Трансформатор тока измерение тангенса

Тангенс угла диэлектрических потерь, измерение показателя диэлектрических потерь

Диэлектрическими потерями называют энергию, рассеиваемую в электроизоляционном материале под воздействием на него электрического поля.

Способность диэлектрика рассеивать энергию в электрическом поле обычно характеризуют углом диэлектрических потерь , а также тангенсом угла диэлектрических потерь . При испытании диэлектрик рассматривается как диэлектрик конденсатора, у которого измеряется емкость и угол δ , дополняющий до 90° угол сдвига фаз между током и напряжением в емкостной цепи. Этот угол называется углом диэлектрических потерь .

При переменном напряжении в изоляции протекает ток, опережающий по фазе приложенное напряжение на угол ϕ (рис. 1), меньший 90 град. эл. на небольшой угол δ, обусловленный наличием активного сопротивления.

Рис. 1. Векторная диаграмма токов через диэлектрик с потерями: U — напряжение на диэлектрике; I — полный ток через диэлектрик; Ia,Ic — соответственно активная и емкостная составляющие полного тока; ϕ — угол фазного сдвига между приложенным напряжением и полным током; δ — угол между полным током и его емкостной составляющей

Отношение активной составляющей тока Ia к емкостной составляющей Ic называется тангенсом угла диэлектрических потерь и выражается в процентах:

В идеальном диэлектрике без потерь угол δ=0 и, соответственно, tg δ=0. Увлажнение и другие дефекты изоляции вызывают увеличение активной составляющей тока диэлектрических потерь и tgδ. Поскольку при этом активная составляющая растет значительно быстрее, чем емкостная, показатель tg δ отражает изменение состояния изоляции и потери в ней. При малом объеме изоляции удается обнаружить развитые местные и сосредоточенные дефекты.

Измерение тангенса угла диэлектрических потерь

Для измерения емкости и угла диэлектрических потерь (или tg δ ) эквивалентную схему конденсатора представляют как идеальный конденсатор с последовательно включенным активным сопротивлением (последовательная схема) или как идеальный конденсатор с параллельно включенным активным сопротивлением (параллельная схема).

Для последовательной схемы активная мощность:

Р=(U 2 ω tg δ )/( 1+tg 2 δ ) , tg δ = ω С R

Для параллельной схемы:

Р=U2 ω tg δ, tg δ = 1/ (ω С R )

где С — емкость идеального конденсатора; R — активное сопротивление.

Значение угла диэлектрических потерь обычно не превышает сотых или десятых долей единицы (поэтому угол диэлектрических потерь принято выражать в процентах), тогда 1+tg 2 δ ≈ 1, а потери для последовательной и параллельной схем замещения Р=U 2 ω tg δ, tg δ = 1/ (ω С R )

Значение потерь пропорционально квадрату приложенного к диэлектрику напряжения и частоте, что необходимо учитывать при выборе электроизоляционных материалов для аппаратуры высокого напряжения и высокочастотной.

С увеличением приложенного к диэлектрику напряжения до некоторого значения U о начинается ионизация имеющихся в диэлектрике газовых и жидкостных включений, при этом δ начинает резко возрастать за счет дополнительных потерь, вызванных ионизацией. При U1 газ ионизирован и уменьшается (рис. 2).

Рис. 2. Ионизационная кривая tg δ = f (U)

Значение тангенса угла диэлектрических потерь измеряют при напряжениях, меньших U о (обычно 3 — 10 кВ). Напряжение выбирается так, чтобы облегчить испытательное устройство при сохранении достаточной чувствительности прибора.

Значение тангенса угла диэлектрических потерь ( tg δ) нормируется для температуры 20 °С, поэтому измерение следует производить при температурах, близких к нормированной (10 — 20 о С). В этом диапазоне температур изменение диэлектрических потерь невелико, и для некоторых типов изоляции измеренное значение может без пересчета сравниваться с нормированным для 20 °С.

Для устранения влияния токов утечки и внешних электростатических полей на результаты измерения на испытуемом объекте и вокруг измерительной схемы монтируют защитные приспособления в виде охранных колец и экранов. Наличие заземленных экранов вызывает появление паразитных емкостей; для компенсации их влияния обычно применяют метод защитного — напряжения, регулируемого по значению и фазе.

Наибольшее распространение получили мостовые схемы измерения емкости и тангенса угла диэлектрических потерь .

Местные дефекты, обусловленные сквозными проводящими мостиками, лучше обнаруживаются измерением сопротивления изоляции на постоянном токе. Измерение tg δ производят мостами переменного тока типов МД-16, Р5026 (Р5026М) или Р595, которые являются по существу измерителями емкости (мост Шеринга). Принципиальная схема моста приведена на рис. 3.

В этой схеме определяются параметры изоляционной конструкции, соответствующие схеме замещения с последовательным соединением конденсатора без потерь С и резистора R, для которой tg δ=ωRC, где ω — угловая частота сети.

Процесс измерения заключается в уравновешивании (балансировке) мостовой схемы поочередной регулировкой сопротивления резистора и емкости магазина конденсаторов. При равновесии моста, которое индицируется измерительным прибором Р, выполняется равенство. Если значение емкости С выразить в микрофарадах, то при промышленной частоте сети f = 50 Гц будем иметь ω=2πf = 100π и, следовательно, tg δ % = 0,01πRC.

П ринципиальная схема моста Р525 приведена на рис. 3.

Рис. 3. Принципиальная схема измерительного моста переменного тока Р525

Измерение возможно на напряжение до 1 кВ и выше 1 кВ (3—10 кВ) в зависимости от класса изоляции и емкости объекта. В качестве источника питания может служить измерительный трансформатор напряжения. Мост используется с внешним воздушным конденсатором С0. Принципиальная схема включения аппаратуры при измерении tg δ показана на рис. 4.

Рис. 4. Схема включения испытательного трансформатора при измерении тангенса угла диэлектрических потерь: S — рубильник; TAB — регулировочный автортрансформатор; SAC — переключатель полярности выводов испытательного трансформатор Т

Применяют две схемы включения моста: так называемую нормальную, или прямую, в которой измерительный элемент Р включен между одним из электродов испытуемой изоляционной конструкции и землей, и перевернутую, где он включен между электродом испытуемого объекта и выводом высокого напряжения моста. Нормальную схему применяют, когда оба электрода изолированы от земли, перевернутую — когда один из электродов наглухо соединен с землей.

Необходимо помнить, что в последнем случае отдельные элементы моста будут находиться под полным испытательным напряжением. Измерение возможно на напряжении до 1 кВ и выше 1 кВ (3—10 кВ) в зависимости от класса изоляции и емкости объекта. В качестве источника питания может служить измерительный трансформатор напряжения.

Мост используется с внешним образцовым воздушным конденсатором. Мост и необходимую аппаратуру размещают в непосредственной близости к испытуемому объекту и устанавливают ограждение. Провод, идущий от испытательного трансформатора Т к образцовому конденсатору С, а также соединительные кабели моста Р, находящиеся под напряжением, должны быть удалены от заземленных предметов не менее чем на 100—150 мм. Трансформатор Т и его регулировочное устройство ТАВ (ЛАТР) должны отстоять от моста не менее чем на 0,5 м. Корпуса моста, трансформатора и регулирующего устройства, а также один вывод вторичной обмотки трансформатора обязательно заземляют.

Показатель tg δ часто измеряется в зоне действующего РУ, а, поскольку между объектом испытания и элементами РУ всегда имеется емкостная связь, через испытуемый объект протекает ток влияния. Этот ток, зависящий от напряжения и фазы влияющего напряжения и суммарной емкости связи, может привести к неправильной оценке состояния изоляции, особенно объектов небольшой емкости, в частности вводов (до 1000—2000 пФ).

Уравновешивание моста производится путем многократного регулирования элементов схемы моста и защитного напряжения, для чего индикатор равновесия включается то в диагональ, то между экраном и диагональю. Мост считается уравновешенным, если при обоих включениях индикатора равновесия ток через него отсутствует.

В момент равновесия моста

г де f — частота переменного тока, питающего схему

Постоянное сопротивление R4 выбирается равным 10 4 / π Ом. В этом случае tg δ = С4, где емкость С4 выражена в микрофарадах.

Если измерение проводилось на частоте f’ , отличной от 50Гц, то tg δ = (f’/50)C4

Когда измерение тангесна угла диэлектрических потерь производится на небольших отрезках кабеля или образцах изоляционных материалов, из-за их малой емкости необходимы электронные усилители (например, типа Ф-50-1 с коэффициентом усиления около 60). Следует иметь в виду, что мост учитывает потери в проводе, соединяющем мост с испытуемым объектом, и измеренное значение тангенса угла диэлектрических потерь будет больше действительного на 2 π fRzCx , где Rz — сопротивление провода.

При измерениях по схеме перевернутого моста регулируемые элементы измерительной схемы находятся под высоким напряжением, поэтому регулирование элементов моста либо производят и а расстоянии с помощью изолирующих штанг, либо оператора помещают в общем экране с измерительными элементами.

Тангенс угла диэлектрических потерь трансформаторов и электрических машин измеряют между каждой обмоткой и корпусом при заземленных свободных обмотках.

Влияния электрического поля

Различают электростатические и электромагнитные влияния электрического поля. Электромагнитные влияния исключаются полным экранированием. Измерительные элементы размещают в металлическом корпусе (например, мосты Р5026 и Р595). Электростатические влияния создаются находящимися под напряжением частями РУ и ЛЭП. Вектор влияющего напряжения может занимать любое положение по отношению к вектору испытательного напряжения.

Известны несколько способов уменьшения влияния электростатических полей на результаты измерения tg δ:

отключение напряжения, создающего влияющее поле. Этот способ наиболее эффективен, но не всегда применим по условиям энергоснабжения потребителей;

вывод объекта испытания из зоны влияния. Цель достигается, но транспортировка объекта нежелательна и не всегда возможна;

измерение на частоте, отличной от 50 Гц. Применяется редко, так как требует специальной аппаратуры;

расчетные методы исключения погрешности;

метод компенсации влияний, при котором достигается совмещение векторов испытательного напряжения и ЭДС влияющего поля.

С этой целью в цепь регулирования напряжения включают фазорегулятор и при отключенном объекте испытания добиваются равновесия моста. При отсутствии фазорегулятора эффективной мерой может явиться питание моста от того напряжения трехфазной системы (с учетом полярности), при котором результат измерения будет минимальным. Часто бывает достаточно выполнить измерение четыре раза при разных полярностях испытательного напряжения и подключении гальванометра моста; Применяются как самостоятельно, так и для уточнения результатов, полученных другими методами.

Источник

Как измерять тангенс угла диэлектрических потерь в трансформаторах, формулы и норма

Измерение тангенса угла различных диэлектрических потерь трансформатора – необходимая процедура, влияющая на эффективность работы оборудования. Потерями диэлектрического типа называют энергию, которая ушла под воздействием работы электрического поля. При этом способность механизма освобождать энергию характеризуется углом или его тангенсом диэлектрических потерь (зависит от ситуации и схемы измерения).

Как определить тангенс угла диэлектрических потерь

В силовых трансформаторах тангенс угла рассчитывается как диэлектрик конденсатора. Берется в расчет угол, который дополняет до прямого, основной угол между сдвигами фаз тока и напряжения.

Расположенный внутри этих плоскостей угол и является искомым диэлектрических потерь.

Для измерения принимают, что конденсатор относится к идеальному типу. Он может быть включен последовательным образом, то есть в последовательно включенным сопротивлением активной нагрузки, или по параллельной схеме. Для первой мощность составит Р=(U2ωtgδ)/(1+tg2δ), а для второй — Р=U2ωtgδ. Угол по этим расчетам вычислить несложно, зная емкость конденсатора и показатели сопротивления. Обычно значение его не превышает десятых или сотых долей единицы, определяется в графиках процентами. При этом увеличиваются, если увеличивается напряжение и частота работы. Для снижения коэффициента используются изоляционные материалы.

Что такое мостовая схема

Мостовая схема представляет собой тип соединения, при котором есть мостовая составляющая между двумя точками, которая не соединяет непосредственным образом источники. При равных значениях сопровождения в диагонали тока нет, поэтому удается добиться равнозначности.

Какие значения используют для расчёта

Мостовые схемы дают возможность проводить измерения различных по типам приборов с показателями от 10-8 до 1010 Ом, с высокой точностью (обычно погрешность вычислений составляет до двух девятых процента). Для расчетов необходимы значения сопротивлений отдельных и полного, сопротивления.

Формула расчета

Обычно мостовые схемы используются для вычисления характеристик конденсаторов с минимальными энергетическим тратам. Равновесие мостов рассчитывается по стандартной формуле:

Искомый тангенс, если рассчитывать по формуле равновесия, составит tgδ=ωCxRx=ωCNRN.

Что способствует повышению диэлектрических потерь

Норма диэлектрических потерь прописывается в инструкции к определенному прибору. Есть факторы, вызывающие колебания и отклонения от нормы (обычно это повышение). Различают несколько типов:

  • за чет электропроводности сквозного типа;
  • ионизирующие;
  • резонансные;
  • обусловленные поляризацией.

Если частотный и температурный график зависимости понятен интуитивно, то дело обстоит иначе с другими факторами, приводящими к негативному явлению. Обратите внимание, что нагревание трансформаторного масла приводит к более интенсивному смещению, иногда даже смещаются заряды диэлектрика. При стабильных низких показателях температуры вязкость не меняется, следовательно, нет смещения диполей.

А вот увеличение частоты обуславливает улучшенную проводимость. Показатели тока емкостного могут смещать диполи, при больших показателях уменьшается трение. Рост угла вызывает и проявление влаги в любом виде (это может быть и газообразное состояние). Приводит к повышению показателя ионизация, при этом увеличивается рост напряжения.

Факторы, которые увеличивают тангенс угла диэлектрических потерь

Специалисты выделяют несколько факторов, которые приводят к увеличению тангенса. На первый взгляд они кажутся несущественными, но в итоге обуславливают эффективность работы трансформатора.

Наличие мыла в маслах

Мыло в маслах, которые используются для смазки обмоток трансформатора, приводят к изменению численного показателя. Это объясняется тем, что мыло провоцирует дополнительное увлажнение, приводящие к снижению удельного сопротивления. Нюансы увеличивают проводимость, что влияет на рост тангенса.

Образования кислых продуктов старения

Кислотные продукты старения вызывают порчу вторичной и первичной обмотки. В свою очередь уменьшается проводимость, образуются дополнения на кристаллических решетках. Изменение в худшую сторону физико-технических характеристик диэлектрика приводит у увеличению потерь.

Одной из важнейших задач при использовании транспорта является уменьшение угла. Это позволит оптимизировать работы и избежать траты энергии в холостую.

Источник

Измерение тангенса угла диэлектрических потерь и емкости трансформаторов тока

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

ПО ПРОВЕДЕНИЮ

ИСПЫТАНИЙ ИЗМЕРИТЕЛЬНЫХ ТРАНСФОРМАТОРОВ

Общие положения

1.1 Настоящие методические указания определяют порядок оценки состояния измерительных трансформаторов тока и напряжения на соответствие техническим нормам, установленным в нормативно-технических документах в соответствии со «Сборником методических пособий по контролю состояния электрооборудования, Москва СПО ОРГРМР 1997 г.».

1.2 Испытание трансформаторного масла производиться в соответствии с «Методическими указаниями по поведению испытаний масла трансформаторного». Тепловизионный контроль проводиться в соответствии с «Методическими указаниями по поведению тепловизионного контроля». Измерение сопротивления постоянному току проводится в соответствии с «Методическими указаниями по поведению измерений сопротивления постоянному току».

1.1 Объемы и сроки проведения различных видов испытаний, допустимые значения характеристик испытываемого оборудования, устанавливаются на основании РД 34.45-51.300-97 и утвержденных многолетних графиков.

1.2 Порядок выполнения работы определяется соответствующей технологической картой.

1.3 Знание настоящих методических указаний обязательно для следующих работников Службы изоляции и испытаний и измерений: начальник, инженер, электромонтёр по испытаниям и измерениям

Нормативные ссылки

В настоящих методических указаниях использованы ссылки на следующие документы:

ÿ Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок ПОТ Р М-016-2001 РД 153-34.0-03.150-00;

ÿ Объем и нормы испытаний электрооборудования РД 34.45-51.300-97;

ÿ Инструкция по применению и испытанию средств защиты, используемых в электроустановках. СО 153-34.03.603-2003;

ÿ Правила технической эксплуатации электрических станций и сетей Российской Федерации: Утверждены Приказом Министерства энергетики Российской Федерации от 19 июня 2003, № 229;

ÿ Правила устройства электроустановок – издание 6-е;

ÿ Правила устройства электроустановок – издание 7-е;

ÿ Сборник методических пособий по контролю состояния электрооборудования, Москва СПО ОРГРМР 1997 г.

Измерение сопротивления изоляции

4.1 При проведении испытаний следует руководствоваться требованиями «Методических указаний по проведению измерения сопротивления изоляции»

4.2 Измерение сопротивления изоляции первичных обмоток измерительных трансформаторов тока и напряжения производится мегаомметром на напряжение 2500 В.

4.3 При измерении сопротивления изоляции обмоток высокого напряжения выводы вторичных обмоток (две и более, в зависимости от типа и номинального напряжения измерительного трансформатора) и цоколь (корпус) измерительного трансформатора должны быть объединены, заземлены и подсоединены к выводу»-» мегаомметра. Вывод мегаомметра «Rx» подсоединяется к первичной обмотке (выводы «Л1» или «Л2» для трансформаторов тока, выводы «А» или «Х» для трансформаторов напряжения).

4.4 Сопротивление изоляции вторичных обмоток ТТ и ТН измеряется мегаомметрами на напряжение 1000 В. Измерение производится на каждой обмотке по отношению к корпусу и присоединенным к нему остальным обмоткам. Вывод мегаомметра «Rx» присоединяется к выводам проверяемой обмотки, а вывод «-» мегаомметра – к выводам остальных обмоток, соединенных с корпусом (цоколем измерительного трансформатора) и заземленных.

4.5 За сопротивление изоляции принимается 60-секундное значение сопротивления R60, зафиксированное на шкале мегомметра через 60 секунд. Причем отсчет времени надо производить после достижения нормальной частоты вращения генератора (для мегаомметров типа МРО).

4.6 Схемы измерения сопротивления изоляции указаны на рис 1.

4.7 Допустимые значения сопротивления изоляции трансформаторов тока указаны в табл. 1, трансформаторов напряжения в табл. 2.

4.8 Оценка и сравнение сопротивления изоляции должно производиться при одной и той же температуре изоляции или близких ее значениях. Если это невозможно, должен применяться температурный перерасчет в соответствии с инструкциями по эксплуатации данного измерительного трансформатора.

Рис. 1. Схемы измерения сопротивления изоляции измерительных трансформаторов.

Таблица 1

Класс напряжения кВ Допустимые сопротивления изоляции трансформаторов тока, МОм, не менее
Основная изоляция Измеритель-ный вывод Наружные слои Вторичные обмотки* Промежуточные обмотки
3-35 1000/500 3000/1000 — — — — 50(1)/50(1) 50(1)/50(1) — —

Таблица 2

Класс напряжениякВ Допустимые сопротивления изоляции трансформаторов напряжения, МОм, не менее
Основная изоляция Вторичные обмотки* Связующие обмотки
3-35 50(1) 50(1)

* Сопротивления изоляции вторичных обмоток приведены:

без скобок — при отключенных вторичных цепях,

в скобках — с подключенными вторичными цепями.

В числителе указаны значения сопротивления изоляции трансформаторов тока при вводе в эксплуатацию, в знаменателе — в процессе эксплуатации.

Измерение тангенса угла диэлектрических потерь и емкости трансформаторов тока

5.1 При проведении испытаний следует руководствоваться требованиями «Инструкции по технической эксплуатации передвижной электролаборатории ЛВИ-3 (или ЭТЛ-35)».

5.2 Измерение угла диэлектрических потерь основной изоляции производится у маслонаполненных ТТ всех типов на напряжении 10 кВ.

5.3 Измерение тангенса угла диэлектрических потерь производится с использованием «измерителя параметров изоляции Вектор»

5.4 Переключатель полярности напряжения используется при наличии помех от токов влияния электрического поля.

5.5 Для получения достоверных или приемлемых для анализа и оценки состояния изоляции результатов измерения, исключение погрешности от токов влияния электрических полей достигается путем измерения tgδ и емкости при разных полярностях напряжения испытательной установки (метод двух измерений) или совмещением фазы тока испытательной установки с фазой тока влияния (метод совмещения фаз).

5.6 В электроустановках с относительно невысоким уровнем влияния электрического поля удается получать достаточно приемлемые результаты при измерениях со сменой полярности испытательного напряжения.

5.7 При применении метода двух измерений истинные значения tgδ и емкости определяются расчетным путем по формуле:

tgδ = 0,5(tgδ΄ + tgδ΄΄),

где одним штрихом обозначены результаты первого измерения, а двумя штрихами результаты второго измерения со сменой фазы на 180˚.

5.8 Расчеты по методу двух измерений можно применять, если оба измеренных значения tgδ положительны. Если одно из измеренных tgδ имеет отрицательное значение, следует методом подбора фазы испытательного напряжения добиться положительного значения обоих измерений. В тех случаях, когда это мероприятие не дает нужного результата, следует применить метод совмещения фаз.

5.9 Схема измерения угла диэлектрических потерь указана на рис. 2.

5.10 Допустимые значения tgd трансформаторов тока указаны в табл. 3.

5.11 Оценка и сравнение tgd изоляции должно производиться при одной и той же температуре изоляции или близких ее значениях. Если это невозможно, должен применяться температурный перерасчет в соответствии с инструкциями по эксплуатации данного измерительного трансформатора.

Рис. 2. Измерение угла диэлектрических потерь трансформатора тока.

Таблица 3

Тип изоляции Предельные значения tgd, %, основной изоляции трансформаторов тока на номинальное напряжение, кВ, приведенные к температуре 20 °С
Бумажно-бакелитовая Основная бумажно-масляная и конденсаторная изоляция 2,5/8,0 2,5/4,5 2,0/5,0 2,0/3,0

В числителе указаны значения tgd основной изоляции трансформато­ров тока при вводе в эксплуатацию, в знаменателе — в процессе эксплуатации.

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector