Меню

Тепловые методы измерения температуры



Температура. Измерение и контроль температуры. Методы и средства измерения температуры.

Температурой называется статистическая величина, характеризующая тепловое состояние тела и пропорциональная средней кинематической энергии молекул тела. За единицу температуры принимают кельвин (К). Температура может быть также представлена в градусах Цельсия (°С). Нуль шкалы Кельвина равен абсолютному нулю, поэтому все температуры по этой шкале положительные. Связь между температурами t по Цельсию и T по Кельвину определяется следующим уравнением:

Измерить температуру непосредственно, как, например, линейные размеры, невозможно. Поэтому температуру определяют косвенно — по изменению физических свойств различных тел, получивших название термометрических.

Измерение температуры связано с преобразованием сигнала измерительной информации (температуры) в какое-либо свойство, связанное с температурой.

Для практических целей, связанных с измерением температуры, принята Международная температурная шкала (МТШ-90) (рис. 2.89), которая является обязательной для всех метрологических органов. Она основывается на ряде воспроизводимых состояний равновесия (реперных точек) некоторых веществ, которым присвоены определенные значения температуры.

Рис. 2.89. Международная Температурная шкала (МТШ-90) с реперными точками (подчеркнуты)

Для измерения температуры наибольшее распространение получили следующие методы, основанные:

— на тепловом расширении жидких, газообразных и твердых тел (термомеханический эффект);

— изменении давления внутри замкнутого объема при изменении температуры (манометрические);

— изменении электрического сопротивления тел при изменении температуры (терморезисторы);

— использовании электромагнитного излучения нагретых тел.

Приборы, предназначенные для измерения температуры, называются термометрами. Они подразделяются на две большие группы: контактные и бесконтактные.

Контактное измерение температуры.

Термометры расширения нашли широкое распространение в практике контактных измерений температуры. Основные типы механических контактных термометров, их метрологические характеристики, преимущества, недостатки и область применения представлены в табл. 2.18.

Таблица 2.18. Основные метрологические характеристики механических контактных термометров

Наименование прибора

Тип прибора

Пределы измерений,°С

Погрешность измерения,%

Инерцион ность

Преимущества

Недостатки

Область применения

Металли ческие термометры расширения

Дилато метриче ские

Дешевые, надежные, малое время срабатывания; очень большие перестановочные усилия

Малая точность, высокая инерционность

Дешевые, надежные; большие перестановочные усилия

Оценочный контроль температуры, температурные выключатели

Жидкостные термометры

Малая механическая прочность, нет дистанцион- ности

Лабораторные термометры, бытовые термометры

Дешевые, надежные, не требуют внешних источников энергии; дистан- ционность до 50 м, большие перестановочные усилия

Температура соединительного капилляра влияет на показания прибора

Промышленные термометры, термореле

Конденса ционные манометри ческие

Нелинейная статическая характеристика

Газовые термометры

С гелиевым заполнением

Принцип измерения соответствует определению термодинамической температуры

Малая механическая прочность, большая трудоемкость процесса измерения

Поверочные (калибровочные) работы

Жидкостные стеклянные термометры конструктивно подразделяются на палочные (рис. 2.90, а) и технические со вложенной шкалой (рис. 2.90, б). Принцип их действия основан на зависимости между температурой и объемом термометрической жидкости, заключенной в стеклянной оболочке. Жидкостный термометр состоит из стеклянной оболочки 1, капиллярной трубки 3, запасного резервуара 4 и шкалы 2. Термометрическая жидкость заполняет резервуар и часть капиллярной трубки. Свободное пространство в капилляре заполняется инертным газом или из него удаляется воздух.

Рис. 2.90. Жидкостные стеклянные термометры:

а — палочный; б — технический со вложенной шкалой; 1 — стеклянная оболочка; 2 — шкала; 3 — капиллярная трубка; 4 — запасной резервуар

В качестве термометрической жидкости применяют органические заполнители: толуол, этиловый спирт, керосин, пентан. Наиболее широкое распространение получили термометры с ртутным наполнением. Это объясняется свойствами ртути находиться в жидком состоянии в широком диапазоне температур и не смачивать стекло, что позволяет использовать капилляры с небольшим диаметром канала (до 0,1 мм) и обеспечивать высокую точность измерения. Так, ртутные образцовые термометры 1-го разряда имеют погрешность 0,002. 2°С.

Органические заполнители характеризуются более низкой температурой применения, меньшей стоимостью, большей погрешностью измерения.

Стеклянные термометры в зависимости от назначения и области применения подразделяются на образцовые, лабораторные, технические, бытовые, метеорологические.

Лабораторные термометры обеспечивают измерение в интервале температур 0. 500°С, который разбит на четыре диапазона, что позволяет получить погрешность измерений, не превышающую ±0,01 °С (0. 60 °С); ±0,02 °С (55. 155 °С); ±0,05°С (140. 300 °С) и ±0,1 °С (300. 500°С).

В качестве технических применяют только термометры со вложенной шкалой, которые имеют две модификации: прямые и угловые. Допускаемая погрешность обычно равна цене деления. При стационарной эксплуатации в различных точках технологических агрегатов термометры устанавливают в специальных металлических защитных чехлах (кожухах).

Для обеспечения задач позиционного регулирования и сигнализации в лабораторных и промышленных установках применяют специальные электроконтактные технические термометры двух типов:

1) с постоянными впаянными контактами, которые обеспечивают замыкание и размыкание электрических цепей при одной, двух или трех заранее заданных температурах;

2) с одним подвижным контактом (перемещается внутри капилляра с помощью магнита) и вторым неподвижным, впаянным в капилляр, что обеспечивает замыкание и размыкание электрической цепи при любом значении выбранной температуры.

Перемещающаяся в капилляре ртуть размыкает или замыкает цепи между контактами, к которым подводится напряжение постоянного или переменного тока и нагрузка на которые не должна превышать 0,5 мА при напряжении не более 0,3 В.

Биметаллические и дилатометрические термометры основаны на свойстве твердых тел в различной степени изменять свои линейные размеры при изменении их температуры.

В основном металлы и их сплавы относятся к материалам с высоким температурным коэффициентом линейного расширения. Так, для латуни он равен (18,3. 23,6)*10 -6 °С -1 , для никелевой стали 20*10 -6 °С -1 . В то же время есть сплавы, имеющие низкий коэффициент линейного расширения: сплав инвар — 0,9*10 -6 °С -1 , плавленый кварц — 0,55*10 -6 °С -1 .

На рис. 2.91, а представлена конструкция биметаллического термометра, в котором в качестве термочувствительного элемента используется двухслойная пластинка, состоящая из металлов с существенно различными коэффициентами линейного расширения: латуни 1 и инвара 2. При увеличении температуры свободный конец пластины будет изгибаться в сторону металла с меньшим коэффициентом, по величине этого перемещения судят о температуре.

Данный тип устройств часто используется как термореле в системах сигнализации и автоматического регулирования, а также в качестве температурных компенсаторов в измерительных устройствах, например в радиационных пирометрах, манометрических термометрах и т. п.

На рис. 2.91, б приведена конструкция чувствительного элемента пневматического дилатометрического преобразователя температуры.

Рис. 2.91. Термометры:

а — биметаллический: 1 — латунь; 2 — инвар; б — дилатометрический: 1 — корпус; 2 — стержень; 3 — трубка; 4 — шарик; 5 — толкатель; 6 — пружина; 7 — преобразователь

В корпусе 1, изготовленном из латуни (нержавеющей стали) расположены трубка 3 и стержень 2, выполненный из инвара (кварца). Стержень 2 через трубку 3 и толкатель 5 с помощью пружины 6 постоянно поджимается к нижнему концу корпуса 1. Шарик 4 исключает появление люфтов между стержнем и компенсационной трубкой, которая выполнена также из латуни и предназначена для исключения температурной погрешности при установке на объектах с различной толщиной тепловой изоляции. Изменение разности удлинений корпуса 1 и стержня 2, пропорциональное изменению температуры измеряемой среды, трансформируется в пневматический сигнал в преобразователе 7, усиливается и поступает на регистрирующий прибор.

Дилатометрические преобразователи выпускают и с электрическим выходным сигналом. Класс точности устройств 1,5 и 2,5 с диапазоном измеряемых температур от -30 до +1000 °С.

Жидкостные манометрические термометры (рис. 2.92) основаны на использовании зависимости между температурой и давлением термометрического вещества (газа, жидкости), заполняющего герметически замкнутую термосистему термометра. Термосистема состоит из термобаллона 4, капилляра 5 и манометрической одно- или многовитковой пружины 6. Капилляр 5 соединяет термобаллон с неподвижным концом манометрической пружины. Подвижный конец пружины запаян и через шарнирное соединение 7, поводок 3, сектор 2 связан со стрелкой прибора 1.

Рис. 2.92. Конструкция манометрического термометра:

1 — стрелка; 2 — сектор; 3 — поводок; 4 — термобаллон; 5— капилляр; 6 — пружина; 7 — шарнирное соединение

При изменении температуры среды изменяется давление термометрического вещества в замкнутом пространстве, в результате чего чувствительный элемент (манометрическая пружина) деформируется и ее свободный конец перемещается. Данное перемещение преобразуется в поворот регистрирующей стрелки относительно шкалы прибора.

В зависимости от термометрического вещества манометрические термометры подразделяются на газовые, конденсационные и жидкостные.

В газовых термометрах термобаллон, капилляр и манометрическая пружина заполняются каким-либо инертным газом (азотом, гелием и др.). Диапазон измерения весьма широк и лежит в пределах от критической температуры газа (азот — 147 °С, гелий — 267 °С) до температуры, определяемой теплостойкостью материала термобаллона.

В конденсационных термометрах насыщенные пары некоторых низкокипящих жидкостей (ацетон, метилхлорид, этилхлорид) меняют давление при изменении температуры. Диапазон измерения этих приборов от 0 до +400 °С при погрешности измерений ±1 %.

В жидкостных термометрах термосистема заполнена хорошо расширяющейся жидкостью (ртутью, керосином, лигроином и др.). Диапазон измерения этих приборов от -30 до +600 °С при погрешности измерений ±1 %.

На показания манометрических термометров значительное влияние оказывают внешние условия: изменения температуры окружающего воздуха, различная высота расположения термобаллона и пружины, колебания атмосферного давления.

Манометрические термометры имеют ограниченную длину линии связи от термобаллона к показывающему прибору, большую инерционность и динамическую погрешность.

Класс точности манометрических термометров 1,0; 1,5; 2,5 и 4,0 при работе в интервале температур окружающего воздуха от 5 до 50 °С и относительной влажности до 80 %.

Манометрические термометры применяют для измерения температуры охлаждающей воды, воздуха, жидкого и газообразного топлива, на установках для заправки и т. п.

Термометры сопротивления.

Термометр сопротивления состоит из чувствительного элемента в виде терморезистора, защитного чехла и соединительной головки.

Принцип действия чувствительного элемента основан на использовании зависимости электрического сопротивления вещества от температуры. В качестве материалов для их изготовления используют чистые металлы: платину, медь, никель и полупроводники. Платина является основным материалом для изготовления термометров сопротивления. В качестве чувствительного элемента в полупроводниковых термометрах сопротивления используют германий, окиси меди и марганца, титана и магния.

Основные метрологические характеристики термометров сопротивления, их принципиальные схемы, преимущества, недостатки и область применения представлены в табл. 2.19.

Таблица 2.19. Основные метрологические характеристики электрических контактных термометров

Таблица 2.19. Основные метрологические характеристики электрических контактных термометров

Характеристики

Термометры сопротивления

Термоэлектрические термометры

Пределы измерений, °С

Погрешность измерения, %

Инерционность

Преимущества

Высокая точность, линейная статическая характеристика

Высокая чувствительность, возможны измерения в точке

Дешевые, хорошая линейность статической характеристики

Прочность, малая тепловая инерция, линейная статическая характеристика

Недостатки

Невозможно измерение температуры в точке

Нелинейная статическая характеристика, большой разброс параметров, низкая стабильность параметров во времени

Большая тепловая инерция

Область применения

Энергетика, непрерывные технологические процессы в химии, пищевая промышленность

Энергетика, технологические процессы в химии, производство искусственных материалов, медицина

Энергетика, непрерывные производства, пищевая промышленность

Энергетика, непрерывные производства, химия, медицина, строительство, производство искусственных материалов

Для решения различных задач термометры сопротивления подразделяются на эталонные, образцовые и рабочие, которые, в свою очередь, подразделяются на лабораторные и технические.

Эталонные термометры сопротивления предназначены для воспроизведения и передачи шкалы МПТШ в интервале 13,81. . 903,89 К. В качестве эталонных, образцовых и лабораторных приборов повышенной точности применяют платиновые термометры сопротивления.

Технические термометры сопротивления в зависимости от конструкции подразделяются: на погружаемые, поверхностные и комнатные; защищенные и не защищенные от действия агрессивной среды; стационарные и переносные; термометры 1-го, 2-го и 3-го класса точности и т.д.

Одна из конструкций промышленных термометров сопротивления, используемых для измерения температур жидких и газообразных сред, представлена на рис. 2.93, а. Термометр состоит из чувствительного элемента 5, расположенного в стальном защитном кожухе 3, на котором приварен штуцер 2. Провода 9, армированные фарфоровыми бусами 4, соединяют выводы чувствительного элемента 5 с клеммной колодкой б, находящейся в корпусе головки 1. Сверху головка 1 закрыта крышкой 10, снизу имеется сальниковый ввод 7, через который осуществляется подвод монтажного кабеля 8.

Чувствительный элемент термометра сопротивления (рис. 2.93, б) выполнен из металлической тонкой проволоки толщиной 0,03. 0,1 мм с безындукционной каркасной или бескаркасной намоткой.

Рис. 2.93. Термометр сопротивления:

а — конструкция термометра: 1 — корпус головки; 2 — штуцер; 3 — защитный кожух; 4 — фарфоровые бусы; 5 — чувствительный элемент; 6 — клеммная колодка; 7 — сальниковый ввод; 8 — монтажный кабель; 9 — провода; 70 — крышка; б — конструкция чувствительного элемента термометра: 1 — глазурь; 2 — пространство; 3 — каркас; 4 — платиновые спирали; 5 — выводы

В качестве каркаса для платиновых термометров применяют плавленный кварц и керамику на основе окиси алюминия. В каналах каркаса 3 расположены четыре (или две) последовательно соединенные платиновые спирали 4. К верхним концам спиралей припаяны выводы 5, выполненные из платины или сплава иридия с радием. Пространство 2 между спиралями и каркасом заполнено порошком окиси алюминия. Крепление спиралей и выводов в каркасе производится глазурью 1.

При применении термометров сопротивления о температуре можно судить по изменению электрического сопротивления его чувствительного элемента, падению напряжения на нем при постоянном токе или значению тока при постоянном напряжении.

Наибольшее распространение получила первая схема, когда изменение сопротивления служит мерой температуры (рис. 2.94). В этом случае терморезистор 1 включают в одну из диагоналей моста последовательно с регулировочным резистором Rv, служащим для приведения к определенному значению сопротивления подводящих проводов. Показания гальванометра 3, включенного в диагональ моста, зависят также от напряжения питания моста, для поддержания постоянства которого в цепь питания включен регулировочный резистор.

Рис. 2.94. Схема включения термометра сопротивления:

1 — терморезистор (термометр сопротивления); 2 — уравнительный резистор RA; 3 — гальванометр; 4 — измерительный мост с резисторами Rv, R2, R3, Я4, RA; 5 — источник питания; 6 — регулировочный резистор Rv

Термоэлектрические термометры состоят из термопары, защитного чехла и соединительной головки, они основаны на термоэлектрических свойствах чувствительного элемента.

Сущность термоэлектрического метода заключается в возникновении электродвижущей силы в спае двух разнородных проводников (например, хромель — копель), температура которого отличается от температуры вторых выводов. Для получения зависимости термоЭДС от одной температуры t2 необходимо температуру t1 поддерживать на постоянном уровне, обычно при 0 или +20 °С. Спай, помещаемый в измеряемую среду, называют горячим, или рабочим, концом термопары, а спай, температуру которого поддерживают постоянной, — холодным, или свободным, концом.

Для увеличения чувствительности термоэлектрического метода измерения температуры в ряде случаев применяют термобатарею: несколько последовательно включенных термопар, рабочие концы которых находятся при температуре t2, а свободные — при известной и постоянной температуре t1.

Основные метрологические характеристики термоэлектрических термометров, их принципиальные схемы, преимущества, недостатки и область применения см. в табл. 2.19.

В качестве термопар (ТП) наиболее часто применяют комбинации материалов, имеющих высокое значение развиваемой термо- ЭДС, стабильность характеристик при различных температурах, воспроизводимость и линейную зависимость термоЭДС от температуры, простоту технологической обработки и получения спая, а именно: хромель-копелевые (TBP)[AJ], хромель-алюмелевые (TXK)[L], платинородий-платиновые (ТХА)[К], вольфрам-рениевые (Tnn)[S] и др. В квадратных скобках приведены условные обозначения номинальных статистических характеристик преобразования. Наиболее точной является термопара ТПП, которая используется в качестве рабочих эталонов и образцовых термометров 1-го, 2-го и 3-го разряда.

Основные характеристики термоэлектрических термометров представлены в табл. 2.20.

Таблица 2.20. Основные характеристики термоэлектрических термометров

Термопара

Градуировка

Химический состав термоэлектрода

Пределы применения, C

Пределы допускаемой погрешности, С, при температуре, С

Источник

Методы измерения температуры

Разработка и совершенствование технологий измерения температуры с использованием люминесцентных, контактных и бесконтактных методов. Международная температурная шкала. Создание спиртовых, ртутных, манометрических и термоэлектрических термометров.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 07.06.2014

Глава 1. Основные положения и понятия

1.1 Понятие о температуре и об устройствах измерения температур

1.2 Температурные шкалы

1.3 Международная температурная шкала

Глава 2. Методы измерения температуры

2.1 Контактный метод измерения температуры

2.2 Бесконтактный метод измерения температуры

2.3 Люминесцентные методы измерения температуры

Высокопроизводительная, экономичная и безопасная работа различных технологических агрегатов требует применения современных методов и средств измерения величин, характеризующих ход производственного процесса и состояние оборудования.

Основными параметрами (величинами), которые необходимо контролировать при работе агрегатов, является температура различных сред; расход, давление, состав газов и жидкостей; состав металлов; геометрические размеры проката. Автоматическими приборами измеряется температура: в рабочих пространствах металлургических печей, выплавляемого и нагреваемого металла, элементов огнеупорной кладки, конструкции регенераторов и рекуператоров, а так же продуктов сгорания топлива.

Температура является одним из важнейших параметров технологических процессов. Она обладает некоторыми принципиальными особенностями, что обусловливает необходимость применения большого количества методов и технических средств для ее измерения.

1. Основные положения и понятия

1.1 Понятие о температуре и об устройствах измерения температур

Температурой называют величину, характеризующую тепловое состояние тела. Температура может быть определена как параметр теплового состояния. Значение этого параметра обусловливается средней кинетической энергией поступательного движения молекул данного тела. При соприкосновении двух тел, например газообразных, переход тепла от одного тела к другому будет происходить до тех пор, пока значения средней кинетической энергии поступательного движения молекул этих тел не будут равны. С изменением средней кинетической энергии движения молекул тела изменяется степень его нагретости, а вместе с тем изменяются также физические свойства тела. При данной температуре кинетическая энергия каждой отдельной молекулы тела может значительно отличаться от его средней кинетической энергии. Поэтому понятие температуры является статистическим и применимо только к телу, состоящему из достаточно большого числа молекул; в применении к отдельной молекуле оно бессмысленно.

К пространству со значительно разреженной материей статистические законы неприменимы. Температура в этом случае определяется мощностью потоков лучистой энергии, пронизывающей тело, и равна температуре абсолютно черного тела с такой же мощностью излучения. Известно, что с развитием науки и техники понятие «температура» расширяется. Например, при исследованиях высокотемпературной плазмы было введено понятие «электронная температура», характеризующее поток электронов в плазме.

Возможность измерять температуру термометром основывается на явлении теплового обмена между телами с различной степенью нагретости и на изменении термометрических (физических) свойств веществ при нагревании. Следовательно, для создания термометра и построения температурной шкалы, казалось бы, возможно выбрать любое термометрическое свойство, характеризующее состояние того или иного вещества и на основании его изменений построить шкалу температур. Однако сделать такой выбор не так легко, так как термометрическое свойство должно однозначно изменяться с изменением температуры, не зависеть от других факторов и допускать возможность измерения его изменений сравнительно простым и удобным способом. В действительности нет ни одного термометрического свойства, которое бы в полной мере могло удовлетворить этим требованиям во всем интервале измеряемых температур.

На примере ртутного и спиртового термометра обычного типа видно, что если шкалы их между точками, соответствующими температурам кипения воды и таяния льда при нормальном атмосферном давлении, разделить на 100 равных частей (считая за 0 точку таяния льда), то очевидно, что показания обоих термометров ртутного и спиртового будут одинаковы в точках 0 и 100, потому что эти температурные точки были приняты за исходные для получения основного интервала шкалы. Если этими термометрами будем измерять одинаковую температуру какой-либо среды не в этих точках, то показания их будут различны, так как коэффициенты объемного теплового расширения ртути и спирта различно зависят от температуры.

Термометром называют устройство (прибор), служащее для измерения температуры путем преобразования ее в показания или сигнал, являющийся известной функцией температуры. Чувствительным элементом термометра называют часть термометра, преобразующую тепловую энергию в другой вид энергии для получения информации о температуре. Различают термометры контактные и бесконтактные. Чувствительный элемент контактного термометра входит в непосредственное соприкосновение с измеряемой средой. Пирометром называют бесконтактный термометр, действие которого основано на использовании теплового излучения нагретых тел. Термокомплектом называют измерительную установку, состоящую из термометра, не имеющего собственной шкалы, и вторичного прибора, преобразующего выходной сигнал термометра в численную величину.

1.2 Температурные шкалы

Первым устройством, созданным для измерения температуры, считают водяной термометр Галилея (1597 г.). Термометр Галилея не имел шкалы и был, по существу, лишь индикатором температуры. Полвека спустя, в 1641 г., неизвестным для нас автором был изготовлен термометр со шкалой, имеющей произвольные деления. Спустя еще полвека Ренальдини впервые предложил принять в качестве постоянных точек, характеризующих тепловое равновесие, точки плавления льда и кипения воды. При этом температурной шкалы еще не существовало. Первая температурная шкала была предложена и осуществлена Д.Г. Фаренгейтом (1724 г). Температурные шкалы устанавливались произвольным выбором нулевой и других постоянных точек и произвольным принятием интервала температуры в качестве единицы. Фаренгейт не был ученым. Он занимался изготовлением стеклянных приборов. Ему стало известно, что высота столба ртутного барометра зависит от температуры. Это навело его на мысль создать стеклянный ртутный термометр с градусной шкалой. В основу своей шкалы он положил три точки: 1 — «точка сильнейшего холода (абсолютный нуль)», получаемая при смешениях в определенных пропорциях воды, льда и нашатыря, и принятая им за нулевую отметку (по нашей современной шкале, равная примерно -17,8°С); 2- точка плавления льда, обозначенная им +32°, и 3 — нормальная температура человеческого тела, обозначенная +96° (по нашей шкале +35,6°С). Температура кипения воды первоначально не нормировалась и лишь позднее была установлена +212° (при нормальном атмосферном давлении).

Через несколько лет, в 1731 г. Р.А. Реомюр предложил использовать для стеклянных термометров спирт такой концентрации, который при температуре плавления льда заполнял бы объем в 1000 объемных единиц, а при температуре кипения расширялся бы до 1080 единиц. Соответственно температуру плавления льда Реомюр предложил первоначально обозначить 1000°, а кипения воды 1080 0 (позднее 0° и 80°).

В 1742 г. А. Цельсий, используя ртуть в стеклянных термометрах, обозначил точку плавления льда за 100°, а точку кипения воды за 0°. Такое обозначение оказалось неудобным и спустя 3 года Штремер (или возможно К. Линней) предложил изменить обозначения, принятые вначале Цельсием, на обратные. Был предложен и ряд других шкал. М. В. Ломоносов предложил жидкостный термометр со шкалой 150° в интервале от точки плавления льда до точки кипения воды.

И.Г. Ламберт (1779 г.) предлагал воздушный термометр со шкалой 375°, принимая за 1° одну тысячную часть расширения объема воздуха. Известны также попытки создать термометры на основе расширения твердых тел (П. Мушен-брук, 1725 г.)

Все предлагаемые температурные шкалы строились (за редким исключением) одинаковым путем: двум (по меньшей мере) постоянным точкам присваивались определенные числовые значения и предполагалось, что видимое термометрическое свойство используемого в термометре вещества линейно связано с температурой. Но в дальнейшем выяснилось, что термометры, построенные на базе различных термометрических веществ с равномерной градусной шкалой, давали при температурах, отличающихся от температур постоянных точек, различные показания. Последние становились особенно заметными при высоких (много больших температуры кипения воды) и очень низких температурах.

В 1848 г. Кельвин (У. Томсон) предложил построить температурную шкалу на термодинамической основе, приняв за нулевое значение температуру абсолютного нуля и обозначив температуру плавления льда +273,1°. Термодинамическая температурная шкала базируется на втором законе термодинамики. Как известно, работа в цикле Карно пропорциональна разности температур и не зависит от термометрического вещества. Один градус по термодинамической шкале соответствует такому повышению температуры, которое отвечает 1/100 части работы по циклу Карно между точками плавления льда и кипения воды при нормальном атмосферном давлении. Термодинамическая шкала тождественна шкале идеального газа, построенной на зависимости давления идеального газа от температуры. Законы изменения давления от температуры для реальных газов отклоняются от идеальных, но поправки на отклонения реальных газов невелики и могут быть установлены с высокой степенью точности. Поэтому, наблюдая за расширением реальных газов и вводя поправки, можно оценить температуру по термодинамической шкале.

По мере расширения научных наблюдений и развития промышленного производства возникла естественная необходимость установить какую-то единую температурную шкалу. Первая попытка в этом направлении была предпринята в 1877 г., когда Международный комитет мер и весов принял в качестве основной температурной шкалы стоградусную водородную шкалу. За нулевую отметку была принята точка таяния льда, а за 100° — точка кипения воды при нормальном атмосферном давлении 760 мм. рт. ст. Температура определялась по давлению водорода в постоянном объеме. Нулевая отметка соответствовала давлению 1000 мм. рт. ст. Градусы температуры по этой шкале очень близко совпадали с градусами термодинамической шкалы, однако практическое применение водородного термометра ограничивалось из-за небольшого интервала температур примерно от -25 до +100°. В начале XX в. широко применялись шкалы Цельсия (или Фаренгейта — в англо-американских странах) и Реомюра, а в научных работах — также шкалы Кельвина и водородная.

1.3 Международная температурная шкала

При резко возросших потребностях в точной оценке температуры пересчеты с одной шкалы на другую создавали большие трудности и приводили к ряду недоразумений. Поэтому после нескольких лет подготовки и предварительных временных решений VIII Генеральная конференция мер и весов приняла в 1933 г. решение о введении Международной температурной шкалы (МТШ). Это решение было в законодательном порядке утверждено большинством развитых стран мира. В СССР Международная температурная шкала была введена с 1 октября 1934 г. (Общесоюзный стандарт ОСТ ВКС 6954).

Международная температурная шкала является практическим осуществлением термодинамической стоградусной температурной шкалы, у которой температура плавления льда и температура кипения воды при нормальном атмосферном давлении соответственно-обозначены через 0° и 100°. МТШ основывается на системе постоянных, точно воспроизводимых температур равновесия (постоянных точек), которым присвоены числовые значения. Для определения промежуточных температур служат интерполяционные приборы, градуированные по этим постоянным точкам. Температуры, измеряемые по международной шкале, обозначаются через СС. В отличие от градусов шкалы Цельсия — базирующейся также на точках плавления льда и кипения воды при нормальном атмосферном давлении и имеющей обозначения 0° и 100°С, но построенной на иной основе (на линейной зависимости между температурой и расширением ртути в стекле), градусы по международной шкале стали называть «градусами международными» или «градусами стоградусной шкалы». Основные постоянные точки МТШ и присвоенные им числовые значения температур при нормальном атмосферном давлении приводятся ниже: (так же см. рис. №1):

а) температура равновесия между жидким и газообразным кислородом (точка кипения кислорода) — 182,96°

б) температура равновесия между льдом и водой, насыщенной воздухом (точка плавления льда) 0.000°

в) температура равновесия между жидкой водой и ее паром (точка кипения воды) 100,000°

г) температура равновесия между жидкой серой и ее паром (точка кипения серы) 414,60°

д) температура равновесия между твердым и жидким серебром (точка затвердевания серебра) 961.93°

е) температура равновесия между твердым и жидким золотом (точка затвердевания золота) 1064,43°

Рис. № 1 Международная температурная шкала

2. Методы измерения температуры

Для определения значения температуры какого-либо тела необходимо выбрать эталон температуры, то есть тело, которое при определённых условиях, равновесных и достаточно легко воспроизводимых, имело бы определённое значение температуры. Это значение температуры является реперной точкой соответствующей шкалы температур — упорядоченной последовательности значений температуры, позволяющей количественно определять температуру того или иного тела. Температурная шкала позволяет косвенным образом определять температуру тела путем прямого измерения какого-либо его физического параметра, зависящего от температуры.

Наиболее часто при получении шкалы температур используются свойства вода. Точки таяния льда и кипения воды при нормальном атмосферном давлении выбраны в качестве реперных точек в современных (но не обязательно изначальных) температурных шкалах, предложенных Андерсом Цельсием (1701-1744), Рене Антуаном Фершо Реомюром (1683 — 1757), Даниэлем Габриэлем Фаренгейтом (1686-1736). Последний создал первые практически пригодные спиртовой и ртутный термометры, широко используемые до сих пор. Температурные шкалы Реомюра и Фаренгейта применяют в настоящее время в США, Великобритании и некоторых других странах.

Введенную в 1742 году температурную шкалу Цельсия, который предложил температурный интервал между температурами таяния льда и кипения воды при нормальном давлении (1 атм или 101 325 Па) разделить на сто равных частей (градусов Цельсия), широко используют и сегодня, правда в уточненном виде, когда один градус Цельсия считается равным одному кельвину. При этом температура таяния льда берется равной 0 C, а температура кипения воды становится приблизительно равной 99,975 C. Возникающие при этом поправки, как правило, не имеют существенного значения, так как большинство используемых спиртовых, ртутных и электронных термометров не обладают достаточной точностью (поскольку в этом обычно нет необходимости). Это позволяет не учитывать указанные, очень небольшие поправки.

После введения Международной системы единиц (СИ) к применению рекомендованы две температурные шкалы. Первая шкала — термодинамическая, которая не зависит от свойств используемого вещества (рабочего тела) и вводится посредством цикла Карно. Эта температурная шкала подробно рассмотрена в третьей главе. Отметим только, что единицей измерения температуры в этой температурной шкале является один кельвин (1 К), одна из семи основных единиц в системе СИ. Эта единица названа в честь английского физика Уильяма Томсона (лорда Кельвина) (1824-1907), который разрабатывал эту шкалу и сохранил величину единицы измерения температуры такой же, как и в температурной шкале Цельсия. Вторая рекомендованная температурная шкала — международная практическая. Эта шкала имеет 11 реперных точек — температуры фазовых переходов ряда чистых веществ, причём значения этих температурных точек постоянно уточняются. Единицей измерения температуры в международной практической шкале также является 1 К.

В настоящее время основной реперной точкой, как термодинамической шкалы, так и международной практической шкалы температур является тройная точка воды. Эта точка соответствует строго определенным значениям температуры и давления, при которых вода может одновременно существовать в твердом, жидком и газообразном состояниях. Причем, если состояние термодинамической системы определяется только значениями температуры и давления, то тройная точка может быть только одна. В системе СИ температура тройной точки воды принята равной 273,16 К при давлении 609 Па.

Кроме задания реперных точек, определяемых с помощью эталона температуры, необходимо выбрать термодинамическое свойство тела, описывающееся физической величиной, изменение которой является признаком изменения температуры или термометрическим признаком. Это свойство должно быть достаточно легко воспроизводимо, а физическая величина — легко измеряемой. Измерение указанной физической величины позволяет получить набор температурных точек (и соответствующих им значений температуры), промежуточных по отношению к реперным точкам.

Тело, с помощью измерения термометрического признака которого осуществляется измерение температуры, называется термометрическим телом.

Термометрическими признаками могут быть изменения: объёма газа или жидкости, электрического сопротивления тел, разности электрического потенциала на границе раздела двух проводящих тел и т.д. Соответствующие этим признакам приборы для измерения температуры (термометры) будут: газовый и ртутный термометры, термометры, использующие в качестве датчика термосопротивление или термопару.

По принципу действия все термометры делятся на следующие группы, которые используются для различных интервалов температур:

1 Термометры расширения от — 260 до +700 °С, основанные на изменении объемов жидкостей или твердых тел при изменении температуры.

2 Манометрические термометры от — 200 до +600 °С, измеряющие температуру по зависимости давления жидкости, пара или газа в замкнутом объеме от изменения температуры.

3. Термометры электрического сопротивления стандартные от —270 до +750 °С, преобразующие изменение температуры в изменение электрического сопротивления проводников или полупроводников.

4. Термоэлектрические термометры (или пирометры), стандартные от —50 до +1800 °С, в основе преобразования которых лежит зависимость значения электродвижущей силы от температуры спая разнородных проводников.

Пирометры излучения от 500 до 100000 °С, основанные на измерении температуры по значению интенсивности лучистой энергии, испускаемой нагретым телом,

Термометры, основанные на электрофизических явлениях от -272 до +1000 °С (термошумовые термоэлектрические преобразователи, объемные резонансные термопреобразователи, ядерные резонансные термопреобразователи).

2.1 Контактный метод измерения температуры

Существуют два основных способа для измерения температур — контактные и бесконтактные. Контактные способы основаны на непосредственном контакте измерительного преобразователя температуры с исследуемым объектом, в результате чего добиваются состояния теплового равновесия преобразователя и объекта. Этому способу присущи свои недостатки. Температурное поле объекта искажается при введении в него термоприемника. Температура преобразователя всегда отличается от истинной температуры объекта. Верхний предел измерения температуры ограничен свойствами материалов, из которых изготовлены температурные датчики. Кроме того, ряд задач измерения температуры в недоступных вращающихся с большой скоростью объектах не может быть решен контактным способом.

— Газовый термометр постоянного объёма (рис. № 2) состоит из термометрического тела — порции газа, заключенной в сосуд, соединенный с помощью трубки с манометром. Измеряемая физическая величина (термометрический признак), обеспечивающая определение температуры, — давление газа при некотором фиксированном объёме. Постоянство объёма достигается тем, что вертикальным перемещением левой трубки уровень в правой трубке манометра доводится до одного и того же значения (опорной метки) и в этот момент производится измерения разности высот уровней жидкости в манометре. Учет различных поправок (например, теплового расширения стеклянных деталей термометра, адсорбции газа и т.д.) позволяет достичь точности измерения температуры газовым термометром постоянного объема, равной одной тысячной кельвина.

Рис. № 2 Схема газового термометра

Газовые термометры имеют то преимущество, что температура, определяемая с их помощью, при малых плотностях газа не зависит от природы используемого газа, а шкала газового термометра — хорошо совпадает с абсолютной шкалой температур.

Газовые термометры используют для градуировки других видов термометров, например, жидкостных. Они более удобны на практике, однако, шкала жидкостного термометра, проградуированного по газовому, оказывается, как правило, неравномерной. Это связано с тем, что плотность жидкостей нелинейным образом зависит от их температуры.

— Жидкостной термометр (рис. № 3) — это наиболее часто используемый в обыденной жизни термометр, основанный на изменении объёма жидкости при изменении её температуры. В ртутно-стеклянном термометре термометрическим телом является ртуть, помещенная в стеклянный баллон с капилляром. Термометрическим признаком является расстояние от мениска ртути в капилляре до произвольной фиксированной точки. Ртутные термометры используют в диапазоне температур от -35 oC до нескольких сотен градусов Цельсия.

Рис. № 3 Схема жидкостного термометра

а — комнатный термометр с наружной шкалой;

б — лабораторный термометр с вложенной шкалой, имеющий на шкале точку 0°С.

При высоких температурах (свыше 300 °C) в капилляр накачивают азот (давление до 100 атм или 107 Па), чтобы воспрепятствовать кипению ртути. Применение в жидкостном термометре вместо ртути таллия позволяет существенно понизить нижнюю границу измерения температуры до -59 °C.

Другими видами широко распространённых жидкостных термометров являются спиртовой (от -8 °C до +8 °C) и пентановый (от -200 °C до +35°C). Отметим, что воду нельзя применять в качестве термометрического тела в жидкостном термометре: объём воды с повышением температуры сначала падает, а потом растёт, что делает невозможным использование объема воды в качестве термометрического признака.

С развитием измерительной техники, наиболее удобными техническими видами термометров стали те, в которых термометрическим признаком является электрический сигнал. Это термосопротивления (металлические и полупроводниковые) и термопары.

— В металлическом термометре сопротивления измерение температуры основано на явлении роста сопротивления металла с ростом температуры. Для большинства металлов вблизи комнатной температуры эта зависимость близка к линейной, а для чистых металлов относительное изменение их сопротивления при повышении температуры на 1 К (температурный коэффициент сопротивления) имеет величину близкую к 4*10-3 1/К. Термометрическим признаком является электрическое сопротивление термометрического тела — металлической проволоки. Чаще всего используют платиновую проволоку, а также медную проволоку или их различные сплавы. Диапазон применения таких термометров от водородных температур (

20 К) до сотен градусов Цельсия. При низких температурах в металлических термометрах зависимость сопротивления от температуры становится существенно нелинейной, и термометр требует тщательной калибровки.

— В полупроводниковом термометре сопротивления (термисторе) измерение температуры основано на явлении уменьшения сопротивления полупроводников с ростом температуры. Так как температурный коэффициент сопротивления полупроводников по абсолютной величине может значительно превосходить соответствующий коэффициент металлов, то и чувствительность таких термометров может значительно превосходить чувствительность металлических термометров.

Специально изготовленные полупроводниковые термосопротивления могут быть использованы при низких (гелиевых) температурах порядка нескольких кельвин. Однако следует учитывать то, что в обычных полупроводниковых сопротивлениях возникают дефекты, обусловленные воздействием низких температур. Это приводит к ухудшению воспроизводимости результатов измерений и требует использования в термосопротивлениях, специально подобранных полупроводниковых материалов.

— Другой принцип измерения температуры реализован в термопарах. Термопара (рис. № 4) представляет собой электрический контур, спаянный из двух различных металлических проводников, один спай которых находится при измеряемой температуре (измерительный спай), а другой (эталонный спай) — при известной температуре, например, при комнатной температуре. Из-за разности температур спаев возникает электродвижущая сила (термо-ЭДС), измерение которой позволяет определять разность температур спаев, а следовательно, температуру измерительного спая.

В таком термометре термометрическим телом является спай двух металлов, а термометрическим признаком — возникающая в цепи термо-ЭДС. Чувствительность термопар составляет от единиц до сотен мкВ/К, а диапазон измеряемых температур от нескольких десятков кельвин (температуры жидкого азота) до полутора тысяч градусов Цельсия. Для высоких температур применяются термопары из благородных металлов. Наибольшее применение нашли термопары на основе спаев следующих материалов: медь-константан, железо-константан, хромель-алюмель, платинородий — платина.

Рис. № 4 Схема термопары

Следует отметить, что термопара способна измерить только разность температур измерительного и свободного спаев. Свободный спай находится, как правило, при комнатной температуре. Поэтому для измерения температуры термопарой необходимо использовать дополнительный термометр для определения комнатной температуры или систему компенсации изменения температуры свободного спая.

В радиотехнике часто применяют понятие шумовой температуры, равной температуре, до которой должен быть нагрет резистор, согласованный с входным сопротивлением электронного устройства, чтобы мощность тепловых шумов этого устройства и резистора были равными в определенной полосе частот. Возможность введения такого понятия обусловлена пропорциональностью средней мощности шума (среднего квадрата шумового напряжения на электрическом сопротивлении) абсолютной температуре сопротивления. Это позволяет использовать шумовое напряжение в качестве термометрического признака для измерения температуры. Шумовые термометры используются для измерения низких температур (ниже нескольких кельвинов), а также в радиоастрономии для измерения радиационной (яркостной) температуры космических объектов

2.2 Бесконтактный метод измерения температуры

Бесконтактный способ основан на восприятии тепловой энергии, передаваемой через лучеиспускание и воспринимаемой на некотором расстоянии от исследуемого объема. Этот способ менее чувствителен, чем контактный. Измерения температуры в большой степени зависят от воспроизведения условий градуировки при эксплуатации, а в противном случае появляются значительные погрешности. Устройство, служащее для измерения температуры путем преобразования ее значений в сигнал или показание, называется термометром (ГОСТ 13417-76).

Thermopiles — это термоэлементы, включенные последовательно, которые используют известный Seebeck — эффект. Термоэлемент состоит из двух электропроводных материалов, которые расположены в виде проводящих дорожек и которые в одной точке (так называемой hot junction) контактируют друг с другом. Если за счет внешнего воздействия возникнет разница температур между точкой контакта (hot junction) и обеими открытыми концами (cold junction), то на обоих концах термоэлементов появится напряжение в несколько милливольт.

При бесконтактном способе измерения температуры повышение температуры точки «hot junction» вызывается за счет абсорбирования попадающего в эту точку инфракрасного излучения. Каждый объект излучает инфракрасный свет, причем энергия этого света повышается с повышением температуры объекта. Базируясь на этом эффекте Thermopile-модули измеряют излучаемую мощность и таким образом с высокой точностью определяют температуру объекта.

2.3 Люминесцентный метод измерения температуры

В основе люминесцентных методов измерения температуры лежит температурная зависимость интенсивности люминесцентного излучения некоторых люминофоров, которое находит применение в различных датчиках измерения температуры и термопокрытиях.

Современные волоконно-оптические датчики позволяют измерять многие характеристики лабораторных и промышленных объектов, в частности температуру. Не смотря на то, что их использование достаточно трудоемко, оно дает ряд преимуществ, использования подобных датчиков на практике: безындукционность (т.е. неподверженность влиянию электромагнитной индукции); малые размеры датчиков, эластичность, механическая прочность, высокая коррозийная стойкость и т.д.

1. Датчик на основе теплового излучения. В качестве устройств для измерения температуры могут быть использованы волоконно-оптические датчики на основе теплового излучения, сущность которых состоит в следующем. Изучаемое вещество при температуре большей 0 К вследствие тепловых колебаний атомов и молекул испускает тепловое излучение. Энергия излучения увеличивается по мере повышения температуры, а длина волны, на которой излучение максимально, уменьшается. Соответственно для определения температуры можно использовать формулу Планка для энергии теплового излучения черного тела на фиксированной длине волны или в диапазоне волн.

Основным преимуществом данного способа является возможность бесконтактного измерения высоких температур. В зависимости от диапазона измеряемых температур выбирают световые детекторы и оптические волокна. Область измерения температур для волоконно-оптических датчиков излучения находится в пределах от 400 до 2000 °С. При использовании оптических волокон, прозрачных для инфракрасных лучей с длиной волны 2 мкм и более, можно осуществлять измерение и более низких температур.

2. Датчик на основе поглощения света полупроводником. Известны также волоконно-оптические датчики, работа которых основана на оптических свойствах некоторых полупроводников. Используемый полупроводник имеет граничную длину волны спектра оптического поглощения. Для света с более короткой длиной волны, чем у проводника, поглощение усиливается, причем по мере роста температуры граничная длина волны отодвигается в сторону более длинных волн (около 3 нм/К). При подаче на полупроводниковый кристалл луч от источника света, имеющего спектр излучения в окрестности указанной границы спектра поглощения, интенсивность света, проходящего через светочувствительную часть датчика, с повышением температуры будет падать. По выходному сигналу детектора, указанным методом можно регистрировать температуру.

Используя данный метод можно мерить температуру в интервале от 30 до 300 °С с погрешностью ±0,5 °С.

3. Датчик на основе флуоресценции. Данный датчик устроен следующим образом. На торец оптического волокна светочувствительной части нанесено флуоресцентное вещество. Флуоресцентное излучение, возникающее под воздействием ультрафиолетовых лучей, проводимых оптическим волокном, принимается этим же волокном. Температурный сигнал выявляется путем вычисления отношения соответствующих значений интенсивности флуоресцентного излучения для сигнала с длиной волны, сильно зависящего от температуры к интенсивности сигнала с другой длиной волны, слабо зависящего от температуры.

Область измеряемых температур таким датчиком находится в пределах от -50 до 200 °С с погрешностью ±0,1 °С.

Использование волоконно-оптических датчиков, при всей своей привлекательности, позволяет производить измерение температуры только в локальной точке объекта, что несколько сужает область их применения.

Температура является одним из основных параметров, подлежащих контролю со стороны систем автоматического управления металлургическими процессами. В условиях агрессивных сред и высоких температур, наиболее подходящими для использования являются фотоэлектрические пирометры. Они позволяют контролировать температуру от 100 до 6000 С и выше. Одним из главных достоинств данных устройств является отсутствие влияния температурного поля нагретого тела на измеритель, так как в процессе измерения они не вступают в непосредственный контакт друг с другом. Так же фотоэлектрические пирометры обеспечивают непрерывное автоматическое измерение и регистрацию температуры, что позволяет использовать их в системах автоматического управления процессами без дополнительных затрат на приобретение и обслуживание устройств сопряжения.

Представленный в работе обзор люминесцентных методов измерения температуры по сравнению с контактными методами обладает теми же преимуществами, что и оптические методы. В то же время он является менее сложным при организации процесса изучения температуры и не менее точным по сравнению с другими оптическими методами. Кроме того, использование свойств люминесценции делает возможным разработку методов измерения температурных полей объектов сложной геометрической формы.

Из вышеприведенного обзора очевидна необходимость дальнейшей разработки и совершенствования технологий измерения температуры с использованием люминесцентных методов.

температура термометр люминесцентный

1. Преображенский, В.П. Теплотехнические измерения и приборы. / В.П. Преображенский — М.: Энергия, 1978. — С. 704

2. Чистяков, С.Ф., Радун Д. В. Теплотехнические измерения и приборы. / С.Ф. Чистяков — М.: Высшая школа, 1972. — С. 392

3. Никоненко, В.А., Сильд Ю.А., Иванов И.А. Разработка системы метрологического обеспечения измерительных тепловизорных приборов. — Измерительная техника, № 4, 2004. — С. 48-51

4. Измерения в промышленности: Справ. Изд.

Подобные документы

Методики, используемые при измерении температур пламени: контактные — с помощью термоэлектрического термометра, и бесконтактные — оптические. Установка для измерения. Перспективы применения бесконтактных оптических методов измерения температуры пламени.

курсовая работа [224,1 K], добавлен 24.03.2008

Характеристика величины, характеризующей тепловое состояние тела или меры его «нагретости». Причина Броуновского движения. Прародитель современных термометров, их виды. Единицы измерения температуры, типы шкал. Эксперимент по изготовлению термоскопа.

презентация [297,1 K], добавлен 14.01.2014

Средства измерения температуры. Характеристики термоэлектрических преобразователей. Принцип работы пирометров спектрального отношения. Приборы измерения избыточного и абсолютного давления. Виды жидкостных, деформационных и электрических манометров.

учебное пособие [1,3 M], добавлен 18.05.2014

Основные шкалы измерения температуры. Максимальное и минимальное значение в условиях Земли. Температура среды обитания человека. Температурный фактор на территории Земли. Распределение температуры в различных областях тела в условиях холода и тепла.

доклад [1,0 M], добавлен 18.03.2014

Понятие и источники теплового излучения, его закономерности. Классификация пирометрических методов и приборов измерения температур. Устройство и принцип работы пирометра типа ОППИР-09, методика проведения его поверки, возможные поломки и их ремонт.

курсовая работа [794,4 K], добавлен 02.12.2012

Основные сведения о температуре и температурных шкалах, возможность проводить измерение. Использование на практике термометров и требования к средствам измерений, входящих в состав государственных эталонов соответствующих диапазонов температуры.

реферат [19,7 K], добавлен 27.03.2009

С ростом температуры кристалла за счет теплового расширения постоянная решетки увеличивается. Поэтому при повышении температуры у полупроводников, как правило, запрещенная зона уменьшается.

реферат [10,8 K], добавлен 22.04.2006

Понятие измерения в теплотехнике. Числовое значение измеряемой величины. Прямые и косвенные измерения, их методы и средства. Виды погрешностей измерений. Принцип действия стеклянных жидкостных термометров. Измерение уровня жидкостей, типы уровнемеров.

курс лекций [1,1 M], добавлен 18.04.2013

Определение мощности лазерного излучения, подаваемого на образец. Вычисление размеров лазерного пучка на образце. Разработка системы измерения мощности излучения и длительности лазерного импульса, системы измерения температуры в зависимости от времени.

лабораторная работа [503,2 K], добавлен 11.07.2015

Согласование средства измерения с объектом измерения. Влияние наблюдателя. Методы сопряжения. Влияние окружающей среды и помехи. Совершенствование методики измерения. Использование методов компенсации. Изменение формы входного сигнала или его спектра.

презентация [10,7 M], добавлен 02.08.2012

Источник

Читайте также:  Измерение горизонтальных углов изображения