Меню

Термометр величина измерения прибором



Температура. Измерение и контроль температуры. Методы и средства измерения температуры.

Температурой называется статистическая величина, характеризующая тепловое состояние тела и пропорциональная средней кинематической энергии молекул тела. За единицу температуры принимают кельвин (К). Температура может быть также представлена в градусах Цельсия (°С). Нуль шкалы Кельвина равен абсолютному нулю, поэтому все температуры по этой шкале положительные. Связь между температурами t по Цельсию и T по Кельвину определяется следующим уравнением:

Измерить температуру непосредственно, как, например, линейные размеры, невозможно. Поэтому температуру определяют косвенно — по изменению физических свойств различных тел, получивших название термометрических.

Измерение температуры связано с преобразованием сигнала измерительной информации (температуры) в какое-либо свойство, связанное с температурой.

Для практических целей, связанных с измерением температуры, принята Международная температурная шкала (МТШ-90) (рис. 2.89), которая является обязательной для всех метрологических органов. Она основывается на ряде воспроизводимых состояний равновесия (реперных точек) некоторых веществ, которым присвоены определенные значения температуры.

Рис. 2.89. Международная Температурная шкала (МТШ-90) с реперными точками (подчеркнуты)

Для измерения температуры наибольшее распространение получили следующие методы, основанные:

— на тепловом расширении жидких, газообразных и твердых тел (термомеханический эффект);

— изменении давления внутри замкнутого объема при изменении температуры (манометрические);

— изменении электрического сопротивления тел при изменении температуры (терморезисторы);

— использовании электромагнитного излучения нагретых тел.

Приборы, предназначенные для измерения температуры, называются термометрами. Они подразделяются на две большие группы: контактные и бесконтактные.

Контактное измерение температуры.

Термометры расширения нашли широкое распространение в практике контактных измерений температуры. Основные типы механических контактных термометров, их метрологические характеристики, преимущества, недостатки и область применения представлены в табл. 2.18.

Таблица 2.18. Основные метрологические характеристики механических контактных термометров

Наименование прибора

Тип прибора

Пределы измерений,°С

Погрешность измерения,%

Инерцион ность

Преимущества

Недостатки

Область применения

Металли ческие термометры расширения

Дилато метриче ские

Дешевые, надежные, малое время срабатывания; очень большие перестановочные усилия

Малая точность, высокая инерционность

Дешевые, надежные; большие перестановочные усилия

Оценочный контроль температуры, температурные выключатели

Жидкостные термометры

Малая механическая прочность, нет дистанцион- ности

Лабораторные термометры, бытовые термометры

Дешевые, надежные, не требуют внешних источников энергии; дистан- ционность до 50 м, большие перестановочные усилия

Температура соединительного капилляра влияет на показания прибора

Промышленные термометры, термореле

Конденса ционные манометри ческие

Нелинейная статическая характеристика

Газовые термометры

С гелиевым заполнением

Принцип измерения соответствует определению термодинамической температуры

Малая механическая прочность, большая трудоемкость процесса измерения

Поверочные (калибровочные) работы

Жидкостные стеклянные термометры конструктивно подразделяются на палочные (рис. 2.90, а) и технические со вложенной шкалой (рис. 2.90, б). Принцип их действия основан на зависимости между температурой и объемом термометрической жидкости, заключенной в стеклянной оболочке. Жидкостный термометр состоит из стеклянной оболочки 1, капиллярной трубки 3, запасного резервуара 4 и шкалы 2. Термометрическая жидкость заполняет резервуар и часть капиллярной трубки. Свободное пространство в капилляре заполняется инертным газом или из него удаляется воздух.

Рис. 2.90. Жидкостные стеклянные термометры:

а — палочный; б — технический со вложенной шкалой; 1 — стеклянная оболочка; 2 — шкала; 3 — капиллярная трубка; 4 — запасной резервуар

В качестве термометрической жидкости применяют органические заполнители: толуол, этиловый спирт, керосин, пентан. Наиболее широкое распространение получили термометры с ртутным наполнением. Это объясняется свойствами ртути находиться в жидком состоянии в широком диапазоне температур и не смачивать стекло, что позволяет использовать капилляры с небольшим диаметром канала (до 0,1 мм) и обеспечивать высокую точность измерения. Так, ртутные образцовые термометры 1-го разряда имеют погрешность 0,002. 2°С.

Органические заполнители характеризуются более низкой температурой применения, меньшей стоимостью, большей погрешностью измерения.

Стеклянные термометры в зависимости от назначения и области применения подразделяются на образцовые, лабораторные, технические, бытовые, метеорологические.

Лабораторные термометры обеспечивают измерение в интервале температур 0. 500°С, который разбит на четыре диапазона, что позволяет получить погрешность измерений, не превышающую ±0,01 °С (0. 60 °С); ±0,02 °С (55. 155 °С); ±0,05°С (140. 300 °С) и ±0,1 °С (300. 500°С).

В качестве технических применяют только термометры со вложенной шкалой, которые имеют две модификации: прямые и угловые. Допускаемая погрешность обычно равна цене деления. При стационарной эксплуатации в различных точках технологических агрегатов термометры устанавливают в специальных металлических защитных чехлах (кожухах).

Для обеспечения задач позиционного регулирования и сигнализации в лабораторных и промышленных установках применяют специальные электроконтактные технические термометры двух типов:

1) с постоянными впаянными контактами, которые обеспечивают замыкание и размыкание электрических цепей при одной, двух или трех заранее заданных температурах;

2) с одним подвижным контактом (перемещается внутри капилляра с помощью магнита) и вторым неподвижным, впаянным в капилляр, что обеспечивает замыкание и размыкание электрической цепи при любом значении выбранной температуры.

Перемещающаяся в капилляре ртуть размыкает или замыкает цепи между контактами, к которым подводится напряжение постоянного или переменного тока и нагрузка на которые не должна превышать 0,5 мА при напряжении не более 0,3 В.

Биметаллические и дилатометрические термометры основаны на свойстве твердых тел в различной степени изменять свои линейные размеры при изменении их температуры.

В основном металлы и их сплавы относятся к материалам с высоким температурным коэффициентом линейного расширения. Так, для латуни он равен (18,3. 23,6)*10 -6 °С -1 , для никелевой стали 20*10 -6 °С -1 . В то же время есть сплавы, имеющие низкий коэффициент линейного расширения: сплав инвар — 0,9*10 -6 °С -1 , плавленый кварц — 0,55*10 -6 °С -1 .

На рис. 2.91, а представлена конструкция биметаллического термометра, в котором в качестве термочувствительного элемента используется двухслойная пластинка, состоящая из металлов с существенно различными коэффициентами линейного расширения: латуни 1 и инвара 2. При увеличении температуры свободный конец пластины будет изгибаться в сторону металла с меньшим коэффициентом, по величине этого перемещения судят о температуре.

Данный тип устройств часто используется как термореле в системах сигнализации и автоматического регулирования, а также в качестве температурных компенсаторов в измерительных устройствах, например в радиационных пирометрах, манометрических термометрах и т. п.

На рис. 2.91, б приведена конструкция чувствительного элемента пневматического дилатометрического преобразователя температуры.

Рис. 2.91. Термометры:

а — биметаллический: 1 — латунь; 2 — инвар; б — дилатометрический: 1 — корпус; 2 — стержень; 3 — трубка; 4 — шарик; 5 — толкатель; 6 — пружина; 7 — преобразователь

В корпусе 1, изготовленном из латуни (нержавеющей стали) расположены трубка 3 и стержень 2, выполненный из инвара (кварца). Стержень 2 через трубку 3 и толкатель 5 с помощью пружины 6 постоянно поджимается к нижнему концу корпуса 1. Шарик 4 исключает появление люфтов между стержнем и компенсационной трубкой, которая выполнена также из латуни и предназначена для исключения температурной погрешности при установке на объектах с различной толщиной тепловой изоляции. Изменение разности удлинений корпуса 1 и стержня 2, пропорциональное изменению температуры измеряемой среды, трансформируется в пневматический сигнал в преобразователе 7, усиливается и поступает на регистрирующий прибор.

Дилатометрические преобразователи выпускают и с электрическим выходным сигналом. Класс точности устройств 1,5 и 2,5 с диапазоном измеряемых температур от -30 до +1000 °С.

Жидкостные манометрические термометры (рис. 2.92) основаны на использовании зависимости между температурой и давлением термометрического вещества (газа, жидкости), заполняющего герметически замкнутую термосистему термометра. Термосистема состоит из термобаллона 4, капилляра 5 и манометрической одно- или многовитковой пружины 6. Капилляр 5 соединяет термобаллон с неподвижным концом манометрической пружины. Подвижный конец пружины запаян и через шарнирное соединение 7, поводок 3, сектор 2 связан со стрелкой прибора 1.

Рис. 2.92. Конструкция манометрического термометра:

1 — стрелка; 2 — сектор; 3 — поводок; 4 — термобаллон; 5— капилляр; 6 — пружина; 7 — шарнирное соединение

При изменении температуры среды изменяется давление термометрического вещества в замкнутом пространстве, в результате чего чувствительный элемент (манометрическая пружина) деформируется и ее свободный конец перемещается. Данное перемещение преобразуется в поворот регистрирующей стрелки относительно шкалы прибора.

В зависимости от термометрического вещества манометрические термометры подразделяются на газовые, конденсационные и жидкостные.

В газовых термометрах термобаллон, капилляр и манометрическая пружина заполняются каким-либо инертным газом (азотом, гелием и др.). Диапазон измерения весьма широк и лежит в пределах от критической температуры газа (азот — 147 °С, гелий — 267 °С) до температуры, определяемой теплостойкостью материала термобаллона.

В конденсационных термометрах насыщенные пары некоторых низкокипящих жидкостей (ацетон, метилхлорид, этилхлорид) меняют давление при изменении температуры. Диапазон измерения этих приборов от 0 до +400 °С при погрешности измерений ±1 %.

В жидкостных термометрах термосистема заполнена хорошо расширяющейся жидкостью (ртутью, керосином, лигроином и др.). Диапазон измерения этих приборов от -30 до +600 °С при погрешности измерений ±1 %.

На показания манометрических термометров значительное влияние оказывают внешние условия: изменения температуры окружающего воздуха, различная высота расположения термобаллона и пружины, колебания атмосферного давления.

Манометрические термометры имеют ограниченную длину линии связи от термобаллона к показывающему прибору, большую инерционность и динамическую погрешность.

Класс точности манометрических термометров 1,0; 1,5; 2,5 и 4,0 при работе в интервале температур окружающего воздуха от 5 до 50 °С и относительной влажности до 80 %.

Манометрические термометры применяют для измерения температуры охлаждающей воды, воздуха, жидкого и газообразного топлива, на установках для заправки и т. п.

Термометры сопротивления.

Термометр сопротивления состоит из чувствительного элемента в виде терморезистора, защитного чехла и соединительной головки.

Принцип действия чувствительного элемента основан на использовании зависимости электрического сопротивления вещества от температуры. В качестве материалов для их изготовления используют чистые металлы: платину, медь, никель и полупроводники. Платина является основным материалом для изготовления термометров сопротивления. В качестве чувствительного элемента в полупроводниковых термометрах сопротивления используют германий, окиси меди и марганца, титана и магния.

Основные метрологические характеристики термометров сопротивления, их принципиальные схемы, преимущества, недостатки и область применения представлены в табл. 2.19.

Таблица 2.19. Основные метрологические характеристики электрических контактных термометров

Таблица 2.19. Основные метрологические характеристики электрических контактных термометров

Характеристики

Термометры сопротивления

Термоэлектрические термометры

Пределы измерений, °С

Погрешность измерения, %

Инерционность

Преимущества

Высокая точность, линейная статическая характеристика

Высокая чувствительность, возможны измерения в точке

Дешевые, хорошая линейность статической характеристики

Прочность, малая тепловая инерция, линейная статическая характеристика

Недостатки

Невозможно измерение температуры в точке

Нелинейная статическая характеристика, большой разброс параметров, низкая стабильность параметров во времени

Большая тепловая инерция

Область применения

Энергетика, непрерывные технологические процессы в химии, пищевая промышленность

Энергетика, технологические процессы в химии, производство искусственных материалов, медицина

Энергетика, непрерывные производства, пищевая промышленность

Энергетика, непрерывные производства, химия, медицина, строительство, производство искусственных материалов

Для решения различных задач термометры сопротивления подразделяются на эталонные, образцовые и рабочие, которые, в свою очередь, подразделяются на лабораторные и технические.

Эталонные термометры сопротивления предназначены для воспроизведения и передачи шкалы МПТШ в интервале 13,81. . 903,89 К. В качестве эталонных, образцовых и лабораторных приборов повышенной точности применяют платиновые термометры сопротивления.

Технические термометры сопротивления в зависимости от конструкции подразделяются: на погружаемые, поверхностные и комнатные; защищенные и не защищенные от действия агрессивной среды; стационарные и переносные; термометры 1-го, 2-го и 3-го класса точности и т.д.

Одна из конструкций промышленных термометров сопротивления, используемых для измерения температур жидких и газообразных сред, представлена на рис. 2.93, а. Термометр состоит из чувствительного элемента 5, расположенного в стальном защитном кожухе 3, на котором приварен штуцер 2. Провода 9, армированные фарфоровыми бусами 4, соединяют выводы чувствительного элемента 5 с клеммной колодкой б, находящейся в корпусе головки 1. Сверху головка 1 закрыта крышкой 10, снизу имеется сальниковый ввод 7, через который осуществляется подвод монтажного кабеля 8.

Чувствительный элемент термометра сопротивления (рис. 2.93, б) выполнен из металлической тонкой проволоки толщиной 0,03. 0,1 мм с безындукционной каркасной или бескаркасной намоткой.

Рис. 2.93. Термометр сопротивления:

а — конструкция термометра: 1 — корпус головки; 2 — штуцер; 3 — защитный кожух; 4 — фарфоровые бусы; 5 — чувствительный элемент; 6 — клеммная колодка; 7 — сальниковый ввод; 8 — монтажный кабель; 9 — провода; 70 — крышка; б — конструкция чувствительного элемента термометра: 1 — глазурь; 2 — пространство; 3 — каркас; 4 — платиновые спирали; 5 — выводы

В качестве каркаса для платиновых термометров применяют плавленный кварц и керамику на основе окиси алюминия. В каналах каркаса 3 расположены четыре (или две) последовательно соединенные платиновые спирали 4. К верхним концам спиралей припаяны выводы 5, выполненные из платины или сплава иридия с радием. Пространство 2 между спиралями и каркасом заполнено порошком окиси алюминия. Крепление спиралей и выводов в каркасе производится глазурью 1.

При применении термометров сопротивления о температуре можно судить по изменению электрического сопротивления его чувствительного элемента, падению напряжения на нем при постоянном токе или значению тока при постоянном напряжении.

Наибольшее распространение получила первая схема, когда изменение сопротивления служит мерой температуры (рис. 2.94). В этом случае терморезистор 1 включают в одну из диагоналей моста последовательно с регулировочным резистором Rv, служащим для приведения к определенному значению сопротивления подводящих проводов. Показания гальванометра 3, включенного в диагональ моста, зависят также от напряжения питания моста, для поддержания постоянства которого в цепь питания включен регулировочный резистор.

Рис. 2.94. Схема включения термометра сопротивления:

1 — терморезистор (термометр сопротивления); 2 — уравнительный резистор RA; 3 — гальванометр; 4 — измерительный мост с резисторами Rv, R2, R3, Я4, RA; 5 — источник питания; 6 — регулировочный резистор Rv

Термоэлектрические термометры состоят из термопары, защитного чехла и соединительной головки, они основаны на термоэлектрических свойствах чувствительного элемента.

Сущность термоэлектрического метода заключается в возникновении электродвижущей силы в спае двух разнородных проводников (например, хромель — копель), температура которого отличается от температуры вторых выводов. Для получения зависимости термоЭДС от одной температуры t2 необходимо температуру t1 поддерживать на постоянном уровне, обычно при 0 или +20 °С. Спай, помещаемый в измеряемую среду, называют горячим, или рабочим, концом термопары, а спай, температуру которого поддерживают постоянной, — холодным, или свободным, концом.

Для увеличения чувствительности термоэлектрического метода измерения температуры в ряде случаев применяют термобатарею: несколько последовательно включенных термопар, рабочие концы которых находятся при температуре t2, а свободные — при известной и постоянной температуре t1.

Основные метрологические характеристики термоэлектрических термометров, их принципиальные схемы, преимущества, недостатки и область применения см. в табл. 2.19.

В качестве термопар (ТП) наиболее часто применяют комбинации материалов, имеющих высокое значение развиваемой термо- ЭДС, стабильность характеристик при различных температурах, воспроизводимость и линейную зависимость термоЭДС от температуры, простоту технологической обработки и получения спая, а именно: хромель-копелевые (TBP)[AJ], хромель-алюмелевые (TXK)[L], платинородий-платиновые (ТХА)[К], вольфрам-рениевые (Tnn)[S] и др. В квадратных скобках приведены условные обозначения номинальных статистических характеристик преобразования. Наиболее точной является термопара ТПП, которая используется в качестве рабочих эталонов и образцовых термометров 1-го, 2-го и 3-го разряда.

Основные характеристики термоэлектрических термометров представлены в табл. 2.20.

Таблица 2.20. Основные характеристики термоэлектрических термометров

Термопара

Градуировка

Химический состав термоэлектрода

Пределы применения, C

Пределы допускаемой погрешности, С, при температуре, С

Источник

Термометр

Термо́метр (греч. θέρμη — тепло; μετρέω — измеряю) — прибор для измерения температуры воздуха, почвы, воды и так далее. Существует несколько видов термометров:

  • жидкостные
  • механические
  • электрические
  • оптические
  • газовые
  • инфракрасные

Содержание

История изобретения

Изобретателем термометра принято считать Галилея: в его собственных сочинениях нет описания этого прибора, но его ученики, Нелли и Вивиани, засвидетельствовали, что уже в 1597 году он устроил нечто вроде термобароскопа (термоскоп). Галилей изучал в это время Герона Александрийского, у которого уже описано подобное приспособление, но не для измерения степеней тепла, а для поднятия воды при помощи нагревания. Термоскоп представлял собой небольшой стеклянный шарик с припаянной к нему стеклянной трубкой. Шарик слегка нагревали и конец трубки опускали в сосуд с водой. Через некоторое время воздух в шарике охлаждался, его давление уменьшалось и вода под действием атмосферного давления поднималась в трубке вверх на некоторую высоту. В дальнейшем при потеплении давление воздуха в шарике увеличивалось и уровень воды в трубке понижался при охлаждении же вода в ней поднималась. При помощи термоскопа можно было судить только об изменении степени нагретости тела: числовых значений температуры он не показывал, так как не имел шкалы. Кроме того, уровень воды в трубке зависел не только от температуры, но и от атмосферного давления. В 1657 г. термоскоп Галилея был усовершенствован флорентийскими учеными. Они снабдили прибор шкалой из бусин и откачали воздух из резервуара (шарика) и трубки. Это позволило не только качественно, но и количественно сравнивать температуры тел. Впоследствии термоскоп был изменен: его перевернули шариком вниз, а в трубку вместо воды налили спирт и удалили сосуд. Действие этого прибора основывалось на расширении мер, в качестве «постоянных» точек брали температуры наиболее жаркого летнего и наиболее холодного зимнего дня. Изобретение термометра также приписывают лорду Бэкону, Роберт Фладду, Санкториусу, Скарпи, Корнелию Дреббелю (Cornelius Drebbel), Порте и Саломону де Каус, писавшим позднее и частью имевшим личные отношения с Галилеем. Все эти термометры были воздушные и состояли из сосуда с трубкой, содержащего воздух, отделённый от атмосферы столбиком воды, они изменяли свои показания и от изменения температуры, и от изменения атмосферного давления.

Термометры с жидкостью описаны в первый раз в 1667 г. «Saggi di naturale esperienze fatte nell’Accademia del Cimento», где о них говорится как о предметах, давно изготовляемых искусными ремесленниками, которых называют «Confia», разогревающими стекло на раздуваемом огне лампы и выделывающими из него удивительные и очень нежные изделия. Сначала эти термометры наполняли водой, и они лопались, когда она замерзала; употреблять для этого винный спирт начали в 1654 году по мысли великого герцога тосканского Фердинанда II. Флорентийские термометры не только изображены в «Saggi», но сохранились в нескольких экземплярах до нашего времени в Галилеевском музее, во Флоренции; их приготовление описывается подробно.

Сначала мастер должен был сделать деления на трубке, соображаясь с её относительными размерами и размерами шарика: деления наносились расплавленной эмалью на разогретую на лампе трубку, каждое десятое обозначалось белой точкою, а другие чёрными. Обыкновенно делали 50 делений таким образом, чтобы при таянии снега спирт не опускался ниже 10, а на солнце не поднимался выше 40. Хорошие мастера делали такие термометры настолько удачно, что все они показывали одно и то же значение температуры при одинаковых условиях, однако такого не удавалось достигнуть, если трубку разделяли на 100 или 300 частей, чтобы получить большую точностью. Наполняли термометры посредством подогревания шарика и опускания конца трубки в спирт, заканчивали наполнение при помощи стеклянной воронки с тонко оттянутым концом, свободно входившим в довольно широкую трубку. После регулирования количества жидкости, отверстие трубки запечатывали сургучом, называемым «герметическим». Из этого ясно, что эти термометры были большими и могли служить для определения температуры воздуха, но были ещё неудобны для других, более разнообразных опытов, и градусы разных термометров были не сравнимы между собою.

В 1703 г. Амонтон (Guillaume Amontons) в Париже усовершенствовал воздушный термометр, измеряя не расширение, а увеличение упругости воздуха, приведённого к одному и тому же объёму при разных температурах подливанием ртути в открытое колено; барометрическое давление и его изменения при этом принимались во внимание. Нулём такой шкалы должна была служить «та значительная степень холода», при которой воздух теряет всю свою упругость (то есть современный абсолютный нуль), а второй постоянной точкой — температура кипения воды. Влияние атмосферного давления на температуру кипения ещё не было известно Амонтону, а воздух в его термометре не был освобождён от водяных газов; поэтому из его данных абсолютный нуль получается при −239,5° по шкале Цельсия. Другой воздушный термометр Амонтона, выполненный очень несовершенно, был независим от изменений атмосферного давления: он представлял сифонный барометр, открытое колено которого было продолжено кверху, снизу наполнено крепким раствором поташа, сверху нефтью и оканчивалось запаянным резервуаром с воздухом.

Современную форму термометру придал Фаренгейт и описал свой способ приготовления в 1723 г. Первоначально он тоже наполнял свои трубки спиртом и лишь под конец перешёл к ртути. Нуль своей шкалы он поставил при температуре смеси снега с нашатырём или поваренной солью, при температуре «начала замерзания воды» он показывал 32°, а температура тела здорового человека во рту или под мышкой была эквивалентна 96°. Впоследствии он нашёл, что вода кипит при 212° и эта температура была всегда одна и та же при том же стоянии барометра.

Окончательно установил обе постоянные точки, тающего льда и кипящей воды, шведский физик Цельсий в 1742 г., но первоначально он ставил 0° при точке кипения, а 100° при точке замерзания, и принял обратное обозначение лишь по совету М. Штёрмера. Сохранившиеся экземпляры термометров Фаренгейта отличаются тщательностью исполнения. Однако более удобной оказалась «перевернутая» шкала, на которой температуры таяния льда обозначили 0 С, а температуру кипения 100 С. Таким термометром впервые пользовались шведские ученые ботаник К. Линней и астроном М. Штремер. Этот термометр получил широкое распространение.

Работы Реомюра в 1736 г. хотя и повели к установлению 80° шкалы, но были скорее шагом назад против того, что сделал уже Фаренгейт: термометр Реомюра был громадный, неудобный в употреблении, а его способ разделения на градусы был неточным и неудобным.

После Фаренгейта и Реомюра дело изготовления термометров попало в руки ремесленников, так как термометры стали предметом торговли.

В 1848 г. английский физик Вильям Томсон (лорд Кельвин) доказал возможность создания абсолютной шкалы температур, нуль которой не зависит от свойств воды или вещества, заполняющего термометр. Точкой отсчета в «шкале Кельвина» послужило значение абсолютного нуля: −273,15° С. При этой температуре прекращается тепловое движение молекул. Следовательно, становится невозможным дальнейшее охлаждение тел.

Жидкостные термометры

Жидкостные термометры основаны на принципе изменения объёма жидкости, которая залита в термометр (обычно это спирт или ртуть), при изменении температуры окружающей среды.

В связи с запретом применения ртути во многих областях деятельности ведется поиск альтернативных наполнений для бытовых термометров. Например, такой заменой может стать сплав галинстан.

Об удалении разлившейся ртути из разбитого термометра см. статью Демеркуризация

Механические термометры

Термометры этого типа действуют по тому же принципу, что и жидкостные, но в качестве датчика обычно используется металлическая спираль или лента из биметалла.

Электрические термометры

Принцип работы электрических термометров основан на изменении сопротивления проводника при изменении температуры окружающей среды.

Электрические термометры более широкого диапазона основаны на термопарах (контакт между металлами с разной электроотрицательностью создаёт контактную разность потенциалов, зависящую от температуры).

Наиболее точными и стабильными во времени являются термометры сопротивления на основе платиновой проволоки или платинового напыления на керамику. Наибольшее распространение получили PT100 (сопротивление при 0 °C — 100Ω) PT1000 (сопротивление при 0 °C — 1000Ω) (IEC751). Зависимость от температуры почти линейна и подчиняется квадратичному закону при положительной температуре и уравнению 4 степени при отрицательных (соответствующие константы весьма малы, и в первом приближении эту зависимость можно считать линейной). Температурный диапазон −200 — +850 °C.

Отсюда, сопротивление при T °C, сопротивление при 0 °C, и константы (для платинового сопротивления) —

  • см. Эффект Пельтье

Оптические термометры

Оптические термометры позволяют регистрировать температуру благодаря изменению уровня светимости, спектра и иных параметров (см. Волоконно-оптическое измерение температуры) при изменении температуры. Например, инфракрасные измерители температуры тела.

Инфракрасные термометры

Инфракрасный термометр позволяет измерять температуру без непосредственного контакта с человеком. В некоторых странах уже давно имеется тенденция отказа от ртутных градусников в пользу инфракрасных не только в медицинских учреждениях, но и на бытовом уровне.

Инфракрасный термометр обладает рядом неоспоримых преимуществ, а именно:

  • безопасность использования (даже при серьёзных механических повреждениях ничто не угрожает здоровью)
  • более высокая точность измерения
  • минимальное время проведения процедуры (измерение проводится в течение 0,5 секунды)
  • возможность группового сбора данных

Технические термометры

Термометры технические жидкостные используется на предприятиях в сельском хозяйстве, нефтехимической, химической, горно-металлургической промышленностях, в машиностроении, жилищно- коммунальном хозяйстве, транспорте, строительстве, медицине, словом во всех жизненных сферах.

Выделяют такие виды технических термометров:

  • термометры технические жидкостные ТТЖ-М;
  • термометры биметаллические ТБ, ТБТ, ТБИ;
  • термометры сельскохозяйственные ТС-7-М1;
  • термометры максимальные СП-83 М;
  • термометры для спецкамер низкоградусные СП-100;
  • термометры специальные вибростойкие СП-В;
  • термометры ртутные электроконтактные ТПК;
  • термометры лабораторные ТЛС;
  • термометры для нефтепродуктов ТН;
  • термометры для испытаний нефтепродуктов ТИН1, ТИН2, ТИН3, ТИН4.

Источник

Читайте также:  Какие показания нормальные при измерении давления

Сравнить или измерить © 2021
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.