Меню

Таблица для лабораторной по физике измерение длины световой волны



ИНФОФИЗ — мой мир.

Весь мир в твоих руках — все будет так, как ты захочешь

Весь мир в твоих руках — все будет так, как ты захочешь

Как сказал.

Вопросы к экзамену

Для всех групп технического профиля

Список лекций по физике за 1,2 семестр

Урок 53. Лабораторная работа 13. Определение длины волны светового излучения с помощью дифракционной решётки

Тема: Определение длины волны светового излучения с помощью дифракционной решётки

Цель: Познакомиться на опыте с явлением многолучевой интерференции световых волн. Используя решётку с известным расстоянием между штрихами измерить длину волны светового излучения.

Оборудование:

  1. Штатив.
  2. Дифракционная решётка 100 штрихов на мм.
  3. Измерительная лента.

Теория

Дифракция волн — огибание волнами различных препятствий (неоднородностей).

Препятствия нарушают прямолинейность распространения фронта волны.

Дифракция волн свойственна всякому волновому движению; проявляется особенно отчетливо в случаях, когда размеры препятствий меньше длины волны или сравнимы с ней, однако проявляется всегда. Для увеличения яркости дифракционной картины нужно пропускать свет через несколько параллельных щелей. В этом случае кроме явления дифракции будет происходить ещё и явление интерференции, т.к. лучи, идущие от всех лучей, оказываются когерентными.

Когерентными называются волны, имеющие одинаковую частоту и постоянную разность фаз.

Большое число параллельных и очень близко расположенных узких щелей, которые пропускают или отражают свет, называют дифракционной решёткой.

Дифракционные решетки с различным числом щелей на 1 мм:

Параллельный пучок света с длиной волны λ, проходя через дифракционную решётку, вследствие дифракции за решёткой, распространяется по всевозможным направлениям и интерферирует. На экране, установленном на пути интерферирующего света, можно наблюдать интерференционную картину:

Максимумы света наблюдаются в точках экрана, для которых выполняется условие максимума:

Условие максимума: на разности хода волн укладывается четное число полуволн (целое число длин волн): Δ=k·λ, (1)

где Δ=АС — разность хода волн; λ — длина световой волны; k — номер максимума.

Центральный максимум (в точке О) называют нулевым; для него Δ=0. Слева и справа от него располагаются максимумы высших порядков. Условие возникновения максимума можно записать иначе:

где k=0; ± 1; ± 2; ± 3.

Здесь d — период дифракционной решётки в мм, φ — угол, под которым виден световой максимум k-го порядка в точке N на расстоянии а от нулевого максимума, а λ — длина волны.

Так как углы дифракции малы, то для них можно принять: sin φ ≈ tg φ, а tg φ=a/b.

Поэтому: , и искомая длина световой волны равна (2)

В данной работе формулу (2) используют для вычисления длины световой волны.

Из условия максимума следует sinφ=(k·λ)/d .

Известно, что λ кр>λ ф , следовательно sinφ кр> sinφ ф. Т.к. y= sinφ ф — функция возрастающая, то φ кр>φ ф

Поэтому фиолетовый цвет в дифракционном спектре располагается ближе к центру.

Между максимумами расположены минимумы освещенности. Чем больше общее число щелей и чем ближе друг к другу они расположены, тем более широкими промежутками разделены максимумы.

Картина дифракции лазерного излучения красно цвета на решётках с различным числом щелей на 1 мм:

Читайте также:  Журнал для измерения температуры сотрудников роспотребнадзор

Ход работы

  1. Перенести рисунок в тетрадь.

  1. Подготовить таблицу для записи результатов измерений:

Порядок спектра,

цвет

Постоянная
решётки,

мм

Расстояние от решётки до экрана,

мм

Расстояние от нулевого максимума до максимума k-порядка

мм

Длина волны,

нм

Средняя длина волны

нм

Относительная погрешность
измерения

δ

  1. Укрепить в штативе линейку с экраном и закрепить на направляющей линейки дифракционную решётку.
  2. Установить расстояние от решётки до экрана 40 см (b).Результат записать в таблицу.
  3. Смотря через дифракционную решётку, направить прибор на источник света. Пронаблюдать спектр:

Измерить на экране расстояние а между нулевым максимумом и максимумом 1-го порядка для красного света. Результат записать в таблицу.

  1. Измерить на экране расстояние амежду нулевым максимумом и максимумом 2-го порядка для красного света. Результат записать в таблицу.
  2. Повторить опыт, измерив на экране расстояние амежду нулевым максимумом и максимумом 1-го и 2-го порядка для фиолетового света. Результат записать в таблицу.
  3. По формуле рассчитать длину волны излучения.
  4. Найти среднее значение длины волны светового излучения для красного λ кр ср =( λ кр1 +λ кр2) /2
    и фиолетового света .λ ф ср =( λ ф1 +λ ф2) /2
  1. Зная истинное значение длины волны лазерного излучения , рассчитать относительную погрешность измерений:

Диапазон длин волн, нм

Красный 625—740 нм (λкр табл= 680 нм)

Фиолетовый 380—440 нм (λф табл = 410 нм)

  1. Записать вывод по результатам выполненной работы.
  2. Ответить письменно на контрольные вопросы.

Контрольные вопросы

  1. Какие волны называются когерентными?
  2. В чём заключается явление дифракции?
  3. Какие свойства света подтверждает дифракция света?
  4. При каких условиях наблюдается дифракция света?
  5. Как образуется дифракционный спектр?
  6. Почему максимумы располагаются как слева, так и справа от нулевого максимума?
  7. В чём разница в дифракционных картинах решёток с 50 и 300 штрихами на одном миллиметре?

Источник

Лаб. 4

  • L = 0.0005 м + 0.0005 м = 0.001 м
  • l = 0.0005 м + 0.0005 м = 0.001 м

2. В каком порядке следуют основные цвета в дифракционном спектре? Совпадает ли этот порядок с порядком следования цветов в радуге?

В дифракционном спектре: фиолетовый, синий, голубой, зелёный, жёлтый, оранжевый и красный.

3. Как изменится характер дифракционного спектра, если использовать решётку с периодом, в 2 раза большим, чем в вашем опыте? В 2 раза меньшим?

Спектр в общем случае есть частотное распределение. Пространственная частота — величина, обратная периоду. Отсюда очевидно, что увеличение периода вдвое приводит к сжатию спектра, а уменьшение спектра приведёт к растяжению спектра вдвое.

Выводы: дифракционная решётка позволяет очень точно измерить длину световой волны.

Источник

Лабораторная работа №2 (решеба, ответы) по физике 11 класс — Определение световой волны с помощью дифракционной решётки

вкл. 01 Декабрь 2016 .

Лабораторная работа №2 (решеба, ответы) по физике 11 класс — Определение световой волны с помощью дифракционной решётки

2. Установите экран на расстоянии L

45—50 см от дифракционной решётки. ИзмерьтеL не менее 5 раз, рассчитайте среднее значение . Данные занесите в таблицу.

5. Рассчитайте средние значения. Данные занесите в таблицу.

6. Рассчитайте период d решётки, запишите его значение в таблицу.

Читайте также:  Утверждения типа поверки калибровки метрологической аттестации средств измерений

7. По измеренному расстоянию от центра щели в экране до положения красного края спектра и расстоянию от дифракционной решётки до экрана вычислите sin0кр, под которым наблюдается соответствующая полоса спектра.

8. Вычислите длину волны, соответствующую красной границе воспринимаемого глазом спектра.

9. Определите длину волны для фиолетового края спектра.

10. Рассчитайте абсолютные погрешности измерений расстояний L и l.

L = 0.0005 м + 0.0005 м = 0.001 м
l = 0.0005 м + 0.0005 м = 0.001 м

11. Рассчитайте абсолютную и относительную погрешности измерения длин волн.

Ответы на контрольные вопросы

1. Объясните принцип действия дифракционной решётки.

Принцип действия такой же, как и призмы — отклонение проходящего света на определённый угол. Угол зависит от длины волны падающего света. Чем больше длина волны, тем больше угол. Представляет собой систему из одинаковых параллельных щелей в плоском непрозрачном экране.

Нажмите, чтобы увеличить

2. Укажите порядок следования основных цветов в дифракционном спектре?

В дифракционном спектре: фиолетовый, синий, голубой, зелёный, жёлтый, оранжевый и красный.

3. Как изменится дифракционный спектр, если использовать решётку с периодом, в 2 раза большим, чем в вашем опыте? В 2 раза меньшим?

Спектр в общем случае есть частотное распределение. Пространственная частота — величина, обратная периоду. Отсюда очевидно, что увеличение периода вдвое приводит к сжатию спектра, а уменьшение спектра приведёт к растяжению спектра вдвое.

Выводы: дифракционная решётка позволяет очень точно измерить длину световой волны.

Источник

Лабораторная работа на тему: «Измерение световой волны».

Лабораторная работа №6.

Измерение световой волны.

Оборудование: дифракционная решетка с периодом 1/100 мм или 1/50 мм.

Узкая вертикальная щель.

Цель работы: экспериментальное определение световой волны с помощью дифракционной решетки.

Дифракционная решетка представляет собой совокупность большого числа очень узких щелей, разделенных непрозрачными помежутками.

Длина волны определяется по формуле:

Где d – период решетки

k – порядок спектра

— угол, под котором наблюдается максимум света

Уравнение дифракционной решетки :

Поскольку углы, под которыми наблюдается максимумы 1-го и 2-го порядков, не превышают 5 , можно вместо синусов углов использовать их тангенсы.

Расстояние а отсчитывают по линейке от решетки до экрана, расстояние b – по шкале экрана от щели до выбранной линии спектра.

Окончательная формула для определения длины волны имеет вид

В этой работе погрешность измерений длин волн не оценивается из-за некоторой неопределенности выбора середины части спектра.

Примерный ход работы:

b=8 см, a =1 м; k =1; d=10 -5 м

tg =sin

d – период решетки

Вывод: Измерив экспериментально длину волн красного света с помощью дифракционной решетки, мы пришли к выводу, что она позволяет очень точно измерить длины световых волн.

  • Свидетельство каждому участнику
  • Скидка на курсы для всех участников

  • 16 предметов
  • Для учеников 1-11 классов и дошкольников
  • Бесплатные наградные документы для учеников и учителей

Номер материала: ДБ-1536761

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Читайте также:  Как самим измерить давление обычным

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Лабораторная работа «Определение длины световой волны»
методическая разработка по физике (11 класс) на тему

Цель: Определить длину световой волны с помощью дифракционной решетки.

Оборудование: прибор для измерения длины световой волны, рамка с дифракционными решетками, полупроводниковый лазер.

Скачать:

Вложение Размер
laboratornaya_rabota_opredelenie_dliny_svetovoy_volny_s_pomoshchyu_difraktsionnoy_reshetki.doc 133 КБ

Предварительный просмотр:

Лабораторная работа №6

Определение длины световой волны

Цель работы : определить длину световой волны с помощью дифракционной решетки.

  1. дифракционная решетка с указанным на ней периодом;
  2. измерительная установка;
  3. полупроводниковый лазер (лазерная указка).

В работе для определения длины световой волны используется дифракционная решетка с периодом (период указан на решетке). Она является основной частью измерительной установки, показанной на рисунке 1 .

Перед началом лабораторной работы установите на скамью экран так, чтобы при включении лазера кнопкой красная точка совпала с нулевым делением шкалы экрана.

Установите в держатель рамку с дифракционной решеткой и включите лазер. На экране образуется картина максимумов и минимумов, идущих от разных щелей решетки в одном направлении. Эта картина представляет серию ярких красных точек, симметрично расходящихся от центрального пятна – нулевого максимума. Меняя дифракционные решетки, наблюдайте, как меняется дифракционная картина в зависимости от числа штрихов на миллиметр.

После наблюдения качественной картины серии максимумов переместите движок с решеткой по пазу скамьи так, чтобы какой либо максимум (запишите его номер к ) точно совпадал с целым миллиметровым делением шкалы экрана, и измерьте расстояние b от него до центрального максимума. Определите расстояние а по линейке на скамье от экрана до решетки.

Длина волны определяется по формуле: ,

Где: d — период решетки; к — порядок спектра;

— угол, под которым наблюдаются максимум света соответствующего цвета;

Поскольку углы, под которыми наблюдается максимумы 1-го и 2-го порядков, не превышают 5 0 , можно вместо синусов углов использовать их тангенсы.

Из рисунка 2 видно, что .

Расстояние отсчитывают по линейке от решетки до экрана, расстояние b – по шкале экрана от щели до выбранной линии спектра.

Окончательная формула дня определения длины волны имеет вид:

Указания к работе

  1. . Подготовьте бланк отчета с таблицей для записей результатов измерений и вычислений.
  2. Соберите измерительную установку, установите экран на произвольном расстоянии от решетки.
  3. После наблюдения качественной картины серии максимумов переместите движок с решеткой по пазу скамьи так, чтобы какой либо максимум (запишите его номер к ) точно совпадал с целым миллиметровым делением шкалы экрана, и измерьте расстояние b от него до центрального максимума.
  4. Определите положение середин цветных полос в спектрах 1-го порядков.
  5. Данные занесите в таблицу.

Источник