суммарная погрешность и достоверность измерений

Задача объединения составляющих погрешности может возникнуть как до, так и после выполнения прямых или косвенных измерений какого-либо параметра. Ее решение на уровне классической теории измерений пока находится в стадии осмысления и разработки.

Суммирование составляющих погрешности не требуется при выполнении значительной части технических измерений, когда общие погрешности представлены допускаемой погрешностью (при Р = 1) или классом точности.

Объединение погрешностей (интервалов) потребуется, если условия измерений отличаются от условий передачи единицы, и имеется информация о других источниках неопределенности, представленной, как правило, совокупностью нормированных погрешностей.

Объединение нормированных погрешностей основано на предположении, что разность между измеренным и истинным значением величины могла бы принимать случайные значения величины, равномерно распределенной в пределах нормированного интервала по каждому влияющему фактору. В соответствии с предельной теоремой объединенный закон распределения нескольких случайных величин стремится к нормальному закону.

При суммировании придерживаются принципа «оценки сверху». Предполагается, что оцененная суммарная погрешность (интервал) принимается «чуть» больше расчетной в надежде на то, что вероятность попадания истинного значения измеряемой величины в этот интервал может оказаться «чуть» выше принятой вероятности.

В основу суммирования составляющих погрешности в современной метрологии положены принципы, заимствованные из теории вероятностей и математической статистики. При суммировании любых составляющих погрешности действует правило: общая дисперсия нескольких независимых случайных величин равна сумме дисперсий каждой из них.

Обычное арифметическое суммирование погрешностей дает слишком завышенную погрешность измерений с вероятностью 1. Результат измерений с такими погрешностями считается грубым и имеет заниженную ценность. Тем не менее, существует устойчивая рекомендация:две составляющие систематической погрешности суммировать арифметически.

Существует общая рекомендация по несущественности отдельных составляющих погрешности — отличие дисперсий не менее чем в 10 раз, или различие оценок СКО более чем в 3 раза.

Суммирование случайных погрешностей.

В обычных прямых многократных измерениях выявляют одну случайную составляющую, которую почти всегда объединяют с общей систематической погрешностью. В редком случае, когда случайная составляющая погрешности больше суммарной систематической погрешности в 8 и более раз, то систематические погрешности можно считать несущественными.

В случае измерений, в процессе которых поправки определены экспериментально и их случайные составляющие погрешности оказались существенными и выраженными своими оценками СКО, то оценку СКО суммарной случайной составляющей погрешности измерений величины В определяют по следующей формуле:

, (16)

где i – оценка СКО i-той случайной составляющей погрешности;

n – число случайных составляющих погрешности.

При представлении результата измерений могут быть использованы одна или две или три сигмы, оцененные по формуле (16).

Суммирование систематических погрешностей.

Основные принципы и методы суммирования погрешностей прямых измерений, применяемые в российских документах, были впервые регламентированы ГОСТ 8.207-76 «ГСИ. Прямые измерения с многократными наблюдениями. Методы обработки результатов наблюдений. Общие положения».

При прямых однократных измерениях все составляющие систематической погрешности обычно считаются существенными, а случайная погрешность считаются пренебрежимо малой, если она в 8 раз меньше наименьшей систематической составляющей. Обычно рассматривают следующие составляющие систематической погрешности: погрешность переданной и хранимой единицы величины; погрешности, обусловленные отличием рабочих условий измерений от условий, принятых за нормальные условия. Каждая составляющая погрешности может быть выражена пределами допускаемой основной и дополнительной погрешности или оценками погрешности (с вероятностью 0,95).

Принято также считать, что поправки, если бы они были определены для каждой систематической составляющей погрешности, были бы распределенными по равномерному закону в пределах соответствующего интервала.

Суммарную погрешность измерения ΔР вычисляют по формуле:

, (17)

где Δi i-тая систематическая составляющая погрешности;

kР – коэффициент, определяемый принятой доверительной вероятностью;

m – количество составляющих систематической погрешности.

Коэффициент kРпри разной доверительной вероятности Р для разного количества составляющих m выбирают в соответствии с таблице 3.

Таблица 3 – Коэффициент kРпри разной вероятности Р

Количество составляющих погрешности

2 3 4 5 0,90 0,97 0,95 0,95 0,95 0,95 1,10 1,12 1,12 1,12 0,99 1,27 1,37 1,41 1,42

Доверительную вероятность для вычисления суммарной систематической погрешности рекомендуют принимать той же, что при вычислении случайной погрешности измерения, обычно Р = 0,95.

Рекомендации ISO основаны на суммировании дисперсий составляющих погрешности и использовании предельной теоремы теории вероятностей для оценки доверительного интервала.

Если руководствоваться «оценкой сверху» и считать, что вероятный разброс показаний СИ от каждого систематического эффекта мог бы быть распределенным равномерно и (или) по закону Симпсона, то суммарную погрешность измерения ΔР вычисляют по формуле:

, (18)

где kР – коэффициент охвата, определяемый принятой доверительной вероятностью Р (обычно k0,95 = 2 при Р = 0,95 и k0,997 = 3 при Р = 0,997);

Δi – интервал для i-ой систематической составляющей погрешности при равномерном распределении измеренных значений;

m – количество составляющих систематической погрешности, распределенных равномерно;

Δj – интервал для j-ой систематической составляющей погрешности при распределении измеренных значений по закону Симпсона;

q – количество составляющих систематической погрешности, распределенных по закону Симпсона.

Суммирование систематических и случайных погрешностей.

Далее анализу подвергаются систематические погрешности, которые имеются всегда. В российских документах они обычно выражены нормированной допускаемой погрешностью средств измерений, указанными в паспорте СИ. Иногда в нормированной погрешности содержится доля собственной случайной погрешности СИ, которая перейдет в будущий разброс измеренных значений, и оставшаяся доля систематической погрешности будет меньше нормированной. Если известны погрешности СИ, указанные, например, в сертификате о его калибровке, то они должны быть приведены к доверительной вероятности оцененной случайной погрешности.

При прямых многократных измерениях все систематические составляющие погрешности считаются существенными и случайная составляющая погрешности меньше суммарной оценки систематической погрешности менее чем в 8 раз. Суммарная оценка систематической погрешности и оценка случайной погрешности должны быть приведены к одной и той же вероятности. Суммарную оценку погрешности измерения находят путем построения композиции распределений показаний, изменяющихся от случайных и систематических эффектов.

Общая суммарная оценка погрешности при ответственных измерениях, например, в научных исследованиях, вычисляется по следующей формуле [19]:

, (19)

где tP – коэффициент Стьюдента при n≤30;

k – коэффициент, использованный при оценивании суммарной систематической погрешности;

Δi – допускаемая i-тая составляющая систематическая погрешность;

σ – оценка СКО случайной погрешности среднего измеренного значения, вычисленная по формуле:

(20)

где Xii-е измеренное значение величины;

– среднее измеренное значение величины;

n – общее количество измеренных значений.

Рекомендация ISO суммирования систематических и случайных составляющих погрешности основана на суммировании дисперсий составляющих погрешности и использовании предельной теоремы для оценки доверительного интервала.

Суммарную погрешность измерения ΔР вычисляют по формуле:

. (21)

где kР – коэффициент охвата, определяемый принятой доверительной вероятностью Р (k0,95 = 2 или k0,997 = 3) и остальные обозначения как в формулах
(16) и (18).

В обоснованных случаях иногда пользуются трапецеидальным законом распределения при добавлении систематической погрешности, обусловленной ее дополнительным источником.

Однако при проведении обычных лабораторных измерений часто пользуются совсем упрощенным способом оценки суммарной погрешности многократных измерений – обычным арифметическим суммированием, всегда обеспечивающим «оценку сверху».

Суммирование составляющих погрешности при выполнении косвенных
измерений.

При выполнении косвенных измерений аргументами функции являются результаты прямых (или других косвенных) измерений со своими измеренными значениями и погрешностями.

Пусть требуется получить результат измерений величины , связанной с результатами измерений других величин ;…; , где погрешности представлены с доверительной вероятностью от 0,99 до 1, некоторой зависимостью, называемой «моделью измерений» [35]:

. (22)

Необходимо найти отдельно и отдельно , чтобы объединить их в один результат измерений.

Оценку погрешности косвенного измерения найдем по формуле:

(23)

Наиболее простым способом объединения погрешностей косвенных измерений с использованием функций, в которых аргументы суммируются или перемножаются или делятся, является следующий способ.

Пусть необходимо найти погрешность ΔZ измеренной величины Z, определяемой через результаты измеренных прямыми методами величин и , где погрешности представлены с доверительной вероятностью 0,99 или 1, как следующие функции:

; , ; .

Тогда погрешность косвенных измерений для этих функций определяется по одной и той же формуле:

, (24)

Если аргументы функции находятся в какой-либо степени, то слагаемые в формуле (24) множатся на показатель степени.

Если аргументов более двух, в формулу (24) добавятся соответствующие слагаемые для новых составляющих погрешности, умноженные на соответствующий показатель степени.

Для более сложных функциональных зависимостей целесообразно выполнить математическое моделирование косвенных измерений, чтобы убедиться в обоснованности полученной оценки погрешности. Для этого необходимо получить разброс измеренных значений косвенно измеряемой величины с перебором хотя бы крайних значений интервала для истинных значений каждого аргумента. Ширина данного разброса является оценкой погрешности косвенного измерения. Обычно такой интервал слишком завышен, так как вероятность того, что истинное значение измеренных аргументов окажется одновременно в крайних положениях соответствующего доверительного интервала, чрезвычайно мала. Поэтому доверительная вероятность для оценок погрешности косвенного измерения по формулам (23) и (24) приближается к 1, даже если доверительная вероятность для оценок погрешности аргументов была принята 0,95 и выше.

Доверительная вероятность служит показателем достоверности измерений.

5.6 Представление погрешности в результате измерений.
Правила округления

Рекомендации по формам представления результатов измерений даны в МИ 1317-2004 и в правилах ПМГ 96-2009.

Поскольку измеренное значение (показание прибора) это всегда случайная величина, то результат измерений должен быть представлен всей совокупностью возможных значений измеряемой величины. Поэтому полная информация об измеряемой величине может быть представлена только интервалом на числовой оси с указанием функции распределения плотности вероятности.

При представлении результата воспроизведения единицы величины первичным государственным эталоном принято разделять оценки погрешности на систематические и случайные составляющие (например, оценка СКО случайной погрешности, систематическая погрешность при заданной доверительной вероятности и стабильность за установленный интервал времени). Такой же подход целесообразно использовать при представлении сведений о любых эталонах единиц величин разных разрядов. В особо ответственных случаях (при установлении физических констант, при определении постоянных коэффициентов (функций) влияния, при дальнейшем использовании результатов измерений в других измерениях) также целесообразно указывать и систематические и случайные погрешности.

В таблице 4 приведено сопоставление различных вариантов представления погрешности и показателей неопределенности в результатах измерений.

Таблица 4 – Сопоставление вариантов представления показателей
неопределенности измерений в терминах погрешности и неопределенности

Показатели точности (неопределенности) измерений Представление результата измерений в терминах погрешности Представление результата измерений в терминах неопределенности
Суммарная погрешность при заданной вероятности (расширенная суммарная неопределенность)
Оценка среднего квадратического отклонения систематической погрешности (суммарная стандартная неопределенность по типу В) В=(Визм±σс)·[B]
Стандартное отклонение случайной погрешности (стандартная неопределенность по типу А)
Оценка среднего квадра-тического отклонения суммарной погрешности; (суммарная стандартная неопределенность)
Нормированная погрешность или целевая неопределенность В=(Визм±ΔР=1)

При представлении результата измерений должно быть разумное сочетание значащих цифр в измеренном значении величины и в погрешности измерений.

Нормированную допускаемую погрешность (вероятность всегда 1) выражают числом, содержащим одну значащую цифру, если она от 3 до 8, или двумя значащими цифрами, первая из которых 1 или 2. Использование одной цифры 9 не рекомендуется (округляют до 10). В случае нормированной допускаемой погрешности числовое значение погрешности не требует изменения (округления).

Оцененную погрешность при любой выбранной вероятности выражают числом, содержащим одну значащую цифру, если она после округления от 5 до 9, или двумя значащими цифрами, первая из которых от 1 до 4. В таком случае числовое значение погрешности округляют в большую сторону (увеличивают на 1), если отбрасываемая цифра равна или более 5, и в меньшую сторону (оставляют без изменения), если она менее 5. Для высокоточных измерений погрешность выражают двумя любыми значащими цифрами.

После округления оцененной погрешности реальное значение вероятности будет отличаться от ранее выбранного значения. При округлении погрешности в большую сторону выбранную вероятность можно оставить без изменения, а при округлении в меньшую сторону декларируемую вероятность рекомендуется уменьшить.

Округление погрешности производится лишь при представлении окончательного результата. Все предварительные вычисления производят с тремя излишними значащими цифрами.

Измеренное значение округляют до той же цифры, которой заканчивается округленное значение оцененной абсолютной погрешности или значение допускаемой погрешности. Излишние цифры в целых числах заменяют нулями, а в десятичных дробях отбрасывают.

Дата добавления: 2018-06-01 ; просмотров: 1222 ; Мы поможем в написании вашей работы!

Источник

Суммарная погрешность измерения

Классы точности средств измерения

Класс точности средства измерения – обобщенная характеристика средства измерения, определяемая величиной относительной погрешности и другими свойствами средств измерений, влияющих на точность.

Для многих средств измерений, например, электрических величин, цифра класса точности определяет величину относительной погрешности измерения. Например, для амперметра класса точности –2 и диапазона показаний по шкале прибора 0 – 5 ампер, величина абсолютной погрешности измерения

Δ = 0.02 · 5 = 0.1 А.

Для всех средств измерения линейных и угловых величин класс точности является качественной характеристикой не связанной с величиной относительной погрешности измерения как для вышеприведенного примера. Значения допускаемой погрешности измерения в зависимости от класса точности приведены в паспортных данных.

Класс точности средств измерений характеризует их свойство в отношении точности, но не является непосредственным показателем точности измерений, выполняемых с помощью этих средств. Так, например, измерение размера высокоточным прибором — микрокатором с ценой деления 0.001мм., закрепленного в стойке низкой точности не обеспечит требуемую точность измерений. Для обеспечения требуемой точности необходимо, чтобы суммарная погрешность измерений, отражающая близость их результатов к истинному значению измеряемой величины, не выходила за установленные пределы.

Суммарная погрешность измерения – погрешность, включающая инструментальную погрешность, погрешность метода измерений и дополнительную погрешность.

Инструментальная погрешность определяется техническими возможностями средства измерения и количественно характеризуется допускаемой погрешностью измерения.

Остальные составляющие суммарной погрешности измерения:

— погрешность установки, возникает в том случае, если ось измерительных наконечников прибора (ориентация детали) не совпадает с нормалью к измеряемой поверхности. При измерении, настройке совпадение оси с нормалью обеспечивается относительным «покачиванием» прибора и детали с фиксацией минимального отсчета по шкале;

— погрешности из-за установочных мер, по которым производится настройка средства измерения;

— погрешности, зависящие от измерительного усилия. Колебание измерительного усилия приводит к деформации поверхности детали и конструкции средства измерения, вызываю значительную случайную составляющую. Это особенно заметно при применении недостаточно жестких конструкций штативов и стоек, в которые устанавливается средство измерений, например, индикатор часового типа;

— погрешность, происходящая от температурных деформаций объекта измерения и средства измерения. За нормальную температуру, как для допусков размеров так и для измерения принята температура 20 о С. Чем выше точность измерения, тем меньше допускаемое отклонение температуры. Например, для измерения деталей 6-го квалитета точности температурные режим должен быть в пределах 20 ±5 о С;

— погрешности субъективные, зависящие от оператора, к которым можно отнести погрешности отсчитывания (для шкальных приборов), погрешности, зависящие от профессионального мастерства при выполнении настройки и измерении;

— прочие погрешности, к которым можно отнести вибрации от различных факторов, от шероховатости поверхности, от загрязненности и скорости движения воздушной среды помещения от износа средств измерения и прочие специфические составляющие.

Необходимо помнить, что выбор высокоточного средства измерения с малым значение инструментальной погрешности еще не гарантирует обеспечение точности измерений. Так, при выборе микрокатора 1ИГП с ценой деления 1 мкм и погрешностью Δ ± 0.6мкм и установке его при измерении в штативе Ш-II низкой точности не обеспечит требуемую точность измерений.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector