Меню

Указать обозначение формулу единицу измерения для силы тока



Сила тока: определение, как найти, расчет в проводнике

Сила тока — физическая величина, которая позволяет дать количественную характеристику току. Она обозначается буквой I и численно равна заряду, который за единицу времени протекает через поперечное сечение проводника.

Природа происхождения

Электрический ток — это направленное движение заряженных частиц под воздействием электрического поля.

В качестве частиц выступают:

  • в металлических проводниках — электроны;
  • в полупроводниках — дырки или электроны;
  • в вакууме — электроны (при определенных условиях);
  • в газах — электроны и ионы;
  • в растворах и расплавах электролитов — ионы.

Пока по проводнику не течет электрический ток частицы движутся хаотично. И их количество перетекших в одном направлении примерно соответствует и количеству частиц, перетекших в противоположном направлении.

Но ситуация меняется после того, как по проводнику пускают ток. В этом случае количество движущихся в одном направлении частиц значительно возрастает. И чем больше их проходит через поперечное сечение проводника за единицу времени, тем больше и сила тока.

Модель электрической цепи

Лучше понять физический смысл рассматриваемой величины можно на примере механической модели электрической цепи. В качестве ее возьмем водопроводную сеть частного дома.

Для того, чтобы вода начала поступать в водопровод из скважины или колодца необходим насос. Поэтому его можно рассматривать в качестве аналога батареи или иного источника тока. Он создает в системе давление, которое и приводит воду в движение. Соответственно трубы выступают роли проводников, молекулы воды — электронов, а краны — электрических переключателей.

Чем сильнее напор в водопроводной системе, тем большее количество воды, а вернее ее молекул, протекает через поперечное сечение трубы за каждую секунду. Отсюда можно сделать вывод, что чем больше сила тока, тем сильнее и его действие.

Воздействие тока силой до 0,5 мА (частота 50 Гц) человек не ощущает. При силе от 2 до 10 мА возникают болезненные сокращения мышц. А удар током силой свыше 100 мА грозит развитием фибрилляции желудочков и остановкой сердечной деятельности.

Единица измерения

Так как сила тока — это количественная величина, то в физике есть и единица ее измерения. Она позволяет проводить сравнительный анализ различных токов и их действий.

В чем измеряется

Формула силы тока записывается так:

где \(\triangle t\) — это единица времени, а \(\triangle q\) — количества электрического заряда, протекшего за указанный промежуток времени через поперечное сечение проводника.

В Интернациональной системе (СИ) заряд измеряется в Кулонах, а время — в секундах. В соответствии с этим единица измерения силы тока — Кулон/секунду. По международному соглашению ее стали называть Ампером.

В 1948 году было предложено определять силу тока по взаимодействию двух проводников, расположенных в вакууме на расстоянии одного метра друг от друга и длиной в один метр.

За силу тока в 1 A принимают такой ток, при котором два проводника притягиваются друг к другу (ток течет в одном направлении) или отталкиваются (ток течет в разных направлениях) с силой 0,0000002 H.

На практике очень часто применяются кратные единицы силы тока:

1 кА = 103 А, 1 мкА = 10-6 А, 1 мА = 10-3 А

В честь кого названа единица измерения

Единица измерения силы тока была названа в честь французского ученого Андрэ-Мари Ампер. Его называют «отцом» учения о электромагнетизме. Именно он ввел в науку такие термины как электрический ток, электростатика и электродинамика, гальванометр, напряжение, электродвижущая сила, соленоид. Амперу удалось найти доказательство теоремы «О циркуляции магнитного поля» и описать математически силу взаимодействия между токами.

Как найти силу тока

С проблемой определения силы тока сталкиваются и при решении задач, и в повседневной жизни. Вычислить этот параметр для проводника или электрической цепи можно не только путем проведения измерений, но и при помощи формул.

В проводнике

Основными величинами, характеризующими электрический ток, являются сила, напряжение и сопротивление. Взаимосвязь между ними была установлена экспериментальным путем в 1826 году Георгом Омом. В последствии она была сформулирована в виде закона, который и был назван в честь ученого.

Закон Ома: сила тока в участке цепи или проводнике обратно пропорциональна сопротивлению и прямо пропорциональна напряжению.

Рассчитать силу тока в проводнике также можно, если разделить мощность на напряжение.

При протекании тока происходит нагревание проводника. И по количеству выделившегося тепла на основании закона Джоуля-Ленца возможно провести вычисление силы тока.

В цепи

Реальный источник тока всегда обладает своим внутренним сопротивлением.

Закон Ома для полной цепи формулируется так: сила тока в полной цепи прямо пропорциональна электродвижущей силе источника тока и обратно пропорциональна сумме внутреннего и внешнего сопротивления.

Формулы

Закон Ома для участка цепи:

где R — сопротивление проводника, а U — напряжение.

Закон Ома для полной цепи:

где ε — электродвижущая сила источника тока, R + r — сумма сопротивлений источника и внешней нагрузки.

Формула, для определения силы тока по мощности и напряжению:

где P — мощность, а U — напряжение.

Закон Джоуля-Ленца: при протекании по проводнику тока происходит выделение тепла (Q), которое равно произведению квадрата силы тока (I) на время (t), которое он протекал и на сопротивление проводника (R).

Математически формула выглядит так:

Исходя из нее можно вывести еще одну формулу для расчета силы тока:

Как можно измерить силу тока

Для измерения силы тока используется прибор, называемый амперметром. На электрических схемах он обозначается буквой А, заключенной в окружность.

В любом проводнике замкнутой цепи, собранной последовательно, протекает электрический ток одинаковой величины. Поэтому для его измерения достаточно просто разомкнуть эту цепь в любом месте и подключить амперметр. Нельзя подключать его к источнику тока при отсутствии устройства потребления.

Ток бывает переменный и постоянный. И для его измерения необходимы разные устройства. На шкале амперметров для постоянного тока имеется одно из следующих обозначений — «-», «DC» или указание на полярность подключения. Амперметры, предназначенные для измерения силы переменного тока обозначаются « \(\sim\) » или «АС».

Читайте также:  Как измерить размер сидения для унитаза

Амперметр для постоянного тока необходимо включать в цепь с соблюдением полярности, то есть к клемме прибора, имеющей обозначение «+», присоединяют провод, идущий от положительного электрода.

Если на источнике тока отсутствует указание полярности, то узнать ее можно по электрической схеме. Короткая линия всегда соответствует «минусу», а длинная — «плюсу».

Амперметр для переменного тока не имеет полярности и подключается без ее учета.

Описание прибора

Амперметр — это один из электроизмерительных приборов. Он обладает очень низким сопротивлением, чтобы не оказывать влияния на величину измеряемой силы тока. Ведь закон Ома гласит, что сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению. Это означает, что чем больше сопротивление проводников, тем меньше сила тока.

Шкала прибора может быть градуирована не только в А, но и в других кратных единицах — мкА, мА, кА.

  • аналоговые (стрелочные);
  • цифровые (электронные).

Измерители стрелочного типа не нуждаются в источнике питания, так как потребляют электрический ток непосредственно из измеряемой цепи. Но они показывают величину силы тока с некоторой задержкой, а не мгновенно.

Электронные амперметры практически полностью лишены такого недостатка как инерционность. Современные процессоры, используемые в этих моделях, обеспечивают частоту обновления показателей до 1000 в минуту. Их недостатком является высокая цена и необходимость отдельного источника питания для функционирования.

Примеры нахождения силы тока в задачах

Задача №1

Определите силу тока проводнике, имеющем сопротивление 55 Ом при напряжении в сети 220В.

Решение

Вычисление

Ответ: сила тока в проводнике 4,4 А.

Задача №2

Сила тока в резисторе при напряжении 100В (U1) составляет 4 А (I1). Если напряжение увеличить на 20В (Δ U), как изменится сила тока (I2), протекающего через этот резистор?

Решение

По условию задачи сопротивление резистора не изменяется. Тогда:

Вычисление

Ответ: сила тока станет 4,8 А.

Задача №3

Определите силу тока в цепи с внешним сопротивлением 10 Ом и источником постоянного тока, ЭДС которого составляет 15В, а внутреннее сопротивление – 1 Ом.

Решение

Вычисление

Задача №4

При какой силе тока (I) проволока с сопротивлением (R) 20 Ом за 300 секунд (t) выделит 6 кДж теплоты (Q)?

Источник

Единица измерения силы тока

Электрические параметры изучают в рамках школьных программ. После экзаменов быстро забываются научные определения и формулы. Между тем, базовые знания в соответствующей области нужны не только специалистам и радиолюбителям. Они пригодятся обычным пользователям для подключения бытовой техники, решения других практических задач. В этой публикации рассказано о том, что такое единица силы тока.

Об электрическом токе

Для облегчения понимания темы можно применить аналоги (сравнения) из окружающего мира. Электрические величины иногда объясняют на примере обычного трубопровода:

  • ток электронов подобен движению жидкости;
  • напряжение (разница потенциалов) – различные уровни давления;
  • при уменьшении сечения проводника увеличивается сопротивление току – таким же образом приходится повышать напор для перемещения большего количества воды за единицу времени.

Через прозрачные стенки можно наблюдать движение потока жидкости. Упростит визуальный эксперимент наличие визуальных маркеров – загрязнений. Однако самый зоркий человек не в состоянии увидеть перемещение микроскопически малых электронов.

Тем не менее, именно движение потока заряженных частиц является электрическим током. Почему такое действие даже при продолжительном времени опыта не изменяет массу (размеры) отдельных участков проводника?

Как и в случае с наблюдением, ответ на вопрос объясняется очень малой величиной рассматриваемых параметров. Электроны можно сравнить с муравьями. При переселении в другой «дом» старый муравейник сохраняет размеры (форму). Так и масса проводника не изменится заметно даже при полном удалении из него частиц с электрическими зарядами.

Что такое единица измерения силы тока

Ниже отмечены основные параметры типичной электрической цепи (в скобках приведены стандартные обозначения для формул и сокращенные наименования):

  • единицы измерения силы тока (I) – Амперы (А);
  • напряжения (U) – Вольты (В);
  • сопротивления (R) – Омы (Ом).

Для полноты изучения необходимо вспомнить о количественном показателе, мощности (W). Ее измеряют в Ваттах (Вт).

Если продолжить аналог с водой, можно сделать несколько важных промежуточных выводов. Чтобы пропустить больше жидкости (электронов) увеличивают диаметр трубы (проводника). Это решение сопровождается увеличением тока. Напряжение измеряют разницей потенциалов между двумя точками цепи. Для его увеличения изменяют нужным образом соотношение зарядов.

Сопротивление препятствует прохождению электронов. Этот процесс сопровождается преобразованием электрической энергии в тепловую. В некоторых устройствах данная особенность выполняет полезные функции.

Потребляемую мощность можно сравнить с количеством воды, которая поступает через определенное сечение транспортной системы за единицу времени.

Ампер единица измерения силы тока в СИ

По самому популярному международному стандарту (СИ) силе постоянного тока один ампер (1А) соответствует прохождение единичного заряда (1 кулон) за время 1 с:

Другое базовое определение создано с дополнительным использованием механических составляющих. В соответствии с ним, аналогичный ток создает силу взаимодействия 2*10-7 Ньютонов на каждый метр погонный конструкции, состоящей из двух параллельных проводников. Подразумевается размещение такого устройства в нейтральной среде (вакууме), полностью изолированной от внешних электромагнитных излучений.

Формулы для вычисления характеристик тока

Если к проводнику подключить источник постоянного тока, базовые параметры можно вычислить с помощью классической формулы. Ток в амперах равен напряжению в вольтах, деленному на электрическое сопротивление в омах:

Зависимость от мощности отображается следующим образом:

Простым преобразованием вычисляют другие величины:

К сведению. В цепях переменного тока учитывают синусоидальную форму сигнала. Активные нагрузки (конденсаторы, катушки) создают фазовый сдвиг между напряжением и током.

Единицы измерения в других системах единиц

Таблица, какие есть единицы измерения тока

Система единиц Полные и сокращенные обозначения Формулы перевода
СИ Ампер (А)
СГСМ Абампер (абА), био 1 био = 10 А
СГСЭ Статоампер (статА) 1 А = 2 997 924 536,8 статА

Влияние силы тока на разные материалы

Одна и та же сила тока оказывает разное влияние при прохождении через различные материалы. Металлы, например, отличаются хорошей проводимостью. Примеси повышают сопротивление, поэтому для улучшения экономических показателей линии электропередач создают из хорошо очищенной меди. Полимерные соединения – диэлектрики, их часто используют для создания изоляции.

Вода проводит электрический ток, благодаря находящимся в ней ионам. Это свойство используют для фильтрации, создания тонких покрытий и автономных источников питания. Достаточно опустить в жидкость пластины с разноименными зарядами, чтобы обеспечить перемещение частиц в противоположных направлениях.

Слабым электрическим током стимулируют мозговую деятельность, оказывают стимулирующее воздействие на кожные покровы. Специализированные аппараты применяют в медицинских учреждениях и салонах красоты. Сильный ток опасен для человека, поэтому при работе с электричеством следует применять соответствующие средства защиты.

Амперметр

Для измерения параметра используют амперметр. Этот прибор включают в разрыв цепи, чтобы обеспечить прохождение тока через рабочий элемент. Простейшие стрелочные устройства постепенно вытесняются цифровыми. Для измерения сильных токов показания снимают с помощью специального шунта, который устанавливается параллельно.

Видео

Источник

Сила тока — законы, формулы и примеры расчетов

Начинающие электротехники пренебрегают ей, и делают основной акцент на напряжении. Это часто приводит к дополнительным финансовым затратам, направленным на закупку радиодеталей, вышедших из строя.

Общие сведения

Новички очень часто путают электрический ток и его силу. Первым является движение заряженных частиц или носителей заряда, на которые действует электромагнитное поле в некотором направлении. Сразу следует отметить, что ток является векторной величиной, поскольку имеет направление. Заряженные частицы могут быть различные, а не только электроны.

В генерации электромагнитного поля принимают «участие» протоны и нейтроны. В полупроводниках носителями зарядов являются дырки. В электролитах (растворов, проводящих электроток) и газах — ионы.

Определение силы тока: количество электричества Q, протекающее через поперечное сечение S проводника любого типа (проводник или полупроводник) за определенную единицу времени t (берется величина, равная 1 секунде). Q — величина, характеризующая количество одиночных носителей заряда, протекающих через проводник за некоторое время.

Физики сокращенно называют величину током.

Единица измерения

Обозначение силы тока зависит от его типа. Он бывает постоянным и переменным, которые отличаются направлением и частотой. В первом случае записывается прописной буквой I. Он имеет только одно направление. Во втором — i. Кроме того, он постоянно меняет направление с частотой, которая определяется по некоторому закону. Например, в жилых помещениях она составляет 50 Гц.

Единица силы тока равна одному амперу (А). Физический смысл 1 А следующий: неизменяющийся ток, проходящий по двум проводникам, длина которых стремится к бесконечности и площади поперечного сечения, стремящейся к 0, расположенных в безвоздушном пространстве (вакууме) на расстоянии 1 м и вызывающий силу взаимодействия между ними, равную 20 мкН. Приставка «мк» означает, что число 20 следует умножить на 10^(-6).

Начинающему радиотехнику следует ознакомиться с кратными величинами, поскольку не всегда используется А. В электронике, радиотехнике и промышленности применяются его производные величины (в технических справочниках есть специальные таблицы):

  1. Тераампер (ТА): 1 ТА = 10 12 А.
  2. Гигаампер (ГА): 1 ГА = 10 9 А.
  3. Мегаампер (МА): 1 МА = 10 6 А.
  4. Килоампер кА (1 кА = 10 3 А) используется в различной промышленности. Например, распределительные станции для шахтного оборудования.
  5. Миллиампер мА: 1 мА = 10^(-3) А = 0,001 А.
  6. Микроампер мкА: 1 мкА = 10^(-6) А.

Первые три применяются в атомной и силовой энергетике. Электростанции являются очень мощными источниками электричества, и генерируют огромные значения тока. Вторую приставку используют для расчетов в некоторых отраслях металлообрабатывающей и угледобывающей промышленностях. Например, для расчета распределительных станций, которые питают мощное шахтное оборудование.

С последними двумя приставками можно столкнуться при проектировании и расчете маломощных устройств (например, материнская плата для ноутбука или планшетного ПК). Однако приставки кратности применяются только для записи конечных результатов.

Подключение амперметра

Значение тока можно получить двумя методами. Первый из них является практическим. Измерение значения выполняется при помощи прибора, который называется амперметром. Он подключается в цепь последовательно с нагрузкой (рис. 1).

Рисунок 1. Схема подключения амперметра в простейшем блоке питания

На рис. 1 амперметр подключается последовательно к нагрузке «Н». Если включить блок питания в сеть без нее, то показание стрелки прибора будет незначительным, поскольку диодный мост потребляет малое количество электроэнергии, и является вторичным источником питания. Конденсаторы сглаживают пульсации тока, т. е. делают из него постоянный ток без колебаний и паразитарных частот.

Амперметры отличаются между собой по классу точности. Начинающему радиолюбителю очень важно знать порядок перевода одной единицы в другую. Для выполнения этой операции применяется определенный алгоритм.

Алгоритм перевода

Во время вычислений следует переводить значения некоторых величин в систему, которая является удобной. Однако сделать это без ошибок иногда не получается, поскольку новички не придерживаются некоторых правил. Специалисты предлагают специальный алгоритм, позволяющий правильно осуществлять эту операцию:

  1. Записать исходную величину.
  2. Умножить на значение приставки, представленное в экспоненциальной форме (например, 1 мкА = 1 * 10^(-6)).
  3. Записать результат.

Далее следует разобрать алгоритм перевода на практическом примере. Пусть нужно перевести 1200 мкА в амперы. Если воспользоваться вышеописанным алгоритмом, то получится такой результат:

  1. 1200 мкА (1 мк = 10^(-6)).
  2. Умножение: 1200 * 10^(-6) = 12 * 10^2 * 10^(-6) = 12 * 10^(2 — 6) = 12 * 10^(-4).
  3. Результат: 12 * 10^(-4).

Следует отметить, что представление приставки в экспоненциальной форме является удобной записью, поскольку экономит время (проще набрать на калькуляторе 12, а не 0,0012). Кроме того, перевод может сыграть важную роль при расчетах. Необходимо всегда соблюдать размерность величин.

Формулы и соотношения

Для расчетов следует знать основные законы и следствия из них.

Они указывают на зависимость искомой физической величины от других.

Используя основные соотношения, можно выполнить расчет других параметров (мощности, падения напряжения на одном из потребителей и т. д.).

К основным законам следует отнести следующие:

  1. Правила Ома.
  2. Закон теплового действия тока.
  3. Законы Кирхгофа (I и II).

Первый связывает ток с электросопротивлением, ЭДС и напряжением. Для переменного он сильно отличается, поскольку вводится понятие активной и реактивной нагрузок. Второй применяется для расчета количества теплоты, выделяемого проводником при прохождении через него электротока.

Законы Кирхгофа применяются в электронике для расчета токов. Примером такого прибора является УЗО (устройство защитного отключения). Его принцип действия основан на I законе Кирхгофа.

Закон Ома

Закон Ома радиолюбители применяют для расчета не только участка электроцепи, но и всей схемы. Он представлен в двух формулировках: для участка цепи и полной. В первом случае берется какой-либо участок без учета источника питания. Во втором — появляется ЭДС и внутреннее сопротивления гальванического элемента (источника питания).

Формулировка в первом случае следующая: ток, протекающий через заданный участок цепи, прямо пропорционально зависит от значения напряжения (U), и обратно пропорционален электрическому сопротивлению этого участка (R). Формула силы тока имеет такой вид: I = U / R. Если рассматривать полную цепь, состоящую из резистора, источника питания и амперметра, то появляются параметры ЭДС и внутреннее сопротивление элемента питания (Rип).

Формулировка имеет следующий вид: сила тока (i или I) прямо пропорционально зависит от ЭДС (e) в полной цепи и обратно пропорционально от алгебраической суммы сопротивлений резистора (R) и гальванического элемента (Rип). Запись закона в математической форме следующая: i = e / (R + Rип).

На основании формул можно вывести некоторые соотношения. Они связывают одну физическую величину с другой. Это позволяет без особых проблем находить неизвестные параметры. Формулы называют еще следствием из законов. Вот некоторые из них:

  1. Нахождение сопротивлений резистора и источника питания: R = U / I, R = (e / i) — Rип и Rип = (e / i) — R.
  2. Напряжение и ЭДС: U = I * R и e = i * (R + Rип).

Кроме того, нужно знать еще одну формулу, с помощью которой находится мощность: P = U * I = U^2 / R = R * I^2.

Формула теплого действия

Электроток, протекающий через проводник, оказывает на последний тепловое воздействие. При этом происходит преобразование электроэнергии в тепловую. Объясняется этот феномен взаимодействием свободных носителей заряда с узлами кристаллической решетки, т. е. приводит к выделению некоторого количества теплоты Q.

Два ученых открыли (независимо друг от друга) закон вычисления тепловой энергии, которая выделяется при протекании электричества за некоторое время (t). Он получил название «закон Джоуля- Ленца». Его формулировка следующая: количество теплоты, которое выделяет проводник в результате прохождения через него электричества, прямо пропорционально зависит от I, U и t. Математическая форма следующая: Q = UIt = RtI^2 = (tU^2) / R = Pt.

Физики рекомендуют воспользоваться формулами-следствиями из него:

  1. Ток: I = Q / (Ut) = [(Q / (Rt)]^(1/2).
  2. Напряжение: U = Q / (It) = [QRt]^(1/2).
  3. Время протекания тока: t = Q / (UI) = Q / (RI^2) = Q / (U^2 / R) = Q / P.

Когда ток не совершает какую-либо механическую работу и не действует на какой-либо элемент цепи, тогда выполняется преобразование всей электроэнергии в тепловую, т. е. Q = A.

Правила Кирхгофа

В физике всего два закона Кирхгофа. Формулировка первого имеет следующий вид: ток, входящий в узел цепи, равен исходящему току. Для примера следует рассмотреть схему 1. Она состоит из потребителей, которые являются резисторами.

Схема 1. Первый закон Кирхгофа

Ток I1 входит в узел А. После него распределяется на I2 и I3. Следовательно, I1 = I2 + I3. С узла D выходит ток I1, который состоит из I2 и I6.

Однако для расчета электрических цепей недостаточно одного закона Кирхгофа. Рекомендуется использовать также и второй (схема 2). Его формулировка следующая: в произвольном замкнутом контуре всегда выполняется равенство алгебраической суммы всех ЭДС и падений U на каждом элементе резистивного типа. Необходимо отметить, что е и U являются векторными величинами. Их направление указывается с помощью знаков «+» и «-», которые определяются по такому алгоритму:

  1. Сделать выбор направления, по которому осуществляется обход: по часовой или против часовой стрелки.
  2. Осуществить выбор направления протекания токов по цепи.
  3. Расставить знаки е: совпадение с направлением — «+», а в другом случае — «-».

Физики рекомендуют рассматривать любой закон на практическом примере. На схеме 2 показаны следующие элементы: резистор R, источники питания с ЭДС Е1 и Е2. Следует отметить, что r1 и r2 — внутренние сопротивления источников питания с Е1 и Е2 соответственно.

Схема 2. Второй закон Кирхгофа

На схеме 2 видно, что Е1 направлена по часовой стрелке, а Е2 — в обратную сторону. Закон запишется таким образом: Е1 — Е2 = I1 * r1 — I2 * r2. Чтобы выразить величину Е2, следует рассмотреть правую ветвь: Е2 = I2 * r2 + I * R. Таким же образом находится и Е1: Е1 = I1 * r1 + I * R. Ток через резистор R будет равен алгебраической сумме I1 и I2.

Пример решения

Для закрепления знаний следует перейти к их практическому применению. Используя данные на схеме 2, следует вычислить ток, который протекает через резистор R. Кроме того, известно, что I1 в 2 раза больше I2. Нужно определить количество теплоты при следующих параметрах: максимальный ток I и время 5 минут. Решение осуществляется следующим образом:

  1. Общий ток через R: I = I1 + I2 = 2 * I2 + I2 = 3 * I2.
  2. Необходимо рассмотреть левую ветвь: Е1 = I1 * r1 + I * R = 2 * I2 * r1 + 3 * I2 * R.
  3. Составить уравнение: 12 = 2 * I2 * 0,1 + 3 * I2 * 2.
  4. Упростить его: I2 * (2 * 0,1 + 3 * 2) = I2 * (0,2 + 6) = 6,2 * I2 = 12.
  5. Решить равенство: I2 = 12 / 6,2 = 1,94 (A).
  6. Вычислить искомое значение тока: I = 3 * I2 = 3 * 1,94 = 5,81 (А).
  7. Количество теплоты (t = 5 минут = 5 * 60 = 300 секунд): Q =t * R * I^2 = 300 * 20 * 33,76 = 202536,6 Дж = 0,2 МДж.

Для проверки правильности решения специалисты рекомендуют воспользоваться специальными приложениями для построения и расчета электрических принципиальных схем.

Таким образом, начинающему радиолюбителю необходимо ознакомиться с основными законами физики, а затем приступать к расчетам схем. Не следует упускать из вида силу тока, поскольку от этого параметра зависит правильность работы любого устройства.

Источник