Меню

Типы аналитических средств измерения



Методы и средства аналитических измерений

Управление технологическими процессами только по таким параметрам, как давление, уровень, расход и температура, часто не гарантирует получение продуктов требуемого качества. Во многих случаях необходим автоматический контроль состава и свойств вырабатываемых продуктов. Приборы для такого контроля это автоматические анализаторы влажности, вязкости, концентрации, плотности, прозрачности и т. п.

Большинство выпускаемых промышленностью автоматических анализаторов предназначено для определения состава и свойств бинарных и псевдобинарных смесей. Бинарной смесью называют газовую смесь, состоящую из двух газов, или жидкость, содержащую один растворенный компонент. Анализ бинарной смеси возможен при условии, что составляющие ее компоненты отличаются друг от друга какими-либо физическими или физико-химическими свойствами.

Псевдобинарной называют многокомпонентную смесь, в которой неопределяемые компоненты резко отличаются по физическим или физико-химическим свойствам от определяемого компонента. Анализ такой смеси аналогичен анализу бинарной смеси. Анализ многокомпонентных смесей, содержащих три и более компонента, проводят только после их предварительного разделения на отдельные компоненты.

Специфической особенностью аналитических измерений является сильное влияние на их результаты побочных факторов (температуры, давления, скорости движения вещества и т. п.). Эти факторы особенно влияют на точность таких аналитических приборов, принцип действия которых основан на использовании какого-либо одного свойства вещества (электропроводности, теплопроводности, магнитной или диэлектрической проницаемости и др.). Поэтому автоматические анализаторы обычно оснащены сложным дополнительным оборудованием для отбора пробы, подготовки ее к анализу, стабилизации условий измерений или автоматического введения поправки и т. п.

Многообразие анализируемых веществ и широкий диапазон их составов и свойств обусловили производство автоматических приборов с чрезвычайно разнообразными методами анализа. Приборостроительная промышленность выпускает разнообразные автоматические анализаторы: плотномеры, вискозиметры, газоанализаторы, влагомеры, хроматографы, нефелометры и т. д. Если приборы для измерения таких общетехнических параметров, как давление, уровень, расход и температура, применяются практически во всех производствах, то анализаторы, напротив, как правило, для специфических задач конкретного производства.

Типы используемых для этих целей электрохимических измерительных преобразователей различаются по наличию гальванического контакта электродов с раствором.

Погрешности контактных методов измерения проводимости обусловлены явлением поляризации электродов. Для их снижения используют повышенную частоту и малые токи. Материал электродов играет роль при поляризации, используют платину, сталь с карбидным покрытием, электроды угольные и из нержавеющей стали.

Различают погружные и проточные датчики. В качестве вторичных приборов используют мосты и потенциометры. Для снижения влияющих факторов используют схемы с термокомпенсацией, стабилизированное питание, четырехэлектродные схемы.

У бесконтактных методов отсутствуют погрешности, обусловленные поляризацией электродов, но сложнее физическое описание механизма чувствительности.

В промышленности широко применяют в основном два способа измерения проводимости: индуктивный, трансформаторный (для больших проводимостей) и высокочастотный резонансный метод.

Для измерения водородного показателя (pH) растворов в качестве рабочего электрода используют стеклянные электроды, состоящие из стеклянной трубки, с наплавленным на нее тонким баллоном из мембранного стекла, заполненного буферным раствором, чувствительного к ионам водорода. В процессе измерения потенциал рабочего электрода сравнивается с потенциалом эталонного электрода.

Достоинством стеклянных электродов является высокая селективность к ионам водорода. Используют также и мембранные химические датчики.

В керамические мембраны устанавливают различные типы ионоселективных электродов. Мембраны могут быть и в жидкой фазе.

Источник

Аналитические измерения

В основе работы средств аналитических измерений лежат три группы методов: физические, физико-химические и химические.

Физические методы основаны на измерении физических величин, присущих данному веществу, либо по своему значению отличающих данное вещество от подобных. Это, например, плотность, тепло- и электропроводность, магнитная восприимчивость и др.

Физико-химические методы основаны на химических превращениях анализируемого вещества и измерении физических величин, сопровождающих эти превращения. Это, например, изменение оптической плотности, вязкости, теплоты сгорания и др.

Химические методы основаны на химических превращениях анализируемого вещества и измерении количества продуктов этих превращений.

Для средств автоматизированного анализа в основном используются физические методы и частично физико-химические.

В зависимости от агрегатного состояния анализируемого вещества анализаторы подразделяются на средства анализа твёрдых веществ, жидкостей и газов.

Анализ твёрдых веществ в производственной практике обычно сводится к определению физических свойств и в отдельных случаях к определению физико-химических свойств (например, при анализе твёрдого топлива). Число физических показателей может быть достаточно обширным.

Анализ технологических жидкостей чаще всего сводится к определению физических и физико-химических показателей: плотности, вязкости, концентрации растворённых веществ, теплоты сгорания и др.

Одной из самых распространенных задач аналитического контроля является определение концентрации (относительного или абсолютного содержания компонента в данном количестве жидкости). При этом анализируемая смесь считается бинарной (вещество плюс растворитель) или приводится к «псевдобинарной», так как физические методы анализа неизбирательны и не позволяют определить, какие компоненты и в каких количествах содержатся в данной жидкости.

В некоторых случаях определяется концентрация вещества, не растворённого в жидкости, а образующего суспензию.

Анализ газов подразделяется на качественный и количественный, но также может производиться и определение физических свойств ( например, влажности). В производственных условиях количественный анализ используется чаще, так как его легче автоматизировать, а качественный состав газовых смесей обычно известен.

Все средства автоматического анализа можно разделить на две основные группы:

— анализаторы непрерывного действия, работающие в потоке анализируемого вещества;

— анализаторы циклического действия, работающие с пробами анализируемого вещества, которые берутся с определённой цикличностью.

Аналитические средства измерений, как и все прочие СИ, предназначенные для автоматических технических измерений, состоят из первичного измерительного преобразователя и вторичного прибора, имеющего функции показания, регистрации и задаваемой оператором предельной сигнализации. В некоторых случаях между ПИП и ВП может находиться промежуточный преобразователь для нормализации сигнала измерительной информации. В этом случае на ВП поступает аналоговый или цифровой унифицированный сигнал.

Читайте также:  Астрономический метод измерения скорости света суть метода

Источник

Аналитические измерительные приборы в промышленности

В настоящий момент наиболее высокими темпами развивается такое направление измерительного приборостроения, как аналитическое. Начиная с 2005 года, уровень продаж аналитического оборудования возрос в 2 раза – с $25 до 50 млрд. И тому есть целый ряд причин, к основным из которых можно отнести:

1. Качественные характеристики (а именно – производительность, точность и чувствительность) приборов были улучшены, чему способствовало применение компьютеризации, автоматизации и усовершенствование физико-химических методик проведения анализа. Это, в свою очередь, привело к росту уровня комплектования аналитическими измерительными приборами, позволяющими добиться полной автоматизации мероприятий по измерению и обработке результатов.

2. Появление на отечественном рынке серийно выпускаемых приборов, внедряемых в технологический процесс, благодаря чему у производителя возникла возможность не только осуществлять контроль за качеством итоговой продукции и переделывать ее или же утилизировать в случае выявления брака, но и предотвращать выпуск некачественных товаров на всех этапах производства. Это благоприятно сказывается на размере издержек, существенно снижая их.

3. В связи с появлением у лабораторного оборудования новых потребительских свойств возросла и его цена. Это повлекло за собой рост популярности менее точных, но имеющих более низкую стоимость переносных сенсорных устройств, применяемых для проведения экспресс-анализа и диагностики.

Указанная группа приборов отвечают следующим требованиям:

В данном типе приборов широкое применение обрели гибридные методы, сочетающие в себе несколько аналитических методик, позволяющих повысить скорость проведения анализа и его эффективность. Также обычно сочетание осуществляется в режиме онлайн, а не поэтапно, что дает возможность значительно сэкономить время.

• Мобильность и полнофункциональность

Аналитические приборы, используемые в настоящее время, дают возможность получать прямо на месте результаты анализа отбора проб, после чего использовать их при принятии оперативных решений. Существуют ситуации, когда именно мобильность систем аналитического контроля играет решающую роль, – в этом случае предпочтение отдается приборам, которые обладают всеми возможностями лабораторной аппаратуры. Также такие приборы популярны и в обычных лабораториях ввиду компактности, небольшого веса, низкого уровня расхода реактивов и электроэнергии.

Источник

Что такое средства измерения? Классификация средств измерения.

Сегодня познакомимся со средствами измерения. А именно, что такое средство измерения, какими бывают средства измерения, их классификация. Будет очень интересно и познавательно. НЕ переходим на другую страничку.

Средства измерений – технические устройства, предназначенные для измерений, имеющие нормированные метрологические характеристики, воспроизводящие и (или) хранящие единицу физической величины, размер которой принимается неизменным (в пределах установленной погрешности) в течение известного интервала времени.

По ряду критериев различают следующие средства измерений.

1. По назначению: образцовые (метрологические) и рабочие.

— Образцовые (метрологические) средства измерений предназначены для воспроизведения единицы физической величины и (или) ее хранения или для передачи размера единицы другим (как образцовым, так и рабочим) средствам измерений, то есть для измерений, выполняемых в ходе поверок и калибровок. С их помощью обеспечивается единство измерений в стране. Образцовыми средствами измерений являются эталоны, образцовые приборы, поверочные установки, средства сравнения и др.

— Рабочие средства измерений предназначены для практических измерений, не связанных с передачей размера единицы величины другим средствам измерений. Они позволяют измерять реальные величины.

Пример: весы, рН-метры, манометры, вольтметры и т.д.

2. По уровню стандартизации: стандартизованные и не стандартизованные.

— Стандартизованные средства измерений изготавливают в рамках требований стандарта. Их технические характеристики соответствуют характеристикам средств измерений аналогичного типа, полученным на основании государственных испытаний, выполняемых при утверждении типа средства измерений. Средства измерений, внесенные в Федеральный информационный фонд по обеспечению средства измерений, чаще всего относятся к числу стандартизованных.

Пример: Вольтметры, весы, мерные колбы, стандарт-титры (фиксаналы).

— Нестандартизованные средства измерений предназначены для выполнения специальной измерительной задачи. Они часто являются уникальными, самостоятельно изготовленными. Для того чтобы проведенные с их помощью измерения являлись достоверными, их точность необходимо оценивать. Такие устройства также могут подвергаться государственными испытаниями и вноситься в Федеральный информационный фонд по обеспечению единства измерений.

3. По отношению к измеряемой величины: основные и вспомогательные.

Основные средства измерений производят измерения той величины, значение которой необходимо получить в рамках поставленной измерительной задачи.

Вспомогательные средства измерений измеряют ту величину, влияние которой на основное средство измерений или объект измерений необходимо учесть для получения результатов измерений требуемой точности.

Пример: при пикнометрическом определении плотности раствора пикнометр является основным, в термометр для измерения температуры воды в термостате – вспомогательным средством измерения.

4. По конструктивному исполнению средства измерений делят на меры, измерительные приборы, измерительные установки, измерительные системы, измерительные комплексы.

Мера как средство измерения предназначена для воспроизведения и (или) хранения величины одного или нескольких заданных размеров, значения которых выражены в установленных единицах и известны с необходимой точностью.

Пример: Гиря; образцовое сопротивление; стандартный образец состава вещества и т.д.

Мера выступает в качестве носителя единицы величины и служит основой для измерений. При сравнении с ней размера измеряемой величины получают значение этой величины в тех же единицах.

Мера подразделяют на однозначные, многозначные, наборы мер, магазины мер, установочные. Мера, воспроизводящая величину одного размера, — однозначная мера.

Пример: гиря определенной массы и т.д.

Мера, воспроизводящая величину разных размеров, — многозначная мера.

Комплект мер разного размера одной и той же величины, необходимый для применения на практике как в отдельности, так и в различных сочетаниях, есть набор мер.

Читайте также:  Единица измерения роста дюймы

Пример: наборы разновесов, калибров и т.д. Наборы мер обычно устанавливаются нормативно-техническими документами.

Набор мер, конструктивно объединенных в единое устройство, в котором имеются приспособления для их соединения в различных комбинациях, называются магазином мер.

Пример: магазины электрических сопротивлений, емкостей и т.д.

Мера, предназначенная для приведения показания средства измерения в соответствие с ее известным значением или для контроля неизменности чувствительности средства измерений и приведения его показаний (выходных сигналов) к показаниям, соответствующим чувствительности средства измерений при первичной градуировке, называется установочной мерой.

Пример: радионуклидный источник, применимый для контроля стабильности чувствительности радиометрических и дозиметрических приборов.

Близки по назначению к мерам стандартные образцы, предназначенные для воспроизведения, хранения и передачи характеристик состава или свойства веществ (материалов), хотя последнее время их выделяют в самостоятельную группу метрологических средств.

Измерительный прибор – средство измерений, предназначенное для получения значений измеряемой величины в установленном диапазоне. Такой прибор имеет устройство для преобразования измеряемой величины в сигнал измерительной информации и его индикации в доступной для восприятия форме. Почти всегда устройство для индикации имеет шкалу со стрелкой или другим приспособлением, диаграмму с пером или цифровой указатель, с помощью которых можно производить отсчет или регистрацию значений величины. В случае сопряжения прибора с компьютером отсчет может сниматься с дисплея или распечатки.

Важнейшим различием мер и измерительных приборов является число возможных результатов измерений. Если число результатов, которые можно получить данным средством измерений, один или несколько – это мера (однозначная или многозначная), если много – прибор.

Пример: Гиря – однозначная мера, линейка (число возможных результатов несколько десятков) – многозначная мера, а вольтметр (число возможных результатов измерений несколько тысяч) – измерительный прибор.

Имеется несколько классификаций измерительных приборов.

— по характеру индикации значений измеряемой величины измерительные приборы разделяют на показывающие и регистрирующие. Первые позволяют только считывать значения измеряемой величины, а вторые – также и регистрировать их. Регистрация показаний может проводиться в аналоговой или числовой форме. Существуют приборы, позволяющие регистрировать одновременно несколько значений одной или несколько величин.

Пример: микрометр, аналоговый или цифровой вольтметр, часы.

— По действию (если такое производится) измерительные приборы разделяют на интегрирующие и суммирующие. С помощью интегрирующих измерительных приборов значение измеряемой величины определяется путем ее интегрирования по другой величине (электрический счетчик электроэнергии и т.д). Суммирующие измерительные приборы дают показания, которые функционально связаны с суммой двух или нескольких величин, подводимых по различным измерительным каналам.

Измерительные преобразователи – средства измерений, служащие для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и хранения, но не поддающейся непосредственному восприятию наблюдателем. Это – конструктивно обособленные элементы, самостоятельного значения для проведения измерений они, как правило, не имеют. Обычно они являются составными частями более сложных измерительных комплексов и систем автоматического контроля. Управления и регулирования.

Измерительные системы – совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей, компьютеров и других технических средств, размещенных в разных точках контролируемого пространства. В зависимости от назначения их разделяют на измерительные информационные системы (ИИС), измерительные контролирующие системы (ИКС), измерительные управляющие системы (ИУС) и др.

Измерительные комплексы – функционально объединенная совокупность средств измерений и вспомогательных устройств, предназначенная для выполнения в составе ИИС конкретной измерительной задачи.

5. По уровню автоматизации средства измерений делят на неавтоматические средства измерений, автоматизированные средства измерений, автоматические средства измерений.

Неавтоматические средство измерений не имеет устройств для автоматического выполнения измерений и обработки их результатов.

Пример: рулетка, индикаторная бумага, пирометр, теодолит.

Автоматизированное средство измерений производит в автоматическом режиме одну или несколько измерительных операций.

Пример: компьютеризированные атомно-абсорбционный спектрофотометр с автоматическим пробоотборником.

Автоматическое средство измерений производит в автоматическом режиме измерений и все операции, связанные с получением и обработкой результатов измерений, их регистрацией, передачей данных или выработкой управляющего сигнала.

Пример: автоматический хроматограф, установленный на химическом реакторе и периодически передающей результаты измерений на пульт управления производством.

Источник

Аналитические весы

Аналитические весы за последние годы претерпели существенные изменения. Их ассортимент поменялся полностью уже несколько раз.

От технического состояния весов прямо зависят результаты проводимых с их помощью испытаний или иных работ. Их роль настолько важна, что для их хранения и использования обустраивается специальное помещение – весовая комната.

Что такое аналитические весы и их основные типы

Весы аналитические – это разновидность лабораторных весов, которые используются при выполнении физических и химических анализов, в которых результаты, получаемые в процессе измерения массы предмета, требуется получать с особо высокой точностью. Именно поэтому дискретность таких весов не может превышать 0,1 мг.

По классу точности выполняемых измерений аналитические весы относятся ко 2-му и 1-ому классу.

По присущим им конструктивным признакам эти весы подразделяются на две основные группы:

  • весы коромысловые рычажные (одноплечие и равноплечие); имеют в качестве чувствительного элемента контактную пару, состоящую из подушки и призмы;
  • весы, оснащённые измерительным упругодеформируемым устройством, которым является торсионная нить.

Весы первой группы дают точность определения массы не выше 1*10 -6 г. вторые гораздо точнее. Там предельная величина составляет 5*10-8 г.

Группу аналитически весов, кроме собственно аналитических 1-го и 2-го классов точности, составляют весы микроаналитические, полумикроаналитические, торсионные и пробирные.

Ещё одним видом классификации аналитических весов для лабораторий по их конструкции является разделение на весы периодического качания и так называемые апериодические или демпферные весы.

Читайте также:  Единица измерения размеров чертежа

Главным недостатком весов с периодическим качанием стрелки является крайне медленное затухание колебаний, совершаемых коромыслом.

Это приводит к увеличению времени на проведение взвешивания. Использование апериодического качания позволило существенно сократить время получения результата взвешивания. Колебания коромысла в них гасятся с использованием специального устройства – демпфера, осуществляющего магнитное, либо воздушное торможение.

Весы с апериодическим качанием, в свою очередь, делятся на:

  • весы полуавтоматические;
  • обычные;
  • с нижним или верхним размещением демпферов, которые представляют цилиндры, прикрепляемые к чашке весов или её дужке; данные цилиндры свободно перемещаются внутри цилиндров большего диаметра.

Третьим вариантом классификации является отнесение весов к группе механических (электромеханических), либо электронных.

При таком разделении в весах, относящихся к первой группе, суть процесса взвешивания объясняется сравнением массы взвешиваемого предмета с системой встроенных в конструкцию пружин и гирь, либо внешних гирь, которое выполняется с помощью индикатора, определяющего положение равновесия.

Весы аналитические электронные имеют иной принцип действия. Он основан на электромагнитном уравновешивании предмета, проходящего взвешивание, и последующим выполнением измерения, сформированного в результате этого действия электрического сигнала, которых преобразуется в цифровой вид и выводится на соответствующие табло или индикаторы.

Аналитические весы, относящиеся к группе механических, имеют привлекательную стоимость, однако обладают целым рядом недостатков. Среди них следует отметить: относительно быстрое механическое изнашивание тех материалов, из которых выполнены грузы и рычаги; слабая стойкость к воздействию коррозии; высокая сложность выполнения взвешивания, чрезмерная чувствительность подобных весов к внешним воздействиям (сквозняки, перепады температур, сотрясения и т.п.).

Весы электронные наоборот, достаточно просты для проведения взвешивания. А требования к рабочему месту и внешним воздействующим факторам у них существенно ниже. Последние модели получают много дополнительных функций, не свойственных механическим. Например: определение плотности твёрдых тел и жидкостей (гидростатическое взвешивание); взвешивание динамическое; предусмотренная возможность подключения к ПК или иному переферийному устройству, выбор единицы измерения; автоматическое выставление нуля; взвешивание в процентах и т.п.

Весы микроаналитические и ультра микроаналитические, также являющиеся весами указанной аналитической группы используют для выполнения взвешивания, при котором требуется предельно высокая точность. Они позволяют гарантированно получать точность, выражаемую седьмым знаком после запятой

Назначение аналитических весов и сферы применения

Аналитические весы 2-го класса используются для точных взвешиваний и определения массы материала в ходе проведения химических анализов с использованием макрометодов. Область применения таких весов – промышленные лаборатории, лаборатории учебных заведений и НИИ.

Весы электронные используют при выполнении лабораторных исследований, относящихся к особосложным: пробирный анализ; взвешивание кардиоимплантов; работа с токсическими, быстроразлагающимися или взрывоопасными веществами; взвешивания специальных фильтров, предназначенных для контроля запылённости воздуха;

Для калибровки дозаторов, шприцев, гирь и пипеток. Весы указанных типов применяются в качестве контрольного оборудования в системах СУК (управления качеством)

Конструкция и принцип работы

Рассмотрим типовую конструкцию демпферных электронных весов, составляющих в последнее время большую часть ассортимента аналогичных весов, предлагаемых на рынке России.

Важнейшим элементом конструкции весов аналитических является коромысло, на котором укреплено три агатовые призмы. Средняя выполняет для коромысла роль опоры на момент взвешивания. Остальные две размещены на концах коромысла, и являются опорами для чашек наших весов. С коромыслом соединяется длинная стрелка (расположенная вертикально) и имеющая микрошкалу на своём верхнем конце.

Специальное оптическое приспособление, входящее в конструкцию весов, именуемое вейтограф, позволяет лаборанту наблюдать на имеющемся у данного приспособления экране перемещения, совершаемые увеличенным изображением мерной шкалы около счётной линии, исполненной неподвижно.

Обычно шкала градуируется с шагом в 1 мг (0,001г). В свою очередь это расстояние также разделено на 5 или 10 (в зависимости от марки весов) делений.

К чашке весов или их дужке прикреплены демпферы (смотри выше), ускоряющие взвешивание.

Все аналитические весы для повышения точности взвешивания снабжены арретирами. Это специальное приспособление, при помощи которого приподнимается коромысло весов и устанавливается в положение, в котором ни одна из 3 призм опорных подушек не касается.

Приводится в действие арретир специальной рукоятью, которая крепится к нижней части опорной доски весов. Поворачивать её следует плавно и очень осторожно.

Обязательное требование. В момент помещения на чашку весов взвешиваемого предмета, либо контрольной нагрузки. А также на то время, когда планируется долго не пользоваться данными весами, их следует обязательно предварительно арретировать.

Для защиты механизма весов от сквозняков, колебаний температуры и пыли, он размещается в специальном стеклянном футляре.

Если вы занимаетесь предпринимательской деятельностью, то одним из основных видов оборудования, который необходим вашему магазину – это фискальный регистратор. Подробнее о них читайте в этой статье.

Вам нужны весы для взвешивания вагонов с высокой точностью измерения? В этом вам помогут гидравлические весы! Подробнее о них читайте по https://kilogramus.ru/vzveshivanie-v-promyshlennosti/gidravlicheskie-zheleznodorozhnye-vesy.html ссылке.

Правила работы с весами аналитическими

Правила работы с весами лаборанты изучают в курсе основ теоретической химии и освежают свои знания путём изучения инструкции по монтажу и эксплуатации, входящей в комплект документации, поставляемый с каждыми весами. Здесь прописано все, каким требованиям должен соответствовать стол для аналитических весов, как проводится калибровка аналитических весов и т.п.

Ни одно фармацевтическое, ювелирное, или использующее нанотехнологии производство на сегодняшний день результативно работать без аналитических весов не может. А результаты проводимых работ прямо зависят от качества установленных весов и их функциональных возможностей.

Источник