Меню

Трактат измерение круга архимед



§ 12. Архимед. Работа Архимеда “ Измерение круга”

В III в до н.э. греческая математика меняет свой характер. Наряду с работами по теоретической математике, характерными для IV в. до н. э., типа “Начал” Евклида, теперь начинают появляться работы по прикладной математике, связанные с вычислением площадей фигур, объемов тел, длин кривых и др. Наиболее ярким представителем этого прикладного направления в математике был Архимед.

Архимед Сиракузский (287-2122) родился в городе Сиракузы на острове Сицилия, где существовала греческая колония. Получил неплохое домашнее образование у отца, известного астронома. Несколько лет он провел в Александрии, где пополнил свои знания по математике и механике. Затем Архимед вернулся в Сиракузы и больше не покидал родного города.

Первые научные работы Архимеда относились к механике. Он открыл правило равновесия рычага, законы плавания тел,, изобрел т.н. “ архимедов винт” для подъема воды на поля и т.д.. Но главные его работы относятся к математике. Он написал следующие сочинения по математике: “Измерение круга”, “О спиралях”,”О ширине и цилиндре”, “О квадратуре параболы”, “О коноидах и сфероидах”, “Исчисление песчинок” и др. Почти все они относятся к геометрии. Единственная арифметическая работа –“Исчисление песчинок”. Посвящена она такой проблеме. В то время считалось, что количество песчинок на морском берегу нельзя сосчитать; действительно, в рамках применявшихся тогда ионийской системы счисления этого сделать было нельзя. Архимед изобрел новую систему счисления, которая позволяла сосчитать количество песчинок даже в том случае, если бы песком была заполнена вся Вселенная ( по представлениям того времени, в центре Вселенной находится Земля, а Солнце, планеты и звезды находятся на одном и том же расстоянии от Земли). Впрочем, для практического применения система Архимеда была непригодна.

Архимед по характеру своего творчества близок к Ньютону. Оба занимались одними и теми же науками: механикой, математикой, астрономией. Оба получили первоклассные результаты в этих областях и были знамениты при жизни.

Об Архимеде, как и о Ньютоне, рассказывали различные легенды анекдоты. Говорят, что он однажды воскликнул: “Дайте мне точку опоры и я сдвину Землю!” (Имелось в виду, конечно, использование правила равновесия рычага.) Рассказывают, что царь Сиракуз Гиерон, с которым Архимед был в дружественных отношениях, предложил ему выяснить, не подмешаны ли примеси в только что изготовленную для него золотую корону. Архимед долго думал над этим вопросом, и истина явилась ему в то время, когда он принимал ванну. Архимед выскочил из ванной и с криком “Эврика!” голый побежал по улице.

В 213 г. до н.э. во время очередной войны Рима с Карфагеном и его союзниками римские войска осадили Сиракузы. Римские войска по численности многократно превосходили войско защитников Сиракуз. Только благодаря гению Архимеда, который, не занимая никого официального поста, фактически возглавил инженерную оборону города, Сиракузам удалось продержаться около двух лет. Архимед изобрел катапульты ( метательные машины ), с помощью которых защитники города забрасывали римлян каменными ядрами, и системы блоков и рычагов для подъема ядер на городские стены. Когда римляне попытались штурмовать Сиракузы с моря, мощные краны с городских стен захватывали железными крюками носы римских кораблей, поднимая их вверх и бросали вниз; корабли переворачивались и тонули. Римлянам пришлось отказаться от штурмов города, и они перешли к долговременной осаде. В 212 г. из-за измены кого-то из горожан римские войска ворвались в город. Архимед в это время сидел у себя и чертил на песке, обдумывая очередную теорему. Внезапно перед ним появился солдат, который имел приказ доставить Архимеда к полководцу римлян Марцеллу. Архимед отказался идти до тех пор, пока не закончит доказательство теоремы. Солдат разгневался и убил Архимеда. Марцелл помог родственникам ученого его похоронить. На надгробной плите по желанию Архимеда был изображен шар, вписанный в равносторонний цилиндр (т.е. цилиндр, осевым сечением которого является квадрат), и высечена надпись о том, что отношение объема цилиндра к объему шара равно 3:2,- результат из работы “ О шаре и цилиндре”, которым Архимед гордился и с помощью которого выводил формулу объема шара.

Здесь мы рассмотрим сочинение Архимеда “Измерение круга”. Это сравнительно простая работа, посвященная длине окружности и площади круга. В ней изложены три теоремы.

Круг равен треугольнику, основание которого есть окружность, а высота – радиус:

где R — радиус окружности, L – ее длина, S – площадь круга. Доказательство проводится методом исчерпывания, а следовательно, от противного.

Круг относится к квадрату на диаметре ( приближенно) как 11:14

,

где D – диаметр. Доказательство дано с помощью правильных описанных многоугольников при удвоении числа их сторон.

Интересно посмотреть, каким же было здесь для Архимеда число π. Сначала используем точную формулу площади круга:

Теперь применим приближенную формулу Архимеда

Эти два выражения приравняем. Достаточно приравнять коэффициенты при :

Это хорошее приближение для числа. Приближенное значение π, равное 3, позднее получило название архимедова числа. Оно удобно тем, что здесь используется дробьс числителем, равным 1, и маленьким знаменателем.

Окружность превышает утроенный диаметр меньше чем на и более чем надиаметра:

Доказательство проводится с помощью правильных вписанных и описанных многоугольников, если число сторон принимает последовательно значение 6, 12, 24, 48, 96.

Выразим из этого неравенства отношение

Читайте также:  Вов аддоны для измерения урона

Это первая в истории оценка числа сверху и снизу. Приближенное значение π с избытком, равное 3, мы уже встречали. Приближенное значение π с недостатком, по Архимеду, равно 3Оценим его точность: 3. Это также хорошее приближение для π.

В дальнейшем в той же работе автор сужает границы для π, получая еще более точные значения этого числа.

Источник

Трактат измерение круга архимед

Согласно еще одному интересному рассуждению, которое можно найти в трактате «Об измерении круга», площадь вписанного в квадрат круга относится к площади этого квадрата как 11/14. И в данном контексте мы тоже приходим к тому же значению π — приблизительно 3,14. Рассмотрим следствие из этого положения. Во- первых, давайте внимательнее посмотрим на чертеж справа.

Площадь круга: Sкруга = πr².

Площадь квадрата: Sквадрата = (2r)²=4r².

Соотношения, которые их связывают:

площадь круга/площадь квадрата = πr²/4r² = π/4

То, что выяснил Архимед:

площадь круга/площадь квадрата = 11/14

Очевидно, что это одна и та же величина, и мы помним, что все выкладки Архимеда приблизительны:

В трактате «Об измерении круга» утверждается:

Каждый круг равен прямоугольному треугольнику, один из катетов которого равен радиусу круга, а другой — длине окружности.

Имеется в виду равенство их площадей. Для доказательства (см. рисунок) ученый приводит следующие соображения.

— «Предположим, что площадь круга больше площади треугольника: Sкруга > Sтреугольника». Архимед показывает, что такое неравенство невозможно.

— «Предположим, что площадь круга меньше площади треугольника: Sкруга

Пусть это изобразят на моем надгробии!

В утверждении 34 трактата «О шаре и цилиндре» содержится результат, которым, как нам точно известно, более всего гордился Архимед:

Соотношение объемов цилиндра и вписанного в него шара равно 3/2. Соотношение площадей поверхности цилиндра и вписанного в него шара также равно 3/2 (см. рисунок):

Он смог найти абсолютно точное отношение между объемами шара и цилиндра, в который тот вписан. Речь идет о случае, когда диаметр шара равен как диаметру основания цилиндра, так и его высоте. Объем цилиндра получается в полтора раза (3/2) больше объема шара. Такое же соотношение и у площадей их поверхностей. Как мы уже говорили, Архимед даже завещал выбить изображение шара, вписанного в цилиндр, на своем надгробном памятнике вместо эпитафии. В I веке до н. э. Цицерону, по его словам, удалось увидеть это надгробие. До нашего времени оно, к сожалению, не дошло.

Чтобы получить нужный результат, Архимед использовал различные определения, постулаты и утверждения, попутно найдя важные соотношения площадей других фигур. «О шаре и цилиндре» — это трактат, состоящий из двух книг, написанных в разные годы его жизни. Первая книга служит теоретической основой для второй, представляющей собой ответы на вопросы Досифея, которому она и посвящена. Первая книга заключает в себе 44 утверждения, шесть определений и пять постулатов. Кроме того, некоторые утверждения содержат важные следствия: например, рассматриваемое соотношение между шаром и цилиндром представлено в форме следствия из двух утверждений. Речь идет об утверждениях 33 и 34.

«Утверждение 33. Поверхность любого шара в четыре раза больше площади его большого круга» (рисунок 4).

Большой круг — это круг, который делит шар на две равные половины. Данное утверждение (рисунок 4) можно пояснить следующим умозрительным образом. Если мы сложим четыре раза площадь SCM большого круга (SCM= πr²), то сумма будет равна площади поверхности всего шара SE (SE = 4πr²). Это означает, что потребовалось бы равное количество краски, чтобы покрасить поверхность шара и четыре больших круга.

«Утверждение 34. Любой шар [по объему] в четыре раза больше конуса, база которого равна большому кругу, а высота — радиусу шара».

В алгебраической записи показать данное соотношение объемов можно так (рисунок 5). Объем Vc конуса с радиусом r и высотой r равен

Источник

Архимед

Архимед (около 287 до н.э., Сиракузы, Сицилия — 212 до н.э., там же) — древнегреческий ученый, математик и механик, основоположник теоретической механики и гидростатики. Разработал предвосхитившие интегральное исчисление методы нахождения площадей, поверхностей и объемов различных фигур и тел.

В основополагающих трудах по статике и гидростатике (закон Архимеда) Архимед дал образцы применения математики в естествознании и технике. Архимеду принадлежит множество технических изобретений (архимедов винт, определение состава сплавов взвешиванием в воде, системы для поднятия больших тяжестей, военные метательные машины), завоевавших ему необычайную популярность среди современников.

Архимед получил образование у своего отца, астронома и математика Фидия, родственника сиракузского тирана Гиерона II, покровительствовавшего Архимеду. В юности провел несколько лет в крупнейшем культурном центре того времени Александрии Египетской, где познакомился с Эрастосфеном. Затем до конца жизни жил в Сиракузах.

Во время Второй Пунической войны (218-201), когда Сиракузы были осаждены войском римского полководца Марцелла, Архимед участвовал в обороне города, строил метательные орудия. Военные изобретения ученого (о них рассказывал Плутарх в жизнеописании полководца Марцелла) в течение двух лет помогали сдерживать осаду Сиракуз римлянами. Архимеду приписывается сожжение римского флота направленными через систему вогнутых зеркал солнечными лучами, но это недостоверные сведения. Гений Архимеда вызывал восхищение даже у римлян. Марцелл приказал сохранить ученому жизнь, но при взятии Сиракуз Архимед был убит.

Архимеду принадлежит первенство во многих открытиях из области точных наук. До нас дошло тринадцать трактатов Архимеда. В самом знаменитом из них — «О шаре и цилиндре» (в двух книгах) Архимед устанавливает, что площадь поверхности шара в 4 раза больше площади наибольшего его сечения; формулирует соотношение объемов шара и описанного около него цилиндра как 2:3 — открытие, которым он так дорожил, что в завещании просил поставить на своей могиле памятник с изображением цилиндра с вписанным в него шаром и надписью расчета (памятник через полтора века видел Цицерон). В этом же трактате сформулирована аксиома Архимеда (называемая иногда аксиомой Евдокса), играющая важную роль в современной математике.

Читайте также:  Федеральном информационном фонде по обеспечению единства измерений это

В трактате «О коноидах и сфероидах» Архимед рассматривает шар, эллипсоид, параболоид и гиперболоид вращения и их сегменты и определяет их объемы. В сочинении «О спиралях» исследует свойства кривой, получившей его имя (Архимедова спираль) и касательной к ней. В трактате «Измерение круга» Архимед предлагает метод определения числа π, который использовался до конца 17 в., и указывает две удивительно точные границы числа π:

В физике Архимед ввел понятие центра тяжести, установил научные принципы статики и гидростатики, дал образцы применения математических методов в физических исследованиях. Основные положения статики сформулированы в сочинении «О равновесии плоских фигур».

Архимед рассматривает сложение параллельных сил, определяет понятие центра тяжести для различных фигур, дает вывод закона рычага. Знаменитый закон гидростатики, вошедший в науку с его именем (Архимеда закон), сформулирован в трактате «О плавающих телах». Существует предание, что идея этого закона посетила Архимеда, когда он принимал ванну, с возгласом «Эврика!» он выскочил из ванны и нагим побежал записывать пришедшую к нему научную истину.

Закон Архимеда: на всякое тело, погруженное в жидкость, действует выталкивающая сила, направленная вверх и равная весу вытесненной им жидкости. Закон Архимеда справедлив и для газов.

F — выталкивающая сила;

P — сила тяжести, действующая на тело.

Архимед построил небесную сферу — механический прибор, на котором можно было наблюдать движение планет, Солнца и Луны (описан Цицероном, после гибели Архимеда планетарий был вывезен Марцеллом в Рим, где на протяжении нескольких веков вызывал восхищение); гидравлический орган, упоминаемый Тертуллианом как одно из чудес техники (изобретение органа некоторые приписывают александрийскому инженеру Ктесибию). Считается, что еще в юности, во время пребывания в Александрии, Архимед изобрел водоподъемный механизм (Архимедов винт), который был применен при осушении залитых Нилом земель. Он построил также прибор для определения видимого (углового) диаметра Солнца (о нем Архимед рассказывает в трактате «Псаммит») и определил значение этого угла. (И. Н. Осипенко)

Еще об Архимеде:

Архимед родился в 287 году до нашей эры в греческом городе Сиракузы, где и прожил почти всю свою жизнь. Отцом его был Фидий, придворный астроном правителя города Гиерона. Учился Архимед, как и многие другие древнегреческие ученые, в Александрии, где правители Египта Птолемеи собрали лучших греческих ученых и мыслителей, а также основали знаменитую, самую большую в мире библиотеку.

После учебы в Александрии Архимед вновь вернулся в Сиракузы и унаследовал должность своего отца.

В теоретическом отношении труд этого великого ученого был ослепляюще многогранным. Основные работы Архимеда касались различных практических приложений математики (геометрии), физики, гидростатики и механики. В сочинении «Параболы квадратуры» Архимед обосновал метод расчета площади параболического сегмента, причем сделал это за две тысячи лет до открытия интегрального исчисления. В труде «Об измерении круга» Архимед впервые вычислил число «пи» — отношение длины окружности к диаметру — и доказал, что оно одинаково для любого круга. Мы до сих пор пользуемся придуманной Архимедом системой наименования целых чисел.

Математический метод Архимеда, связанный с математическими работами пифагорейцев и с завершившей их работой Эвклида, а также с открытиями современников Архимеда, подводил к познанию материального пространства, окружающего нас, к познанию теоретической формы предметов, находящихся в этом пространстве, формы совершенной, геометрической формы, к которой предметы более или менее приближаются и законы которой необходимо знать, если мы хотим воздействовать на материальный мир.

Но Архимед знал также, что предметы имеют не только форму и измерение: они движутся, или могут двигаться, или остаются неподвижными под действием определенных сил, которые двигают предметы вперед или приводят в равновесие. Великий сиракузец изучал эти силы, изобретая новую отрасль математики, в которой материальные тела, приведенные к их геометрической форме, сохраняют в то же время свою тяжесть. Эта геометрия веса и есть рациональная механика, это статика, а также гидростатика, первый закон которой открыл Архимед (закон, носящий имя Архимеда), согласно которому на тело, погруженное в жидкость, действует сила, равная весу вытесненной им жидкости.

Однажды приподнявши ногу в воде, Архимед констатировал с удивлением, что в воде нога стала легче. «Эврика! Нашел’» — воскликнул он, выходя из своей ванны. Анекдот занятный, но, переданный таким образом, он не точен. Знаменитое «Эврика!» было произнесено не в связи с открытием закона Архимеда, как это часто говорят, но по поводу закона удельного веса металлов — открытия, которое также принадлежит сиракузскому ученому и обстоятельные детали которого находим у Витрувия.

Рассказывают, что однажды к Архимеду обратился Гиерон, правитель Сиракуз. Он приказал проверить, соответствует ли вес золотой короны весу отпущенного на нее золота. Для этого Архимед сделал два слитка: один из золота, другой из серебра, каждый такого же веса, что и корона. Затем поочередно положил их в сосуд с водой, отметил, на сколько поднялся ее уровень. Опустив в сосуд корону, Архимед установил, что ее объем превышает объем слитка. Так и была доказана недобросовестность мастера.

Читайте также:  Единый перечень средств измерений

Любопытен отзыв Цицерона, великого оратора древности, увидевшего «архимедову сферу» — модель, показывающую движение небесных светил вокруг Земли: «Этот сицилиец обладал гением, которого, казалось бы, человеческая природа не может достигнуть».

И, наконец, Архимед был не только великим ученым, он был, кроме того, человеком, страстно увлеченным механикой. Он проверяет и создает теорию пяти механизмов, известных в его время и именуемых «простые механизмы». Это — рычаг («Дайте мне точку опоры, — говорил Архимед, — и я сдвину Землю»), клин, блок, бесконечный винт и лебедка. Именно Архимеду часто приписывают изобретение бесконечного винта, но возможно, что он лишь усовершенствовал гидравлический винт, который служил египтянам при осушении болот. Впоследствии эти механизмы широко применялись в разных странах Мира. Интересно, что усовершенствованный вариант водоподъемной машины можно было встретить в начале XX века в монастыре, находившемся на Валааме, одном из северных российских островов. Сегодня же архимедов винт используется, к примеру, в обыкновенной мясорубке.

Изобретение бесконечного винта привело его к другому важному изобретению, пусть даже оно и стало обычным, — к изобретению болта, сконструированного из винта и гайки.

Тем своим согражданам, которые сочли бы ничтожными подобные изобретения, Архимед представил решительное доказательство противного в тот день, когда он, хитроумно приладив рычаг, винт и лебедку, нашел средство, к удивлению зевак, спустить на воду тяжелую галеру, севшую на мель, со всем ее экипажем и грузом.

Еще более убедительное доказательство он дал в 212 году до нашей эры. При обороне Сиракуз от римлян во время второй Пунической войны Архимед сконструировал несколько боевых машин, которые позволили горожанам отражать атаки превосходящих в силе римлян в течение почти трех лет. Одной из них стала система зеркал, с помощью которой египтяне смогли сжечь флот римлян. Этот его подвиг, о котором рассказали Плутарх, Полибий и Тит Ливий, конечно, вызвал большее сочувствие у простых людей, чем вычисление числа «пи» — другой подвиг Архимеда, весьма полезный в наше время для изучающих математику.

Архимед погиб во время осады Сиракуз —его убил римский воин в тот момент, когда ученый был поглощен поисками решения поставленной перед собой проблемы.

Любопытно, что, завоевав Сиракузы, римляне так и не стали обладателями трудов Архимеда. Только через много веков они были обнаружены европейскими учеными. Вот почему Плутарх, одним из первых описавший жизнь Архимеда, упомянул с сожалением, что ученый не оставил ни одного сочинения.

Плутарх пишет, что Архимед умер в глубокой старости. На его могиле была установлена плита с изображением шара и цилиндра. Ее видел Цицерон, посетивший Сицилию через 137 лет после смерти ученого. Только в XVI—XVII веках европейские математики смогли, наконец, осознать значение того, что было сделано Архимедом за две тысячи лет до них.

Архимед оставил многочисленных учеников. На новый путь, открытый им, устремилось целое поколение последователей, энтузиастов, которые горели желанием, как и учитель, доказать свои знания конкретными завоеваниями.

Первым по времени из этих учеников был александриец Ктесибий, живший во II веке до нашей эры. Изобретения Архимеда в области механики были в полном ходу, когда Ктесибий присоединил к ним изобретение зубчатого колеса.

Достижения в математике

Задача о трисекции угла.

Задача о делении угла на три равные части возникла из потребностей архитектуры и строительной техники. При составлении рабочих чертежей, разного рода украшений, многогранных колоннад, при строительстве, внутренней и внешней отделки храмов, надгробных памятников древние инженеры, художники встретились с необходимостью уметь делить окружность на три равные части, а это часто вызывало затруднения. Оригинальное и вместе с тем чрезвычайно простое решение задачи о трисекции угла дал Архимед.

Измерение круга.

Задача о квадратуре круга заключается в следующем: построить квадрат, площадь которого была бы равна площади данного круга. Большой вклад в решение этой задачи внес Архимед. В своем трактате «Измерение круга» он доказывает следующие три теоремы:

Теорема первая: Площадь круга равна площади прямоугольного треугольника, один из катетов которого равняется длине окружности круга, а другой радиусу круга.

Теорема вторая: Площадь круга относится к площади квадрата, построенного на диаметре, приблизительно, как 11:14.

Теорема третья: C-3d d, где С -длина окружности, а d-ее диаметр. Откуда, d M , движущейся равномерно по прямой d , которая вращается вокруг точки O , принадлежащей этой прямой. В начальный момент движения M совпадает с центром вращения O прямой.

Инфинитезимальные методы

В группу инфинитезимальных методов входят: метод исчерпывания, метод интегральных сумм, дифференциальные методы. Одним из самых ранних методов является метод интегральных сумм. Он применялся при вычислении площадей фигур, объемов тел, длин кривых линий. Для вычисления объема, тело вращения разбивается на части, и каждая часть аппроксимируется (приближается) описанными и вписанными телами, объемы которых можно вычислить. Теперь остается выбрать аппроксимирующие сверху и снизу тела таким образом, чтобы разность их объемов могла быть сделана сколь угодно малой.

Дифференциальным методом Архимед находил касательную к спирали.

Источник