Меню

Техническая диагностика средств измерения



Диагностика СИ

Погрешности СИ и их классификация

В результате воздействия большого количества различных факторов, возникающих в процессе измерения, показания измерительных приборов отличаются от истинных значений измеряемой величины. Эти отклонения характеризуют погрешности СИ, поэтому и являются основной нормируемой МХ.

Погрешность СИэторазность между показанием СИ и действительным значением измеряемой величины.

Погрешностей СИ классифицируются:

1. В зависимости от внешних условий:

· Основная погрешность СИ– это погрешность СИ, определяемая в нормальных условиях. Как правило, нормальными условиями эксплуатации являются: температура 20 ± 5°С, относительная влажность воздуха 65 ± 1,5 % при 20°С, атмосферное давление 680-780мм рт.ст. напряжение в сети питания 220В±10% с частотой 50 Гц ± 1% и при отсутствии электрических и магнитных полей (наводок).

· Дополнительная погрешность СИсоставляющая погрешности СИ, возникающая дополнительно к основной погрешности вследствие отклонения какой-либо из влияющих величин от нормального ее значения.

2. По способу выявления

· Систематическая погрешностьСИсоставляющая погрешности СИ, которая остаётся постоянной или закономерно изменяется при повторных измерениях одной и той же величины. Причинойеё может быть неточность изготовления деталей измерительной цепи в пределах допусков, неуравновешенность некоторых частей и т.п. Как правило, систематическая составляющая либо мала, либо ее учитывают, вводя в показания прибора соответствующую поправку;

· Случайная погрешность СИ –составляющая погрешности СИ, изменяющаяся случайным образом. Причиной её может быть трение между механическими звеньями передаточного механизма, нестабильность работы упругих элементов, колебания параметров электропитания или измерительного усилия и др.

3. По характеру зависимости погрешности СИ от входной величины:

· Аддитивная погрешность СИ. Аддитивной погрешностью (получаемой путем сложения различного вида погрешностей), или погрешностью нуля, называют погрешность, которая остаётся постоянной при всех значениях измеряемой величины. Если аддитивная погрешность является систематической, то она устраняется корректированием нулевого значения выходного сигнала. Аддитивная погрешность вызывается трением в опорах, контактными сопротивлениями, дрейфом нуля, случайными и периодическими колебаниями в выходном сигнале.

· Мультипликативная погрешность СИ. Мультипликативной погрешностью (получаемой путем умножения различного вида погрешностей), или погрешностью чувствительности СИ, называют погрешность, которая линейно изменяется с изменением измеряемой величины, т.е. это погрешность, изменяющаяся вместе с изменением значений величины, подвергающейся измерениям. Мультипликативная погрешность возникает из-за воздействия влияющих величин на параметрические характеристики элементов прибора.

3. По способу выражения различают погрешности:

· абсолютная погрешность прибора – это разность между показаниями прибора х и истинным значением измеряемой величины хо:

Она выражается в единицах измеряемой величины и может быть получена в виде числа. функции, графика или таблицы;

· относительная погрешность прибора – это отношение абсолютной погрешности прибора к истинному значению измеряемой величины. Она выражается в %:

· приведенная погрешность прибора – это отношение абсолютной погрешности ∆ к нормирующему значению хN :

где значение ХN зависит от типа шкалы.

Понятие приведённой погрешности было введено потому, что однозначно оценить качество прибора по значению абсолютной и относительной погрешностей невозможно, так как измеряемая величина х во время измерения может принимать любые значения от 0 до хN.

Значение предела приведённой погрешности, выраженной в процентах, определяет класс точности прибора.

В качестве предела допускаемой погрешности выступает наибольшая погрешность, вызываемая изменением влияющей величины, при которой СИ по техническим требованиям может быть допущено к применению.

Класс точностиэто обобщенная метрологическая хара-теристика, определяющая различные свойства СИ. Он присваивается средствам измерений при их разработке по результатам государственных приемочных испытаний. Обозначение классов точности СИ указывают в документации и наносят на самих измерительных приборах (циферблатах, щитках, корпусах) Далее см. лаб. Работу №3.

Диагностика в переводе с греческого «диагнозис» означает распознавание, определение. Согласно ГОСТ 20911-89 техническая диагностика определяется как «область знаний, охватывающая теорию, методы и средства определения технического состояния объектов”.

Объект, состояние которого определяется, называют объектом диагностирования (ОД). Диагностирование представляет собой процесс исследования ОД. Характерными примерами результатов диагностирования состояния технического объекта являются заключения вида: ОД исправен, неисправен, работоспособен, неработоспособен.

В стандартах эти технические состояния ОД определяются следующим образом:

Исправное состояние – состояние объекта, при котором он соответствует всем требованиям нормативно-технической и конструкторской документации.

Неисправное состояние – состояние объекта, при котором он не соответствует хотя бы одному из требований нормативно-технической и (или) конструкторской документации.

Работоспособное состояние– состояние объекта, при котором значения всех параметров, характеризующих способность выполнять заданные функции, соответствуют требованиям нормативно-технической и (или) конструкторской документации.

Неработоспособное состояние состояние объекта, при котором значение хотя бы одного параметра, характеризующего способность выполнять заданные функции, не соответствует требованиям нормативно-технической и (или) конструкторской документации.

В процессе производства, эксплуатации и хранения объектов в них могут появляться и накапливаться неисправности. Некоторые из них приводят к тому, что объект перестает отвечать предъявляемым к нему техническим требованиям. Поэтому перед использованием объекта по назначению проводят диагностику. Она заключается в решении следующих задач обнаружения неисправности:

1) проверка исправности, целью которой является разбраковка, позволяющая отделить исправные изделия от неисправных. ОД исправен, если он удовлетворяет всем техническим требованиям;

Читайте также:  Коэффициент силы тяжести единица измерения

2) проверка работоспособности, целью которой является выяснение, будет ли объект выполнять те функции, для реализации которых он создан;

3) проверка правильности функционирования, целью которой является обнаружение неисправностей, которые нарушают правильную работу объекта, применяемого по назначению, в данный момент времени.

Если объект неисправен, то для замены или ремонта неисправных компонентов необходимо установить место неисправности.

Поиск неисправности осуществляется путем выполнения диагностического эксперимента над объектом.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Средства технического диагностирования

Средства технического диагностирования представляют совокупность средств, с помощью которых оценивают состояние ОД. Они включают программные средства диагностирования, эксплуатационную документацию и технические средства диагностирования.

Программные средства диагностирования — пакеты программ, используемые для диагностирования. Эксплуатационная документация — таблицы состояний, методики поиска дефекта, ре­монтные схемы.

Технические средства диагностирования (ТСД) представляют собой приборы или устройства, предназначенные для решения различных задач, возникающих при определении состояния ОД. Технические средства диагностирования объектов отличаются большим разнообразием. Состав и принцип построения ТСД определяются решаемыми задачами диагностирования, степенью воздействия на оборудование, степенью встраивания, способами получения информации, способами обработки информации о состоянии оборудования, степенью автоматизации, степенью универсальности и подвижности.

В зависимости от решаемых задач диагностирования можно выделить следующие виды ТСД:

— контроля и прогнозирования состояния;

— контроля работоспособности и поиска дефектов;

— контроля и прогнозирования состояния, поиска дефектов.

По степени воздействия на оборудование ТСД разделяют на активные и пассивные. Пассивные ТСД выполняют анализ информации о состоянии оборудования, для чего воспринимают, обрабатывают и оценивают диагностические признаки. Активные ТСД воздействуют на оборудование, подавая на отведенные для целей диагностирования входы тестовые сигналы, стимулирующие реакцию оборудования, которая затем оценивается.

К о н с т р у к т и в н о ТСД могут полностью или частично относиться к ОД (встроенные) или выполняться отдельно от конструкции (внешние).

По способу получения информации о состоянии оборудования ТСД делятся на средства для определения состояния по совокупности параметров ТСД-П и средства для оценивания состояния по сигналам ТСД-С. В первом случае обрабатывается информация, снимаемая в контрольных точках, специально предусмотренных в оборудовании. Во втором случае для возможности оценивания реакции на рабочем выходе объекта в состав ТСД включают эквивалентную модель, а диагноз устанавливают путем сравнения реакции оборудования и модели на одинаковые входные воздействия.

По способу обработки информации ТСД могут быть последовательного, параллельного и параллельно-последовательного действия.

ТСД последовательного действия осуществляют последовательный прием, измерение, контроль и обработку информации. Они отличаются простотой, использованием минимального числа преобразовательных, измерительных средств и средств контроля. При этом способе диагноз формируется по отдельному признаку после каждой проверки.

ТСД параллельного действия осуществляют одновременно измерения и контроль всех параметров, что сокращает время формирования общего диагностического признака, по которому оценивают состояние оборудования. Их обычно используют при жестких ограничениях на время диагностирования.

ТСД параллельно-последовательного действия осуществляют одновременный прием и обработку информации по нескольким каналам. При этом анализ результатов выполняется после реализации группы проверок, т.е. измерения или контроля группы признаков. Подобные средства сложнее средств последовательного действия, но более эффективны.

По степени автоматизации ТСД разделяются на ручные, автоматизированные и автоматические. Средства, требующие активного участия человека-оператора (ЧО) при их использовании, относят к ручным. Это все используемые в процессе диагностирования измерительные приборы.

ТСД, при использовании которых роль ЧО сводится к выполнению отдельных достаточно простых операций (включение, переключение, выключение и др.), относятся к автоматизированным ТСД. Средства, которые функционируют без участия ЧО, относятся к автоматическим ТСД.

По степени универсальности ТСД разделяют на специализированные и универсальные.

Специализированные ТСД предназначены для оценивания состояния однотипного оборудования. Такие ТСД могут включать унифицированные блоки, мини-ЭВМ и микропроцессоры. К специализированным ТСД относятся, например, средства для диагностирования рулевого управления, тормозной системы, двигателя.

Универсальные ТСД предназначены для диагностирования оборудования различного назначения и конструктивного выполнения.

В зависимости от степени подвижности ТСД могут быть выполнены переносными, передвижными и стационарными. Стационарные средства чаще всего размещаются на диагностических станциях, испытательных и контрольных центрах. Передвижные средства монтируются на самоходных или несамоходных транспортных средствах.

В общем случае ТСД состоит из следующих элементов. Состояние ОД при рабочем диагностировании оценивают по сово­купности признаков, преобразуемых в принятый вид сигналов, с помощью датчиков. При этом диагностирование может выполняться как по результатам измерений, полученных в блоке коммутации и измерений(БКИ), так и непосредственно по сигналам с датчиков в случае допускового контроля и поиска дефектов. В результате обра­ботки полученных с БКИ и поступающих с блока памяти БПсигналов в блоке обработки БО формируется «диагноз», который фиксируется в блоке индикацииБИ и в блоке регистрацииБР. В качестве устройств индикации используются различные табло, цифровые индикаторные приборы, которые позволяют визуально оценивать, измерять и анализировать контролируемые параметры и характеристики различной физической природы, что дает возможность оператору принимать решения о состоянии объекта. Регистрирующие устройства, как правило, фиксируют дату диагностирования, номер объекта, шифр операции, номер оцениваемого признака, его измеренное значение и обобщенную оценку состояния объекта (работоспособен или неработоспособен; блок, в котором возник дефект, и т. д.).

Читайте также:  Как найти максимальную абсолютную погрешность измерения напряжения

При тестовом диагностировании предполагается воздействие на ОД с помощью тестов (Т), формируемых в блоке генерирования тестов (БГТ) и коммутируемых при необходимости коммутатором тестов.

Программа диагностирования реализуется с помощью команд управления, вырабатываемых в блоке управления(БУ). Управление работой ТСД заключается в согласовании во времени работы отдельных частей ТСД, переключении режимов работы, управлении потоками диагностической и управляющей информации. Управление может осуществляться вручную с пульта оператора (ПО), автоматически по командам блока управления и автоматически по программе, хранящейся в памяти. Каждой отдельной проверке соответствует группа команд, выполнение которых обеспечивает образование необходимых соединений вБКИ, требуемую настройкуБГТ, задание диапазонов измерительных схем и допусков схем сравнения. Процессом диагностирования управляет ЧО, который с пульта оператора включает и выключает ТСД, выбирает режим диагностирования, обеспечивает самоконтроль ТСД.

Показатели технических средств диагностирования. Эффективность ТСД оценивают совокупностью показателей, основными из которых являются показатели надежности, метрологические показатели и массогабаритные показатели.

Показатели надежности ТСД характеризуют:

— вероятность безотказной работы РТ (l), т. е. вероятность того, что в пределах заданной наработки отказ ТСД не возникает;

— коэффициент готовности КТ представляет собой вероятность того, что ТСД окажутся работоспособными в произвольный момент времени, кроме планируемых периодов, в течение которых использо­вание их по назначению не предусматривается, и характеризует как безотказность, так и ремонтопригодность ТСД;

— вероятность правильного функционирования ТСД

Метрологические показатели характеризуютточность и достоверность ТСД.

Точность зависит от несовершенства ТСД и определяется точностью отдельных операций при диагностировании.

При постановке диагноза могут быть случайные и систематические погрешности, обусловленные погрешностями измерительного тракта ТСД и нестабильностью метода измерения. Систематические погрешности, характер изменения которых известен, могут быть учтены при выборе допуска на параметры. Случайные же погрешности всегда будут вносить неопределенность при оценивании результата диагностирования.

Достоверность контроля, особенно транспортных средств, является показателем степени его совершенства и характеризуется ошибками контроля, в основном, методическими погрешностями. Методические погрешности возникают из-за несовершенства измерения как метода отражения, из-за несовершенства метода косвенного измерения, метода совокупного или совместного измерения, а также вследствие несоответствия модели измеряемой величины.

Методическая погрешность вследствие несоответствия модели измеряемой величины характеризует соответствие между измеряемыми величинами и параметрами модели объекта, которые необходимо обеспечить с заданной точностью, в противном случае отражение утратит свою достоверность. ТСД реализующие выбранную модель ОД должны обеспечивать параметры действительно адекватные эмпирическому объекту и измеряемым величинам.

Методическая погрешность от несоответствия модели оценивается как одна из составляющих погрешностей измерения и должна быть меньше суммарной погрешности, в противном случае необходимо более адекватно определить модель ОД и ее параметры. Методическая погрешность измерения статистических характеристик случайного сигнала возникает и проявляется в виде отклонения оценки математического ожидания по отношению к истинному значению и в виде отклонения оценки дисперсии от ее истинного значения — в результате конечности числа измерений.

Погрешности метода измерения приводят также к ошибкам в оценивании состояния ОД.

Массогабаритные показатели ТСД можно охарактеризовать величиной компактности

где G — масса ТСД;

V— занимаемый объем.

Требования минимально возможной стоимости, малой массы, га­баритов являются общими для любых ТСД.

Источник

Лекция 7. Методы и средства технического диагностирования

Техническая диагностика представляет собой систему методов, применяемых для установления и распознания признаков, характеризующих техническое состояние оборудования. Все методы технического диагностирования разделяются на субъективные (органолептические) и объективные (приборные).

Несмотря на развитие аппаратных средств измерений и контроля, большая роль в определении неисправностей и нахождении повреждений механического оборудования приходится на субъективные методы, предполагающие использование человеческих органов чувств. Комплекс таких органолептических методов контроля получил название осмотр. Осмотр, включает в себя элементы визуального, измерительного контроля, восприятия шумов и вибраций, оценку степени нагрева корпусных деталей, методы осязания, используемые для определения фактического состояния оборудования и его составных частей, процессов их функционирования и взаимодействия, влияния окружающей среды и условий эксплуатации.

Органолептические методы

Органолептический метод (органо- + греч. leptikos – способный взять, воспринять) основан на анализе информации, воспринимаемой органами чувств человека (зрение, обоняние, осязание, слух) без применения технических измерительных или регистрационных средств. Эта информация не может быть представлена в численном выражении, а основывается на ощущениях, генерируемых органами чувств. Решение относительно объекта контроля принимается по результатам анализа чувственных восприятий. Поэтому точность метода существенно зависит от квалификации, опыта и способностей лиц, проводящих диагностирование. При органолептическом контроле могут использоваться технические средства, не являющиеся измерительными, а лишь повышающие разрешающие способности или восприимчивость органов чувств (лупа, микроскоп, слуховая трубка и т.п.).

Принятие решения имеет характер «соответствует – не соответствует» и определяется диагностическими правилами типа «если – то», имеющими конкретную реализацию для узлов механизма. Практически, происходит оценка состояния оборудования по двухуровневой шкале – продолжать эксплуатацию или необходим ремонт. Основная цель – обнаружение отклонений от работоспособного состояния механизма. Решение о техническом состоянии механизма принимает технологический или ремонтный персонал, обслуживающий оборудование на основании опыта и производственной ситуации. Принимается решение об остановке оборудования для визуального осмотра и последующего ремонта, продолжения эксплуатации или проведения диагностирования с использованием приборных методов.

Читайте также:  Способы измерения температуры предметов

Практический опыт показывает, что невозможно заменить механика с его субъективизмом, основанном на знании особенностей эксплуатации и ремонта оборудования. Этот метод является первым уровнем решения задач диагностирования. Стандартами, использование органолептического метода контроля не регламентируется, однако в практике работы служб технического обслуживания он применяется повсеместно. Основываясь на опыте эксплуатации металлургических машин накопленным рядом фирм, данный метод интерпретируется следующим образом.

Основные органолептические методы, используемые при оценке технического состояния механического оборудования.

  1. Анализ шумов механизмов проводится по двум направлениям:

1.1 Акустическое восприятие, позволяющее оценивать наиболее значимые повреждения, меняющие акустическую картину механизма. Весьма эффективно при определении повреждений муфт, дисбаланса или ослабления посадки деталей, обрыве стержней ротора, ударах деталей. Диагностические признаки – изменение тональности, ритма и громкости звука.

1.2 Анализ колебаний механизмов. В этом методе механические колебания корпусных деталей преобразуются в звуковые колебания при помощи технических или электронных стетоскопов. Электронные средства позволяют расширить возможности человеческого восприятия.

  1. Контроль температуры позволяет оценить степень нагрева корпусных деталей по уровням «холодно», «тепло», «горячо». «Холодно» – температура менее +20 0 С, «тепло» – температура +30…40 0 С, «горячо» – температура свыше +50 0 С.

Пределом для непосредственного восприятия является температура +60 0 С – выдерживаемая, у большинства тыльной стороной ладони без болевых ощущений в течение 5 с. Использование дополнительных средств – брызг воды позволяет контролировать значения +70 0 С – видимое испарение пятен воды и +100 0 С – кипение воды внутри капли на поверхности корпусной детали. Недопустимым является прикосновение к вращающимся и токоведущим деталям.

  1. Восприятие вибрации основано на тактильном анализе (как реакции соприкосновения), как и контроль температуры. Значения параметров вибрации субъективно оценить нельзя. Возможен сравнительный анализ вибрации. Абсолютная оценка практически всегда содержит грубые ошибки из-за различных ощущений человека и широкого спектрального состава вибрации. В высокочастотном диапазоне возможности человека по восприятию вибрации ограничены. В низкочастотном диапазоне возможности человека по восприятию вибрации существенно различаются из-за различного уровня подготовки.
  2. Визуальный осмотр механизма предоставляет большую часть информации о техническом состоянии. Осмотр может проводиться в динамическом режиме (при работающем механизме) и в статическом (при остановленном механизме).
  3. Методы осязания используются при оценке волнистости, шероховатости, качестве смазочного материала, его вязкости, пластичности, наличии посторонних включений, для оценки шероховатости поверхности поврежденных деталей.

Приборные методы

Наряду с органолептическими методами при техническом диагностировании используются приборные методы, позволяющие получить количественную оценку измеряемого параметра. Диагностирование с применением приборов основано на получении информации в виде электрических, световых, звуковых сигналов, отображающих изменение состояния объекта. В зависимости от физической природы измеряемых параметров различают:

  1. Механический метод – основан на измерении геометрических размеров, зазоров в сопряжениях, давлений и скорости элементов. Применяется при количественной оценке износа деталей, установлении люфтов и зазоров в сопряжениях, давлениях в гидро- и пневмосетях, сил затяжки резьбовых соединений, номинальной скорости привода. Используется разнообразный мерительный инструмент и приборы: линейки, штангенциркули, щупы, шаблоны, индикаторы перемещения часового типа, динамометрические ключи, ключи предельного момента, манометры.
  2. Электрический метод (ваттметрия) заключается в измерении: силы тока, напряжений, мощности, сопротивлений и других электрических параметров. Метод позволяет по косвенным параметрам установить техническое состояние механизма. Средства для реализации: амперметры; вольтметры; измерительные мосты; датчики: перемещений, крутящих моментов, давлений; тахогенераторы; термопары.
  3. Тепловой метод (термометрия) – основан на измерении температурных параметров диагностируемого объекта. С помощью термометрии определяются: деформации, вызываемые неравномерностью нагрева, состояние подшипниковых узлов, смазочных систем, тормозов, муфт. Используются: термосопротивления, термометры, термопары, термоиндикаторы, термокраски, тепловизоры.
  4. Виброакустические методы (виброметрия) основаны на измерении упругих колебаний, распространяющихся по узлам в результате соударения движущихся деталей при работе механизмов. Область применения: оценка и контроль механических колебаний; определение, распознавание и мониторинг развития повреждений в деталях и конструкциях. Используются: шумомеры, виброметры, спектроанализаторы параметров виброакустического сигнала.
  5. Методы анализа смазки основаны на определении вида и количества продуктов изнашивания в масле. Применяются способы: колориметрический, полярографический, магнитно-индукционный, радиоактивный и спектрографический.
  6. Методы неразрушающего контроля: магнитные, вихретоковые, ультразвуковые, контроля проникающими веществами, радиационные, радиоволновые. Методы используются для определения целостности отдельных деталей механизма.

Классификация диагностических приборов может быть проведена по следующим признакам: цифровые и аналоговые, показывающие и сигнализирующие, универсальные и специализированные, стационарные и переносные и др.

Однако, все средства технического диагностирования, используемых для диагностики механического оборудования, по уровню решаемых задач и приборной реализации можно разделить на: портативные, анализаторы и встроенные системы.

Портативные средства технического диагностирования реализуют измерение одного или нескольких диагностических параметров, характеризуются малыми габаритами и отсутствием обмена данных с компьютерными системами (рисунок 40). К их преимуществам относятся: быстрота процесса измерения, простое обслуживание и управление, оперативное и наглядное получение информации в виде одиночного результата, низкая стоимость. Область применения – оперативный контроль технического состояния оборудования работниками ремонтных служб и технологическим персоналом.

Источник