Меню

Цифровой гироскопический датчик предназначен для измерения



Гироскопический датчик Lego EV3

Гироскопический датчик EV3

Гироскопический датчик EV3 поставляется в составе образовательного конструктора Lego Mindstorms EV3. В домашней версии Lego EV3 датчика гироскопа нет. Если есть необходимость, его можно купить отдельно.

Датчик гироскоп — это цифровой датчик

Принцип работы гироскопического датчика

Принцип работы датчика заключается в том, что он способен отслеживать вращение. Датчик гироскопа EV3 способен обнаружить вращение всего по одной оси. На верхней стороне датчика мы можем увидеть две стрелки. Эти стрелки показывают нам плоскость работы гироскопического датчика.

датчик гироскопа

  1. При вращении датчика в плоскости стрелок на верхней части датчика он может определять угловую скорость вращения. Она измеряется в градусах в секунду. 440 градусов в секунду является максимальной угловой скоростью, которую модет измерить датчик.
  2. Кроме скорости вращения датчик может определять угол вращения. Измерение угла вращения происходит в градусах. Точность измерения гироскопического датчика +/- 3 градуса если поворот на 90 градусов.

Особенности датчика гироскопа EV3

Для правильной работы датчика его нужно включать в контроллер EV3 в полностью неподвижном состоянии. Когда мы устанавливаем гироскопический датчик на робота обязательным условием является полная неподвижность робота в его начальном состоянии. Робот должен стоять без движения, иначе датчик будет работать некорректно. При помощи этого датчика можно легко программировать повороты робота вокруг оси. Датчик имеет частоту дискретизации 1 килогерц.

Сенсор подключается к блоку программирования EV3 плоским черным соединительным кабелем, который входит в набор. Гироскопический датчик можно подключить к любому входному порту, который обозначен цифрами от 1 до 4. Но по умолчанию датчик подключается во второй порт. Программное обеспечение контроллера Lego EV3 автоматически определяет порт подключения датчика.

порт контроллера

Одной из особенностей датчика гироскопа EV3 является проблема дрейфа. Она состоит в том, что, когда датчик в покое т.е. неподвижен, его показания изменяются и постоянно увеличиваются. Эта проблема может быть решена несколькими способами, но это лучше рассматривать в отдельной статье.

Области применения гироскопического датчика

Гироскопические датчики широко распространены и применяются как в быту, так и в промышленных и военных областях. В быту, например, гироскопы стабилизируют поведение радиоуправляемых моделей самолетов и вертолетов. Навигация и управление транспортными средствами также использует датчики гироскопы. В легковых автомобилях датчики активируют подушки безопасности при опрокидывании.

модели на радиоуправлении

Системы навигации и системы реагирования на чрезвычайные ситуации используют гироскопические датчики для повышения надежности работы оборудования. Роботы, роботизированные платформы в военной области используют датчики гироскопы в системах управления и наведения. Подводные лодки, самолеты, автономные подводные аппараты и многое другое не могут эффективно работать без применения гироскопических датчиков.

Практически на всех смартфонах также установлен датчик гироскопа. Он часто используется в мобильных играх, функциях автоповорота изображения и многих других. Можно привести еще множество примеров использования датчика гироскопа. Но в нашем случае мы изучаем очень простой датчик, который позволяет понять основные принципы работы гироскопов.

Гироскопический датчик EV3

Источник

Гироскопический датчик

Завершающий урок цикла «Первые шаги» посвятим изучению гироскопического датчика. Данный датчик, как и ультразвуковой, присутствует только в образовательной версии набора Lego mindstorms EV3. Тем не менее, пользователям домашней версии конструктора советуем тоже обратить внимание на данный урок. Возможно, что прочитав о назначении и использовании этого датчика, вы пожелаете его приобрести в дополнение к своему набору.

Гироскопический датчик (Рис. 1) предназначен для измерения угла вращения робота или скорости вращения. Сверху на корпусе датчика нанесены две стрелки, обозначающие плоскость, в которой работает датчик. Поэтому важно правильно установить датчик на робота. Также для более точного измерения крепление гироскопического датчика должно исключать его подвижность относительно корпуса робота. Даже во время прямолинейного движения робота гироскопический датчик может накапливать погрешность измерения угла и скорости вращения, поэтому непосредственно перед измерением следует осуществить сброс в текущего показания датчика. Вращение робота против часовой стрелки формирует отрицательные значения измерений, а вращение по часовой стрелке — положительные.

Рассмотрим программный блок «Гироскопический датчик» (Рис. 2) Желтой палитры. Этот программный блок имеет три режима работы: «Измерение», «Сравнение» и «Сброс». В режиме «Измерение» можно измерить «Угол», «Скорость» или одновременно «Угол и скорость».

Давайте закрепим гироскопический датчик на нашем роботе (Рис. 3), подсоединим его кабелем к порту 4 модуля EV3 и рассмотрим примеры использования.

написать программу движения робота по квадрату с длиной стороны квадрата, равной длине окружности колеса робота.

Решение:

  1. Перед началом движения сбросим датчик в , используя программный блок «Гироскопический датчик» Желтой палитры;
  2. Мы уже знаем: чтобы проехать прямолинейно требуемое расстояние — необходимо, воспользовавшись программным блоком «Независимое управление моторами», включить оба мотора на 1 оборот.
  3. Для поворота робота на 90 градусов в этот раз воспользуемся гироскопическим датчиком:
    1. используя программный блок «Независимое управление моторами», заставим робота вращаться вправо вокруг своей оси;
    2. используя программный блок «Ожидание» в режиме «Гироскопический датчик», будем ждать, пока значение угла поворота не достигнет 90 градусов;
    3. Выключим моторы;
  4. Используя программный блок «Цикл» в режиме «Подсчет», повторим шаги 1 — 3 четыре раза.

Попробуйте решить Задачу №22 самостоятельно, не подглядывая в решение.

Источник

Цифровой гироскопический датчик предназначен для измерения

За последние несколько лет широкое распространение по всему миру получили датчики, основанные на микроэлектромеханических системах, так называемых МЭМС. Популярность данных устройств обусловлена рядом причин, основными из которых являются простота их использования, относительно низкая цена и малые габариты. МЭМС-датчики, как правило, оснащаются интегрированной электроникой обработки сигнала и не имеют движущихся частей. Этим обуславливается их высокая надежность и способность обеспечивать стабильные показания в достаточно жестких условиях окружающей среды (перепады температур, удары, влажность, вибрация, электромагнитные и высокочастотные помехи). Совокупность данных преимуществ побуждает производителей систем для различных сфер применения (от авиа — и автомобилестроения до бытовой техники) использовать в своих разработках те или иные МЭМС-сенсоры.

Читайте также:  Узлы измерения расхода газа

В данной статье будут рассмотрены МЭМС-датчики для измерения ускорения (акселерометры) и угловой скорости (гироскопы). Данные устройства активно используются в системах управления летательными аппаратами, для обеспечения безопасности движения автомобилей, в сельскохозяйственной технике, изделиях специального назначения и др. В настоящее время существует достаточно много различных решений по исполнению МЭМС-устройств. В их числе – одноосевой МЭМС-гироскоп с вибрирующим кольцом и трехосевой емкостной МЭМС-акселерометр.

Одноосевой МЭМС-датчик угловой скорости (гироскоп) с вибрирующим кремниевым кольцом

Данный кремниевый цифровой гироскоп разработан с учетом требований к низкой стоимости изделия и экономичному энергопотреблению для систем навигации и наведения нового поколения. Он способен измерять угловую скорость до ± 1,0 є/с и имеет два режима вывода: аналоговый сигнал напряжения, линейно-пропорциональный угловой скорости, и цифровой по протоколу SPI®.

Режима вывода – аналоговый или цифровой – выбирается пользователем при подключении датчика к какой-либо системной плате. Главной отличительной особенностью гироскопа является применение технологии сбалансированного вибрирующего кольца в качестве датчика угловой скорости. Именно она обеспечивает надежную работу и точное измерение скорости вращения даже в условиях сильной вибрации.

Возможны две основные конфигурации гироскопа, одна из них позволяет датчику измерять угловую скорость по оси, перпендикулярной к плоскости системной платы, другая дает возможность определять угловую скорость по оси, параллельной плоскости материнской платы. Сочетание в одном устройстве гироскопов обеих конфигураций позволяет получить инерциальную систему, измеряющую угловую скорость по нескольким осям (любые сочетания тангажа, крена и рысканья летательного аппарата). Размеры датчиков обеих конфигураций и оси измерения угловой скорости приведены на рис.1.

Как правило, подобные гироскопы выпускаются в герметичных керамических LCC корпусах которые можно устанавливать на системные платы. Датчик состоит из пяти основных компонентов:
— кремниевый кольцевой МЭМС-сенсор (MEMS-ring),
— основание из кремния (Pedestal),
— интегральная микросхема гироскопа (ASIC),
— корпус (Package Base),
— крышка (Lid).

Кремниевый кольцевой МЭМС-сенсор, микросхема и кремниевое основание размещены в герметичной части корпуса с вакуумом, частично заполненным азотом. Это дает серьезные преимущества перед сенсорами, которые поставляются в пластиковых корпусах, которые имеют определенные ограничения чувствительности в зависимости от уровня влажности.

Кремниевый кольцевой МЭМС-сенсор

Диаметр кремниевого МЭМС-кольца равен 3 мм., толщина – 65 мкм. Его изготавливают методом глубокого реактивного ионного травления объемных кремниевых структур на 5” пластинах. Кольцо поддерживается в свободном пространстве восемью парами симметричных спиц, которые исходят из твердого концентратора диаметром 1 мм. в центре кольца.

Процесс объемного травления кремния и уникальная технология изготовления кольца позволяют получить хорошие геометрические свойства, необходимые для точного баланса и термической стабильности сенсорного кольца. В отличие от других гироскопов здесь нет мелких расхождений, создающих проблемы с интерференцией и трением. Указанные особенности существенно определяют стабильность датчика при колебаниях температуры, вибрации или ударе. Еще одним преимуществом подобной конструкции является ее «врожденный» иммунитет к ошибкам, которые датчики могут выдавать под влиянием ускорения, или «g – чувствительности».

Пленочные приводы и преобразователи прикреплены к верхней поверхности кремниевого кольца по периметру и для получения электроэнергии подключены к связующим контактам в центре концентратора через треки на спицах. Это активирует или «заводит» периметр кольца в рабочий режим вибрации на уровне Cos2и с частотой 22 кГц, определяя радиальное перемещение, которое может осуществляться по причине первичного движения привода либо за счет действия кориолиосовой силы, когда гироскоп вращается относительно его оси чувствительности. Существует одна пара приводов первичного движения, одна пара первичных снимающих преобразователей и две пары вторичных снимающих преобразователей.

Комбинация сенсорной технологии и восьми вторичных снимающих преобразователей улучшает в датчике соотношение «сигнал/шум», что позволяет получать малошумящие устройства с отличными свойствами по угловому случайному дрейфу гироскопа, которые являются ключевыми для применения в сферах инерциальной навигации (например, стабильность наведения камеры или антенны). Описанную схему можно сравнить с камертонной структурой, содержащей бесконечное количество камертонов, интегрированных в единую балансирующую вибрирующую кольцевую конструкцию. Это обеспечивает наиболее высокую стабильность измерения угловой скорости по времени, температуре, вибрациям и ударам для МЕМС-гироскопов данного класса.

Концентратор в центре кольца сенсора установлен на цилиндрическом кремниевом основании диаметром 1 мм., которое связано с кольцом и ASIC с помощью эпоксидной смолы. Микросхема гироскопа имеет габариты 3х3 мм и изготовлена по технологии 0,35 мкм КМОП. ASIC и МЭМС-сенсор (кольцо) разделены физически, но соединены электрической цепью через золотые проводки. В связи с этим в подобной схеме отсутствуют внутренние каналы, что позволяет уменьшить шумовую нагрузку и получить отличные электромагнитные свойства.

Керамический корпус датчика изготовлен по технологии LCC и представляет из себя многослойную оксидно-алюминиевую конструкцию с внутренними контактными площадками для разварки, соединенными через корпус с наружными контактными площадками посредством многослойных вольфрамовых межсоединений. Аналогичные интегральные межсоединения есть в крышке гироскопа, что обеспечивает размещение чувствительного элемента датчика внутри щита Фарадея и хорошие электромагнитные показатели гироскопа. При этом внутренние и наружные контактные площадки покрыты гальваническим путем слоем никеля и золота.

Читайте также:  Аттестация методик методов измерений вниимс

Корпус включает в себя уплотнительное кольцо, на верхней части которого шовной сваркой приварена металлическая крышка. Сварка произведена электродом сопротивления, что создает полную герметичность конструкции. В отличие от большинства МЭМС-корпусов, доступных сегодня на рынке, при изготовлении корпуса данного устройства используется специально разработанная шовная сварка, при которой исключена возможность образования комочков (брызг) сварки внутри гироскопа. При использовании других технологий сварки сварочные брызги могут попадать на нижние конструкции и негативно влиять на надежность гироскопа за счет воздействия на вибрирующий МЭМС-элемент, особенно в тех местах, где конструкции имеют небольшие зазоры. В корпусе также есть встроенный датчик температуры для обеспечения внешней термокомпенсации.

Принцип действия системы гироскопа

Описываемые гироскопы обычно являются твердотельными устройствами и не имеют движущихся частей за исключением сенсорного кольца, которое имеет возможность отклоняться. Оно показывает величину и направление угловой скорости за счет использования эффекта «силы Кориолиса». Во время вращения гироскопа силы Кориолиса действуют на кремниевое кольцо, являясь причиной радиального движения по периметру кольца.

По периметру кольца равномерно расположены восемь приводов/преобразователей. При этом есть одна пара приводов «первичного движения» и одна пара первичных снимающих преобразователей, расположенных относительно их главных осей (0° и 90°). Две пары вторичных переключающих преобразователей расположены относительно их вторичных осей (45° и 135°). Приводы первичного движения и первичные переключающие преобразователи действуют вместе в замкнутой системе, чтобы возбуждать и контролировать первичную рабочую амплитуду вибрации и частоты (22 кГц).

Вторичные снимающие преобразователи распознают радиальное движение на вторичных осях, величина которого пропорциональна угловой скорости вращения, благодаря которой гироскоп обретает угловую скорость. Преобразователи производят двухполосный сжатый передающий сигнал, демодулирующийся обратно в полосы, ширина которых контролируется пользователем одним простым внешним конденсатором. Это дает пользователю возможность полностью контролировать производительность системы и делает преобразование абсолютно независимым от постоянного напряжения или низкочастотных параметрических условий электроники.

На рисунках 3 и 4 продемонстрирована структура кремниевого кольца сенсора, показывающая приводы первичного движения «PD» (одна пара), первичные снимающие преобразователи «PPO» (одна пара) и вторичные снимающие преобразователи «SPO» (две пары).

На рисунке 5 схематично показано кольцо, при этом спицы, приводы и преобразователи удалены для ясности. В данном случае гироскоп выключен, кольцо круглое.

В момент, когда датчик находится в выключенном состоянии, в кольце возбуждается движение вдоль его основных осей за счет приводов первичного движения и первичных снимающих преобразователей, воздействуя в замкнутом контуре на систему контроля ASIC. Круглое кольцо принимает в режиме Cos2и эллиптическую форму и вибрирует с частотой 22 кГц. Это показано на Рис.6, на котором гироскоп уже включен, но еще не вращается. На четырех вторичных снимающих узлах расположенных на периметре кольца под углом 45 по отношению к основным осям нет радиального движения.

Если гироскоп подвергается воздействию угловой скорости, то на кольцо действуют силы Кориолиса: по касательной к периметру кольца относительно главных осей. Эти силы деформируют кольцо, что вызывает радиальное движение вторичных снимающих преобразователей. Данное движение, определяемое на вторичных снимающих преобразователях, пропорционально прилагаемой угловой скорости. При этом двухполосный сжатый передающий сигнал демодулируется с учетом основного движения. В итоге получается низкочастотный компонент, который пропорционален угловой скорости.

Рис. 7 Режимы работы сенсорного кольца при вращающемся гироскопе

Схема управления всем гироскопом расположена в ASIC.

Рис. 8 Блоковая диаграмма функционирования ASIC-сенсора
Рис. 9 Внешний вид ASIC-гироскопа

Подобные датчики обладают миниатюрными габаритами (6,5х1,2 мм) при сверхнизком потреблении энергии (12 мВт). Для них характерен широкий диапазон измерения (до 900 градусов/сек), сверхмалый вес 0,08 грамм и высокая стабильность работы.
Гироскопы подобной конструкции можно с успехом применять для измерения скоростей вращения объекта по трем осям в транспортных и персональных навигаторах для определения и сохранения параметров движения и определения местоположения; в системах отслеживания по трассе на сельскохозяйственной технике для стабилизации антенн; в промышленной аппаратуре, робототехнике и других сферах. Использование данных датчиков угловой скорости на летательных аппаратах позволяет на порядок уменьшить габариты, вес, энергопотребление приборов и в результате значительно снизить цену навигационной системы в целом. Надежность и точность в управлении широкого спектра самолетов, вертолетов и других летательных аппаратов при этом увеличивается. Таким образом, данный вид гироскопов оптимально подходит для использования в ситуации, когда есть ограничения по габаритам, весу и стоимости изделия.

Источник

Гироскоп — что это такое, зачем нужен и как работает

Гороскоп является важной частью множества навигационных систем, различных устройств, техники и устанавливается практически на все модели телефонов и планшетов.

Он позволяет измерять перемещение объекта в пространстве, в каком сейчас положении находится устройство — горизонтально или вертикально. Дает множество возможностей в управлении.

Из прошлого материала вы узнали, как включить и настроить родительский контроль на Андроид. Сегодня мы подробно рассмотрим, что такое гироскоп простыми и понятными словами, зачем он нужен и, как работает.

Что такое гироскоп

Гироскоп (gyroscope, гиродатчик) — это устройство, предназначенное для измерения углов ориентации тела / объекта относительно поверхности земли. Он позволяет узнать направление движения объекта, на котором он установлен, угол его наклона / поворота. В каком положении сейчас находится объект, к примеру, смартфон сейчас в горизонтальном, вертикальном или каком-либо другом положении / наклоне.

Читайте также:  Измерение отклонений расположения поверхностей это

Сам термин состоит из двух частей — gyreuо (вращаться) и skopeo (смотреть). Впервые использовался в 1 852 году Ж. Фуко в докладе на тему способов экспериментального обнаружения вращения земли в инерциальном пространстве, выступал он с ним в Французской Академии Наук. Сам же прибор был изобретен еще в 1 817 году немецким астроном Иоганном Боненбергером.

Что делает:

  • Определяет перемещение объекта в пространстве
  • Текущий угол наклона
  • Показывает стороны света, прямо как компас
  • Дает данные для расчета скорости движения

Обычный роторный гироскоп представляет собой карданный подвес, внутри которого находится вращающееся колесо, шар или диск, ось вращения которого может принимать абсолютно любую ориентацию. При движении / вращении ориентация этой оси не будет зависеть от наклона или поворота карданного подвеса / крепления в соответствии с сохранением углового момента .

Современные гироскопы, которые устанавливаются на смартфоны и различную компьютерную технику представляют собой обычный чип — гироскоп MEMS.

Где используется:

  • В навигационных системах
  • Смартфонах и планшетах
  • Смарт часы
  • В геймпадах игровых приставок
  • На кораблях, машинах, космических кораблях, летательных аппаратах — вообще транспортных средствах
  • В тренажерах
  • В системах стабилизации камер

Устройство гироскопа

Существует множество разных видов гироскопов: двух и трехстепенные — они отличаются по степеням свободы или возможным осям вращения. Также они разделяются на механические, лазерные и оптические, что определяет их принцип действия.

Сам прибор обычно представляет собой колесо, установленное на двух или трех карданных шарнирах — они обеспечивают поворотные опоры. Это позволяют колесу вращаться вокруг одной оси.

Рассмотрим самый распространенный — механический роторный гироскоп трехстепенный. Состоит из трех карданов, каждый из которых установлен один на другом с ортогональными осями поворота и колесом по центру. Это позволяет колесу, установленному в самом внутреннем кардане иметь ориентацию, независящую от ориентации его опоры. Т.е. как не крути такой прибор — колесо будет всегда в одном положении — крутиться вокруг определенной оси.

Чтобы понять, как все работает, возьмем детскую игрушку Юлу. Когда она крутится, то всегда в одном положении / вокруг определенной оси, если конечно на нее не действуют внешние силы. Плюс, она обладает устойчивостью, так если ее толкнуть, она вернется в то же положение и будет крутиться в том же положении. Момент, когда юла теряет скорость ее ось вращения начинает напоминать конус / меняет свое направление в пространстве — называет прецессией.

Интересно! Роторные устройства не используются, как датчики, их применяют исключительно в целях стабилизации для различных конструкций и механизмов. К примеру, он используется в гироскопическом тренажере.

Оптические гироскопы работают на основании физического эффекта Саньяка. Он подразумевает, что в инерциальной системе отчетов, скорость света является постоянной. Но, если отправить луч в неинерциальной системе, то его скорость будет изменена. Если пустить траекторию луча через место вращения устройства, то будет задержка в достижении им конечной точки. Полученная разница во времени напрямую зависит от величины углового поворота датчика.

Как уже писалось выше, в электронной технике используются гироскопы-MEMS, маленькие чипы, которые благодаря их размеру можно ставить даже на смарт браслеты. Там они используются вместе с акселерометром, чтобы получаемые данные были еще более точными.

Есть ли разница с акселерометром?

По своей сути, гироскоп и акселерометр могут выполнять практически одни и те же вычисления. Но, акселерометр лучше определяет повороты объекта в пространстве и измеряет кажущееся ускорение — для этого он и используется.

Гироскоп лучше определяет перемещение объекта в пространстве, текущий угол наклона, указывает стороны света, как компас, а также дает данные для расчета скорости движения. Гироскоп может делать все то же самое, что и акселерометр, а вот акселерометр уже нет.

Немного истории появления

Люди с давних времен искали способы, чтобы определять направление в пространстве. Изначально ориентирами были большие удаленные объекты — солнце, горы, луна. Затем появились первые приборы, которые основывались на гравитации земли: отвес и уровень. И первый, и второй до сих пор используются в строительстве. В Китай в средние века совершили прорыв изобрели компас, который использовал магнитное поле земли для определения сторон света.

Гироскоп был в первые описан в 1 817 году немецким астрологом Иоанном Боненбергером — эта дата считается официальной датой изобретения устройства. Но, по заверениям математика Пуассона, он изобрел его еще раньше в 1 813 году. Главную часть это прибора составлял массивный, который вращался в кардановом подвесе. В 1 832 году, был придуман гироскоп с вращающимся диском вместо шара.

В 1 852 году Ж. Фуко представил свой доклад о гироскопе, где он использовал его уже в качестве прибора, которые показывал изменение направления. Именно Фуко придумал сам термин — Gyroscope.

В 1 880-х годах гироскоп применили на практике, он использовался для стабилизации курса торпеды инженером Орби. Далее прибор начали устанавливать на самолеты, ракеты, подводные лодки для использования совместно с компасом.

В заключение

Это была основная информация по этой теме. Это действительно важный прибор, которые уже давно используется во всевозможных сферах, а сейчас без него нельзя представить ни один смартфон.

Источник