Меню

Удельная плотность нагрузки единица измерения



Удельная плотность

Удельная плотность материала или жидкости — это термин, используемый для определения единичной массы материала или жидкости, представляет собой отношение плотности (массы на единицу объема) вещества к плотности (масса одной единицы объема) от эталонного вещества. Техническое обозначение удельной плотности, также известной как плотность, — ρ, измеряется в кг/м 3 . Эталонным веществом для жидкостей почти всегда является вода и воздух для газов. Температура и давление должно быть указано, как для образца, так и для эталона. Давление почти всегда равно 1 атм (101,325 кПа). Температуры для образцов и эталонов варьируются в зависимости от отрасли. В британской практике пивоварения удельная плотность, как указано выше, умножается на 1000. [1] Удельная плотность обычно используется в промышленности как простое средство получения информации о концентрации растворов различных материалов, таких как рассолы, углеводороды, сахарные растворы (сиропы, соки, меда, пивоваренные сусла и т.д.) и кислоты.

Примечания

  1. Hough, J.S., Briggs, D.E., Stevens, R and Young, T.W. Malting and Brewing Science, Vol. II Hopped Wort and Beer, Chapman and Hall, London, 1991, p. 881

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое «Удельная плотность» в других словарях:

удельная плотность — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN specific density … Справочник технического переводчика

удельная плотность геотермального потока — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN geothermal flux density … Справочник технического переводчика

удельная плотность паров — (отнесенная к воздуху или водороду) [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN relative vapor densityrelative vapour density … Справочник технического переводчика

удельная плотность потока — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN flux density … Справочник технического переводчика

удельная плотность тока на единицу площади (поперечного сечения) — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN specific current density per unit area … Справочник технического переводчика

Интенсивность (удельная плотность, удельная мощность и т.д.) энергии (радиация, звук и т.д.), излучаемой источником. — b) Интенсивность (удельная плотность, удельная мощность и т.д.) энергии (радиация, звук и т.д.), излучаемой источником. c) Геометрические изменения статической системы при ее деформации. Источник: ГОСТ Р ИСО 11843 1 2007: Статистические методы.… … Словарь-справочник терминов нормативно-технической документации

Плотность — У этого термина существуют и другие значения, см. Плотность (значения). Плотность Размерность L−3M Единицы измерения СИ … Википедия

Удельная оптическая плотность среды — Отношение оптической плотности задымленной среды к оптической длине пути луча в контролируемой среде Источник: ГОСТ 26342 84: Средства охранной, пожарной и охранно пожарной сигнализации. Типы, основные параметры и размеры … Словарь-справочник терминов нормативно-технической документации

Удельная проводимость — (удельная электропроводность) мера способности вещества проводить электрический ток. (Точнее следует говорить об электропроводности среды, т.к. не имеется в виду обязательно химически чистое вещество; эта величина различна для разных веществ или… … Википедия

УДЕЛЬНАЯ РЕФРАКЦИЯ — (r), характеризует электронную поляризуемость ед. массы в ва в высокочастотном эл. магн. поле световой волны. У. р. в ва равна его рефракции молекулярной Л, делённой на молекулярную массу М. У. р. может быть выражена через показатель преломления… … Физическая энциклопедия

Источник

Удельная плотность нагрузки

МИНИСТЕРСТВО ПУТЕЙ СООБЩЕНИЯ РФ

Иркутский Государственный Университет

Путей Сообщения

Кафедра: ЭЖТ

ТЕМА:«Проектирование систем электроснабжения предприятий железнодорожного транспорта»

Выполнил:

Студент группы ЭНС-07-3

Студентов А.С.

Проверил:

доктор техн. наук, профессор

Крюков А.В.

Иркутск, 2009г.

Содержание

1. Ведомость электрических нагрузок

Расчет электрических нагрузок

2.1. Силовые электрические нагрузки

2.2. Электрические нагрузки освещения

2.3. Суммарные электрические нагрузки цехов

2.4. Картограмма нагрузок

2.5. Выбор компенсирующих устройств

2.6. Определение координат центра электрических нагрузок

3. Выбор числа и мощности цеховых трансформаторных подстанций

3.1. Выбор числа и мощности цеховых трансформаторных подстанций

Читайте также:  Ускорение физическая величина обозначение единица измерения

4. Разработка системы внутризаводского электроснабжения

4.1. Расчет потерь в трансформаторах

4.2. Потери в трансформаторах

4.3. Нагрузки на стороне высокого напряжения трансформаторных подстанций

4.4. Выбор места положения ГПП или ГРП

4.5. Длины кабельных линий

4.6. Количество ячеек отходящих линий ГРП

4.7. Расчет электрических нагрузок на головных участках магистралей

4.8. Выбор сечений кабелей по нагреву

4.9. Выбор сечений по экономической плотности тока

5. Технико-экономическое сравнение вариантов

5.1. Определение капитальных затрат

5.2. Определение издержек на эксплуатацию

6. Уточненный расчет выбранного варианта

6.1. Проверка выбранных сечений по потере напряжений

6.1.1. Сопротивления кабельных линий

6.1.2. Определение потери напряжения

6.2. Разработка системы внешнего электроснабжения

6.2.1. Определение расчетных электрических нагрузок предприятия

6.2.2. Проверка по потере напряжения

6.3. Расчет токов короткого замыкания

6.4. Составление схемы замещения

6.5. Результаты расчета токов кз

7. Выбор оборудования

7.4. Выключатели нагрузки

7.5. Выбор измерительных трансформаторов

7.3.1. Трансформаторы тока

7.3.2. Трансформаторы напряжения

8. Расчет внутренней сети

9. Расчет заземляющего устройства

Введение

В настоящее время, в эпоху электрификации, когда электрооборудование применяется повсеместно, одной из главных задач при строительстве любого объекта, является правильное проектирование системы электроснабжения.

Одной из самых электропотребляемых производств, является железнодорожный транспорт. Данную отрасль, можно разделить на две группы, по признаку электропотребителя. Первая группа – контактная сеть. Вторая группа – предприятия железнодорожного транспорта.

Предприятия ж.д. транспорта включаю в себя как объекты обслуживающие ж.д. (вокзалы, депо, станции и т.д.) так и отдельный большие предприятия производящие продукцию для нужд ж.д. транспорта. Предприятия ж.д. используют обширный перечень производственных механизмов на электропитании. Вот наиболее часто используемые агрегаты:

· Электродвигатели производственных механизмов встречаются в предприятиях всех служб. Наибольшие установленные мощности электропривода станков и других механизмов относятся к локомотивному и вагонному хозяйствам.

· В цехах локомотивных и вагонных депо установлены токарные, сверлильные, фрезерные, строгальные, шлифовальные, токарно-карусельные, винторезные и другие станки. Кроме станков, к потребителям этой группы могут быть отнесены молоты, установленные в кузнечных цехах локомотивных и вагонных депо.

· Станочное оборудование с электроприводом, как правило, небольшой мощности установлено в механических мастерских предприятий служб пути, грузового хозяйства, сигнализации и связи, электрификации и энергетического хозяйства, гражданских сооружений, отдела водоснабжения и др.

· К силовым общепромышленным установкам относятся компрессоры, насосы, вентиляторы и подьемно-транспортные устройства.

· Компрессорные установки широко применяются н железнодорожном транспорте — в локомотивных и вагонных депо для снабжения сжатым воздухом пневматического инструмента, проверки тормозной системы подвижного состава и других нужд.

· Вентиляторы устанавливаются в производственных и служебно-бытовых зданиях для систем приточно-вытяжной вентиляции, калориферного отопления, в установках для сушки тяговых двигателей в локомотивных депо, местного отсоса в цехах и т.д.

· Потребители рассматриваемой группы работают как правило в продолжительном режиме.

· Подъемно-транспортные механизмы (мостовые краны, тали, кран-балки, электродомкраты и др.)применяются в локомотивных депо и других хозяйствах. Потребители этой группы работают в повторно-кратковременном режиме с частыми толчками нагрузки.

Электроосветительные нагрузки применяются на всех железнодорожных станциях, в хозяйствах всех служб. Наряду с нагрузками внутреннего освещения производственных, служебно-бытовых, административных, жилых и других зданий значительную долю нагрузок составляет наружное освещение станций, территорий предприятий и поселков.

В отношении обеспечения надежности электроснабжения потребители делятся на три категории.

· К первой категории относятся электроприемники, перерыв в электроснабжении которых может повлечь за собой опасность для жизни людей, срыв графика поездов, принести значительный ущерб железнодорожному транспорту и народному хозяйству в целом. Электроснабжение должно обеспечиваться от двух независимых источников питания, и перерыв электроснабжения допускается на время автоматического восстановления питания.

· Ко второй категории относятся электроприемники, перерыв в электроснабжении которых приводит к нарушению производственного цикла и массовым простоям рабочих энергоемких предприятий. Рекомендуется обеспечивать питание от двух независимых источников питания. Перерыв в электроснабжении допустим лишь на время включения второго источника питания дежурным персоналом или выездной бригадой.

· К третьей категории относятся все остальные электроприемники, не относящиеся к первой и второй категориям. Электроснабжение может выполняться от одного источника питания при условии, что перерывы электроснабжения, необходимые для восстановления электроснабжения, не превышают одних суток.

Читайте также:  Работа прибор для измерения работы

Реферат

В курсовом проекте рассчитаны электрические нагрузки цехов, определен центр электрических нагрузок. Выбрано место положения главной распределительной подстанции. Рассчитаны мощности цехов с учетом потерь в трансформаторах и с учетом компенсации реактивной мощности на низкой стороне. Для сети 10кВ выбраны кабельные линии. Рассмотрены два варианта схем электроснабжения – магистральная и радиальная схемы. Рассчитаны ток короткого замыкания для РУ-10 кВ, выбрано и проверено оборудование для схемы электроснабжения. Нарисована однолинейная схема электроснабжения.

Исходные данные

Таблица 1

Удельная плотность нагрузки

Потребитель электроэнергии ,
1 Административные здания 30…50
2 Ремонтные мастерские 50…80
3 Деревообрабатывающие цеха 75…140
4 Лаборатории промышленных предприятий 130…290
5 Литейные цехи 230…270
6 Механические, сборочные, термические и инструментальные цехи 200…600
7 Освещение цехов 5…20

Характеристики цехов предприятия

, кВт

,

Источник

Метод удельных плотностей нагрузок

Метод удельных плотностей нагрузок близок к методу Максимальной мощности. Задается удельная мощность (плотность нагрузки) у и определяется площадь здания сооружения или участка, отделения, цеха (например, для машиностроительных и металлообрабатывающих цехов у = 0,12…0,25 кВт/м2; для кислородноконвертерных цехов у = = 0,16…0,32 кВт/м2). Нагрузка, превышающая 0,4 кВт/м2, возможна для некоторых участков, в частности, для тех, где имеются единичные электроприемники единичной мощности 1,0…30,0 МВт.

Методы расчета электрических нагрузок: технологического графика, упорядоченных диаграмм.

Метод технологического графика

Метод технологического графика опирается на график работы агрегата, линии или группы машин. Например, график работы дуговой сталеплавильной печи конкретизируется: указывается время расплавления (27…50 мин), время окисления (20…80 мин), число плавок, технологическая увязка с работой других сталеплавильных агрегатов. График позволяет определить общий расход электроэнергии за плавку, среднюю за цикл (с учетом времени до начала следующей плавки), и максимальную нагрузку для расчета питающей сети.

Метод упорядоченных диаграмм

Метод упорядоченных диаграмм, директивно применявшийся в 1960 — 1970е гг. для всех уровней системы электроснабжения и навсех стадиях проектирования, в 1980— 1990е гг. трансформировался в расчет нагрузок по коэффициенту расчетной активной мощности. При наличии данных о числе электроприемников, их мощности, режимах работы его рекомендуют применять для расчета элементов системы электроснабжения 2УР, ЗУР (провод, кабель, шинопровод, низковольтная аппаратура), питающих силовую нагрузку напряжением до 1 кВ (упрощенно для эффективного числа приемников всего цеха, т.е. для сети напряжением 6 — 10 кВ 4УР). Различие метода упорядоченных диаграмм и расчета по коэффициенту расчетной активной мощности заключается в замене коэффициента максимума ,всегда понимаемого однозначно как отношение Рмах/Рср (2.16), коэффициентом расчетной активной мощности Ар. Порядок расчета для элемента узла следующий:

• составляется перечень (число) силовых электроприемников с указанием их номинальной PHOMi (установленной) мощности;

• определяется рабочая смена с наибольшим потреблением электроэнергии и согласовываются (с технологами и энергосистемой) характерные сутки;

• описываются особенности технологического процесса, влияющие на электропотребление, выделяются электроприемники с высокой неравномерностью нагрузки (они считаются подругому — по максимуму эффективной нагрузки);

• исключаются из расчета (перечня) электроприемники: а) малой мощности; б) резервные по условиям расчета электрических нагрузок; в) включаемые эпизодически;

• определяются группы т электроприемников, имеющих одинаковый тип (режим) работы;

• из этих групп выделяются подгруппы , имеющие одинаковую величину индивидуального коэффициента использования.

• выделяются электроприемники одинакового режима работы и определяется их средняя мощность;

• вычисляется средняя реактивная нагрузка;

• находится групповой коэффициент использования Кн активноймощности;

• рассчитывается эффективное число электроприемников в груп пе из п электроприемников:

где эффективное (приведенное) число электроприемников — это такое число однородных по режиму работы электроприемников одинаковой мощности, которое дает то же значение расчетного максимума Р, что и группа электроприемников, различных по мощности и режиму работы.

При числе электроприемнйков в группе четыре и более допускается принимать пэ равным п (действительному числу электроприемников) при условии, что отношение номинальной мощности наибольшего электроприемника Pmutm к номинальной мощности меньшего электроприемника Дом mm меньше трех. При определении значения п допускается исключать мелкие электроприемники, суммарная мощность которых не превышает 5 % от номинальной мощности всей группы;

Читайте также:  Результаты прямых измерений для вариантов

• по справочным данным и постоянной времени нагрева Т0 принимается величина расчетного коэффициента Кр;

• определяется расчетный максимум нагрузки:

Электрические нагрузки отдельных узлов системы электроснабжения в сетях напряжением выше 1 кВ (находящиеся на 4УР, 5УР) рекомендовалось определять аналогично с включением потерь в трансформаторах.

Результаты расчетов сводят в таблицу. Этим исчерпывается расчет нагрузок по коэффициенту расчетной активной мощности.

Расчетная максимальная нагрузка группы электроприемников Ртах может быть найдена упрощенно:

где Рном — групповая номинальная мощность (сумма номинальных мощностей, за исключением резервных по расчету электрических нагрузок); Рср.см

средняя активная мощность за наиболее загруженную смену.

Расчет по формуле (2.32) громоздок, труден для понимания и применения, а главное, он нередко дает двукратную (и более) ошибку. Негауссову случайность, неопределенность и неполноту исходной информации метод преодолевает допущениями: электроприемники одного названия имеют одинаковые коэффициенты, исключаются резервные двигатели по условиям электрических нагрузок, коэффициент использования считается независимым от числа электроприемников в группе, выделяются электроприемники с практически постоянным графиком нагрузки, исключаются из расчета наименьшие по мощности электроприемники. Метод не дифференцирован для различных уровней системы электроснабжения и для различных стадий выполнения (согласования) проекта. Расчетный коэффициент максимума Ктах активной мощности принимается стремящимся к единице при увеличении числа электроприемников (фактически это не так — статистика этого не подтверждает. Для отделения, где двигателей 300… 1000 шт., и цеха, где их до 6000 шт., коэффициент может составлять 1,2… 1,4). Внедрение рыночных отношений, ведущих к автоматизации, разнообразию выпуска продукции, перемещает электроприемники из группы в группу.

Статистическое определение ЯСр.см для действующих предприятий осложняется трудностью выбора наиболее загруженной смены (перенос начала работы разных категорий работников в пределах смены, четырехсменная работа и др.). Проявляется неопределенность при измерениях (наложение на административнотерриториальную структуру). Ограничения со стороны энергосистемы ведут к режимам, когда максимум нагрузки Ртгх встречается в одной смене, в то время как расход электроэнергии больше в другой смене. При определении Рр нужно отказаться от Рср.см исключив промежуточные расчеты.

Подробное рассмотрение недостатков метода вызвано необходимостью показать, что расчет электрических нагрузок, опирающийся на классические представления об электрической цепи и графиках нагрузки, теоретически не может обеспечить достаточную точность.

Статистические методы расчета электрических нагрузок устойчиво отстаиваются рядом специалистов. Методом учитывается, что даже для одной группы механизмов, работающих на данном участке производства, коэффициенты и показатели меняются в широких пределах. Например, коэффициент включения для неавтоматических однотипных металлорежущих станков меняется от 0,03 до 0,95, загрузки A3 — от 0,05 до 0,85.

Задача нахождения максимума функции Рр на некотором интервале времени осложняется тем, что от 2УР, ЗУР, 4УР питаются электроприемники и потребители с различным режимом работы. Статистический метод основывается на измерении нагрузок линий, питающих характерные группы электроприемников, без обращения к режиму работы отдельных электроприемников и числовым характеристикам индивидуальных графиков. Метод использует две интегральные характеристики: генеральную среднюю нагрузку PQp и генеральное среднее квадратичное отклонение , где дисперсия DP берется для того же интервала осреднения.

Максимум нагрузки определяется следующим образом:

Значение р принимается различным. В теории вероятности часто используется правило трех сигм: Ртах = Рср ± За, что при нормальном распределении соответствует предельной вероятности 0,9973. Вероятности превышения нагрузки на 0,5 % соответствует р = 2,5; для р = 1,65 обеспечивается 5%я вероятность ошибки.

Статистический метод является надежным методом изучения нагрузок действующего промышленного предприятия, обеспечивающим относительно верное значение заявляемого промышленным предприятием максимума нагрузки Pi(miiX) в часы прохождения максимума в энергосистеме. При этом приходится допускать гауссово распределение работы электроприемников (потребителей).

Метод вероятностного моделирования графиков нагрузки предполагает непосредственное изучение вероятностного характера последовательных случайных изменений суммарной нагрузки групп электроприемников во времени и основан на теории случайных процессов, с помощью которой получают автокорреляционную (формула (2.10)), взаимно корреляционную функции и другие параметры. Исследования графиков работы электроприемников большой единичной мощности, графиков работы цехов и предприятий обусловливают перспективность метода управления режимами электропотребления и выравнивания графиков.

Дата добавления: 2019-07-15 ; просмотров: 222 ; Мы поможем в написании вашей работы!

Источник