Меню

Цель измерения получить характеристику данной величины



Измерение величины

Сравнивая величины непосредственно мы можем установить их равенство или неравенство. Например, сравнивая полоски по длине наложением или приложением, можно установить, равны они или нет:

— если концы совпадают, то полоски имеют равную длину;

— если левые концы совпадают, а правый конец нижней полоски выступает, то ее длина больше.

Для получения более точного результата сравнения величины измеряют.

Измерение заключается в сравнении данной величины с неко­торой величиной, принятой за единицу.

Измеряя массу арбуза на весах, сравнивают ее с массой гири.

Измеряя длину комнаты шагами, сравнивают ее с длиной шага.

Процесс сравнения зависит от рода величины: длину измеря­ют с помощью линейки, массу — используя весы. По каким бы ни был этот процесс, в результате измерения получается определен­ное число, зависящее от выбранной единицы величины.

Цель измерения – получить численную характеристику дан­ной величины при выбранной единице.

Если дана величина а и выбрана единица величины е, то в ре­зультате измерения величины а находят такое действительное число х, что а = х • е. Это число х называют численным значе­нием величины а при единице величины е.

1) Масса дыни 3кг.

3кг = 3∙1 кг, где 3 – численное значение массы дыни при единице массы 1кг.

2) Длина отрезка 10см.

10см = 10 • 1см, где 10 – численное значение длины отрезка при единице длины 1см.

Величины, определяемые одним численным значением, назы­ваются скалярными (длина, объем, масса и др.). Существуют еще векторные величины, которые определяются численным значе­нием и направлением (скорость, сила и др.).

Измерение позволяет свести сравнение величин к сравнению чисел, а действия с величинами – к действиям над числами.

1. Если величины аиb измерены при помощи единицы ве­личины е, то отношения между величинами аиbбудут такими же, как и отношения между их численными значениями (и наобо­рот):

2. Если величины аиbизмерены при помощи единицы вели­чины е, то чтобы найти численное значение суммы + b), достаточно сложить численные значения величин а и b.

Пусть а=т • е, b=п • е, с=k • е, тогда а + b=с т + п = k.

Например, для определения массы купленного картофеля, наcыпанного в два мешка, необязательно ссыпать их вместе и взве­шивать, достаточно сложить численные значения массы каждого мешка.

3. Если величины а и b таковы, что b = х • а , где х – положитель-ное действительное число, и величина а измерена при помощи единицы величины е, то, чтобы найти численное значение величины b при единице е, достаточно число х умножить на численное значение величины а.

Пусть а = т • е, b = х • а , тогда b =(х • т ) • е.

Пример: «Длина голубой полоски 2 дм. Длина желтой в 3 раза больше. Какова длина желтой полоски?»

2дм • 3 = (2 • 1дм) • 3 = (2 • 3) • 1дм = 6 • 1дм = 6дм .

Дошкольники знакомятся с измерением величин сначала с по­мощью условных мерок. В процессе практической деятельности они осознают взаимосвязь величины и ее численного значения, а также численного значения величины от выбранной единицы из­мерения.

«Измерь шагами длину дорожки от дома до дерева, а теперь от дерева до забора. Какова длина всей дорожки?».

(Дети складывают величины, пользуясь их численными зна­чениями.)

— Какова длина дорожки, измеренная шагами Маши? (5 ша­гов Маши.)

— Какова длина этой же дорожки, измеренная шагами Коли?
(4 шага Коли.)

— Почему мы измеряли длину одной и той же дорожки, а получили разные результаты?

(Длина дорожки измерена разными шагами. Шаги Коли длин­нее, поэтому их получилось меньше).

Численные значения длины дороги отличаются из-за приме­нения разных единиц измерения.

Потребность в измерении величин возникла в практической деятельности человека в процессе его развития. Результат измере­ния выражается числом и дает возможность глубже осознать суть понятия числа. Сам процесс измерения учит детей логически мыс­лить, формирует практические навыки, обогащает познавательную деятельность. В процессе измерения дети могут получить не толь­ко натуральные числа, но и дроби.

Дата добавления: 2015-10-19 ; просмотров: 1913 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Цель, виды и методы измерений

Под целью измерения величины понимается получение значения этой величины в форме, наиболее удобной для пользования.

Виды измерения получаются в результате классификации измерений по определенным признакам (основаниям). Измерения могут быть классифицированы:

по способу получения результата измерения — прямые (измерение, при котором искомое значение измеряемой величины получают непосредственно, например измерение массы на весах) икосвенные (измерение,прикотором искомоезначение измеряемой величины получают на основании результатов прямых измерений других физических величин. Например, твердость металлов определяют путем измерения линейной величины -глубины отпечатка стального шарика определенного диаметра, который вдавливается поверхность металла с определенной нагрузкой);

Читайте также:  Средства измерения для метрологического контроля

по характеристике точности — равноточные (измерения выполняются одинаковыми по точности СИ и в одних и тех же условиях) инеравноточные (измерения выполняются несколькими различными по точности СИ или в разных условиях);

по характеру изменения измеряемой величины — статические (измеряемая величина практически постоянна) идинамические (например, напряжение переменного тока);

по количеству измерительной информации — однократные имногократные,

по отношению к основным единицам измерений — абсолютные, при которых используются прямое измерение величины и физическая константа (пример: сила измеряется массой, умноженной на величину ускорения свободного падения) иотносительные, когда измеряется отношение величины к одноименной величине, выполняющей роль единицы.

Метод измерений — прием или совокупность приемов сравнения измеряемой физической величины с ее единицей в соответствии с реализованным принципом измерений.

Методы измерений классифицируют по нескольким признакам.

По общим приемам получения результатов измерений различают:прямой икосвенный метод измерений. Первый реализуется при прямом измерении, второй — при косвенном измерении. Эти виды измерений описаны выше.

По условиям измерения различаютконтактный и бесконтактный методы измерений.

Контактный метод измерений основан на том, что чувствительный элемент прибора приводится в контакт с объектом измерения (например, измерение температуры тела термометром). Бесконтактный метод измерений, основан на том, что чувствительный элемент прибора не приводится в контакт с объектом измерения (примеры: измерение расстояния до объекта радиолокатором, измерение температуры в доменной печи пирометром).

Исходя из способа сравнения измеряемой величины с ее единицей, различают методы непосредственной оценкиметод сравнения

При методе непосредственной оценки определяют значение величины непосредственно по отсчетному устройству показывающего СИ (термометр, вольтметр и пр.). Мера, отражающая единицу измерения, в измерении не участвует. Ее роль играет СИ шкала, проградуированная при его производстве с помощью достаточно точных СИ.

При методе сравнения с мерой измеряемую величину сравнивают с величиной, воспроизводимой мерой (измерение массы на рычажных весах с уравновешиванием гирями).

В отличие от таких технических средств, как индикаторы, предназначенных для обнаружения физических свойств (компас, лакмусовая бумага, осветительная электрическая лампочка), СИ позволяют не только обнаружить физическую величину, но и измерить ее, т.е. сопоставить неизвестный размер с известным. Если физическая величина известного размера есть в наличии, то она непосредственно используется для сравнения (измерение плоского угла транспортиром, массы — с помощью весов с гирями).

Если же физической величины известного размера в наличии нет, то сравнивается реакция (отклик) прибора на воздействие измеряемой величины с проявившейся ранее реакцией на воздействие той же величины, но известного размера (измерение силы тока амперметром). Для облегчения сравнения еще на стадии изготовления прибора отклик на известное воздействие фиксируют на шкале отсчетного устройства, после чего наносят на шкалу деления в кратном и дольнем отношении. Описанная процедура называется градуировкой шкалы. При измерении она позволяет по положению указателя получать результат сравнением непосредственно по шкале отношений. Итак, СИ (за исключением некоторых мер — гирь, линеек) в простейшем случае производят две операции: обнаружение физической величины; сравнение неизвестного размера с известным или сравнение откликов на воздействие известного и неизвестного размеров.

Другими отличительными признаками СИ являются, во-первых, «умение» хранить (или воспроизводить) единицу физической величины; во-вторых, неизменность размера хранимой единицы. Если же размер единицы в процессе измерений изменяется более, чем установлено нормами, то с помощью такого средства невозможно получить результат с требуемой точностью. Отсюда следует, что измерять можно только тогда, когда техническое средство, предназначенное для этой цели, может хранить единицу, достаточно неизменную по размеру (во времени).

СИ можно классифицировать по двум признакам:

По конструктивному исполнению СИ подразделяют на меры, измерительные преобразователи; измерительные приборы, измерительные установки, измерительные системы.

Меры физической величины — СИ, предназначенные для воспроизведения и (или) хранения физической величины одного или нескольких заданных размеров. Различают меры: однозначные (гиря 1 кг, калибр, конденсатор постоянной емкости); многозначные (масштабная линейка, конденсатор переменной емкости); наборы мер (набор гирь, набор калибров). Набор мер, конструктивно объединенных в единое устройство, в котором имеются приспособления для их соединения в различных комбинациях, называется магазином мер. Примером такого набора может быть магазин электрических сопротивлений, магазин индуктивностей. Сравнение с мерой выполняют с помощью специальных технических средств — компараторов (рычажные весы, измерительный мост и т.д.).

Читайте также:  Точки измерения температуры бетона

К однозначным мерам можно отнести стандартные образцы (СО). Существуют стандартные образцы состава и стандартные образцы свойств.

СО состава вещества (материала) — стандартный образец с установленными значениями величин, характеризующих содержание определенных компонентов в веществе (материале).

СО свойств веществ (материалов) — стандартный образец с установленными значениями величин, характеризующих физические, химические, биологические и другие свойства.

Новые СО допускаются к использованию при условии прохождения ими метрологической аттестации. Указанная процедура — это признание этой меры, узаконенной для применения на основании исследования СО. Метрологическая аттестация проводится органами метрологической службы.

Примером СО состава является СО состава углеродистой стали определенной марки. Примером СО свойств является уже упомянутая выше шкала твердости, которая представляет собой набор 10 эталонных минералов для определения числа твердости по условной шкале. Каждый последующий минерал этой шкалы является более твердым,

чем предыдущий. Эту шкалу используют для оценки относительной твердости стекла и керамики.

В зависимости от уровня признания (утверждения) и сферы применения различают категории СО — межгосударственные, государственные, отраслевые и СО предприятия (организации). в практике метрологическими службами используются СО разной категории для выполнения различных задач.

Измерительные преобразователи (ИП)- СИ, служащие для преобразования измеряемой величины в другую величину или сигнал измерительной информации, удобный для обработки, хранения, дальнейших преобразований. По характеру преобразования различают аналоговые (АП), цифро-аналоговые (ЦАП), аналого-цифровые (АЦП) преобразователи. По месту в измерительной цепи различают первичные (ИП, на который непосредственно воздействует измеряемая физическая величина) и промежуточные (ИП, занимающий место в измерительной цепи после первичного ИП) преобразователи.

Конструктивно обособленный первичный ИП, от которого поступают сигналы измерительной информации, является датчиком. Датчик может быть вынесен на значительное расстояние от СИ, принимающего его сигналы. Например, датчики запущенного метеорологического радиозонда передают информацию о температуре, давлении, влажности и других параметрах атмосферы.

Если преобразователи не входят в измерительную цепь и их метрологические свойства не нормированы, то они не относятся к измерительным. Таковы, например, силовой трансформатор в радиоаппаратуре, термопара в термоэлектрическом холодильнике.

Измерительный прибор— СИ, предназначенное для получения значений измеряемой физической величины в установленном диапазоне. Прибор как правило содержит устройство для преобразования измеряемой величины и ее индикации в форме, наиболее доступной для восприятия. Во многих случаях устройство для индикации имеет шкалу со стрелкой или другим устройством, диаграмму с пером или цифроуказатель, с помощью которых могут быть произведены отсчет или регистрация значений физической величины. в случае сопряжения прибора и мини-ЭВМ отсчет может производиться с помощью дисплея.

По степени индикации значений измеряемой величины измерительные приборы подразделяют на показывающие и регистрирующие. Показывающий прибор допускает только отсчитывание показаний измеряемой величины (микрометр, аналоговый или цифровой вольтметр). в регистрирующем приборе предусмотрена регистрация показаний — в форме диаграммы путем печатания показаний (термограф, разрывная машина с пишущим элементом, измерительный прибор, сопряженный с ЭВМ, дисплеем и устройством для печатания показаний).

Измерительная установка — совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей и других устройств, предназначенных для измерений одной или нескольких физических величин и расположенных в одном месте. Примером является установка для измерения удельного сопротивления электротехнических материалов, установка для испытаний магнитных материалов. Измерительную установку, предназначенную для испытаний каких-либо изделий, иногда называют испытательным стендом.

Измерительная система— совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей, ЭВМ и других технических средств, размещенных в разных точках контролируемого пространства с целью измерений одной или нескольких физических величин, свойственных этому пространству. Примером может служить радионавигационная система для определения местоположения судов, состоящая из ряда измерительных комплексов, разнесенных в пространстве на значительном расстоянии друг от друга.

«Лицо» современной измерительной техники определяется автоматизированными измерительными системами (АИС), информационно-измерительными системами (ИИС), измерительно-вычислительными комплексами (ИВК). Типичная ИИС содержит в своем составе ЭВМ и обеспечивает сбор, обработку и хранение информации, поступающей от многочисленных датчиков, характеризующих состояние объекта или процесса. При этом результаты измерений выдаются как по заранее заданной программе, так и по запросу.

Применение новейших измерительных систем позволяет не только ускорить процесс измерения (что немаловажно для скоропортящихся товаров), но и дать более объективную характеристику качества конкретной партии товара.

По метрологическому назначению все СИ подразделяются на два вида — рабочие СИ и эталоны.

Рабочие СИ (РСИ) предназначены для проведения технических измерений. По условиям применения они могут быть:

лабораторными, используемыми при научных исследованиях, проектировании технических устройств, медицинских измерениях;

Читайте также:  Приборы измерение толщины металла автомобиля

производственными, используемыми для контроля характеристик технологических процессов, контроля качества готовой продукции, контроля отпуска товаров;

полевыми, используемыми непосредственно при эксплуатации таких технических устройств, как самолеты, автомобили, речные и морские суда и др.

К каждому виду РСИ предъявляются специфические требования: к лабораторным — повышенная точность и чувствительность; к производственным — повышенная стойкость к ударно-вибрационным

нагрузкам, высоким и низким температурам; к полевым — повышенная стабильность в условиях резкого перепада температур, высокой влажности.

Эталоны являются высокоточными СИ, а поэтому используются для проведения метрологических измерений в качестве средств передачи информации о размере единицы. Размер единицы передается «сверху вниз», от более точных СИ к менее точным «по цепочке»: первичный эталон — вторичный эталон — рабочий эталон 0-го разряда — рабочий эталон 1-го разряда. — рабочее средство измерений. Систему передачи образно представляют в виде пирамиды (см. рис. 2): в основании находится совокупность рабочих СИ; вершину занимает государственный эталон; на промежуточных плоскостях — рабочие эталоны различных разрядов. От основания к вершине снижается погрешность СИ, растет их стоимость, уменьшается «тираж» изготовления.

Рис. 2. Схема системы передачи размера величины

Передача размера осуществляется в процессе поверки СИ. Целью поверки является установление пригодности СИ к применению. Слово «поверка» имеет общий корень со словом «верить», поэтому его не следует путать с «проверкой». Это специфический метрологический термин, который определяется следующим образом:

Поверка СИ— совокупность операций, выполняемых органом государственной метрологической службы (другими уполномоченными на то органами, организациями) с целью определения и подтверждения соответствия СИ установленным техническим требованиям.

Поверку СИ не следует путать с калибровкой.

Калибровка средства измерения— совокупность операций, выполняемых с целью определения и подтверждения действительных значений метрологических характеристик и (или) пригодности к применению средства измерений, не подлежащего государственному метрологическому контролю и надзору.

Калибровка выполняет две функции:

— определение и подтверждение действительных значений метрологических характеристик СИ;

— определение и подтверждение пригодности СИ к применению. В первом случае лаборатория, калибрующая по заявке (договору)

заказчика СИ, не делает вывода о пригодности прибора. Установленные характеристики могут отличаться от паспортных, и только в компетенции заказчика определять, в каких условиях и для каких целей можно и нужно использовать данные СИ.

Во втором случае СИ признается пригодным, если действительное значение его метрологических характеристик соответствует техническим требованиям, установленным в НД или заказчиком. Вывод о пригодности СИ в этом случае делает калибровочная лаборатория.

В решаемых на практике измерительных задачах калибровка может сводиться только к проверке пригодности СИ, т.е. его работоспособности. в частности, требуется знать не действительные значения измеряемой величины, нужно лишь констатировать наличие величины измеряемого сигнала определенного уровня. Примером может служить калибровка устройств — сигнализаторов предельного значения температуры.

В сигнализаторах, имеющих одну или несколько сигнальных лампочек, включение или выключение последних свидетельствует о достижении предельных значений величины. в устройствах, имеющих шкалу в виде нескольких цветовых секторов (подобных посуде фирмы «Цептер»), положение указательной стрелки в пределах конкретного сектора означает определенное состояние объекта измерений.

Соподчинение СИ, участвующих в передаче размера единицы от эталона к РСИ, устанавливается в поверочных схемах СИ.

Поверочные схемы СИ представляют собой документ, который устанавливает соподчинение СИ, участвующих в передаче размера единицы от эталона к рабочим СИ с указанием методов и погрешности при передаче.

Если технический уровень первичных эталонов в России благодаря успехам науки и энтузиазму ученых можно оценить как вполне удовлетворительный, то состояние парка СИ, находящихся в практическом обращении, прежде всего рабочих эталонов и РСИ, внушает тревогу. Если в 80-е гг. срок обновления отечественной измерительной техники как правило составлял 5-6 лет (для сравнения в США и Японии — не более 3 лет), то наблюдаемый сейчас регресс в области отечественного приборостроения еще больше увеличил сроки обновления рабочих эталонов и РСИ, что ведет к значительному старению измерительной техники.

Другой проблемой отечественных производителей СИ является высокая стоимость их разработок в сравнении с зарубежными фирмами. Для преодоления традиционного отставания необходимо также в отечественных приборах предусматривать: высокую степень автоматизации на базе микропроцессорной технологии, быстродействие, высокую надежность, пониженную массу, габариты и энергопотребление, высокий уровень эстетики и эргономики.

Многообразие СИ обусловливает необходимость применения специальных мер по обеспечению единства измерений. Одно из условий соблюдения единства измерений — установление для СИ определенных (нормированных) метрологических характеристик.

Источник