Укажите основную единицу измерения скорости механического движения

ИНФОФИЗ — мой мир.

Весь мир в твоих руках — все будет так, как ты захочешь

Весь мир в твоих руках — все будет так, как ты захочешь

Как сказал.

Все мы гении. Но если вы будете судить рыбу по её способности взбираться на дерево, она проживёт всю жизнь, считая себя дурой.

Альберт Эйнштейн

Вопросы к экзамену

Для всех групп технического профиля

Список лекций по физике за 1,2 семестр

Урок 02. Механическое движение, его характеристики

Механика – раздел физики, в котором изучают механическое движение.

Механику подразделяют на кинематику, динамику и статику.

Кинематикой называют раздел механики, в котором движение тел рассматривается без выяснения причин этого движения. Кинематика изучает способы описания движения и связь между величинами, характеризующими эти движения.

Задача кинематики: определение кинематических характеристик движения (траектории движения, перемещения, пройденного пути, координаты, скорости и ускорения тела), а также получение уравнений зависимости этих характеристик от времени.

Механическим движением тела называют изменение его положения в пространстве относительно других тел с течением времени.

Механическое движение относительно, выражение «тело движется» лишено всякого смысла, пока не определено, относительно чего рассматривается движение. Движение одного и того же тела относительно разных тел оказывается различным. Для описания движения тела нужно указать, по отношению к какому телу рассматривается движение. Это тело называют телом отсчета. Покой тоже относителен (примеры: пассажир в покоящемся поезде смотрит на проходящий мимо поезд)

Главная задача механикиуметь вычислять координаты точек тела в любой момент времени.

Чтобы решить эту надо иметь тело, от которого ведется отсчет координат, связать с ним систему координат и иметь прибор для измерения промежутков времени.

Система координат, тело отсчета, с которым она связана, и прибор для отсчета времени образуют систему отсчета, относительно которой и рассматривается движение тела.

Системы координат бывают:

1. одномерная – положение тела на прямой определяется одной координатой x.

2. двумерная – положение точки на плоскости определяется двумя координатами x и y.

3. трехмерная – положение точки в пространстве определяется тремя координатами x, y и z.

Всякое тело имеет определенные размеры. Различные части тела находятся в разных местах пространства. Однако, во многих задачах механики нет необходимости указывать положения отдельных частей тела. Если размеры тела малы по сравнению с расстояниями до других тел, то данное тело можно считать его материальной точкой. Так можно поступать, например, при изучении движения планет вокруг Солнца.

Если все части тела движутся одинаково, то такое движение называется поступательным.

Поступательно движутся, например, кабины в аттракционе «Гигантское колесо», автомобиль на прямолинейном участке пути и т. д. При поступательном движении тела его также можно рассматривать как материальную точку.

Материальной точкой называется тело, размерами которого в данных условиях можно пренебречь.

Понятие материальной точки играет важную роль в механике. Тело можно рассматривать как материальную точку, если его размеры малы по сравнению с расстоянием, которое оно проходит, или по сравнению с расстоянием от него до других тел.

Пример. Размеры орбитальной станции, находящейся на орбите около Земли, можно не учитывать, а рассчитывая траекторию движения космического корабля при стыковке со станцией, без учета ее размеров не обойтись.

Характеристики механического движения: перемещение, скорость, ускорение.

Механическое движение характеризуется тремя физическими величинами: перемещением, скоростью и ускорением.

Перемещаясь с течением времени из одной точки в другую, тело (материальная точка) описывает некоторую линию, которую называют траекторией движения тела.

Линия, по которой движется точка тела, называется траекторией движения.

Длина траектории называется пройденным путем.

Обозначается l, измеряется в метрах. (траектория – след, путь – расстояние)

Пройденный путь l равен длине дуги траектории, пройденной телом за некоторое время t. Путьскалярная величина.

Перемещением тела называют направленный отрезок прямой, соединяющий начальное положение тела с его последующим положением. Перемещение есть векторная величина.

Вектор, соединяющий начальную и конечную точки траектории, называется перемещением.

Обозначается S, измеряется в метрах.(перемещение – вектор, модуль перемещения – скаляр)

Скорость — векторная физическая величина, характеризующая быстроту перемещения тела, численно равная отношению перемещения за малый промежуток времени к величине этого промежутка.

Обозначается v

Формула скорости: или

Единица измерения в СИ – м/с.

На практике используют единицу измерения скорости км/ч (36 км/ч = 10 м/с).

Измеряют скорость спидометром.

Ускорение — векторная физическая величина, характеризующая быстроту изменения скорости, численно равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло.

Если скорость изменяется одинаково в течение всего времени движения, то ускорение можно рассчитать по формуле:

Ускорение измеряют акселерометром

Единица измерения в СИ м/с 2

Таким образом, основными физическими величинами в кинематике материальной точки являются пройденный путь l, перемещение , скорость и ускорение . Путь l является скалярной величиной. Перемещение , скорость и ускорение – величины векторные. Чтобы задать векторную величину, нужно задать ее модуль и указать направление. Векторные величины подчиняются определенным математическим правилам. Вектора можно проектировать на координатные оси, их можно складывать, вычитать и т. д.

Источник

Укажите основную единицу измерения скорости механического движения

Механическое движение – это изменение расположения тела в пространстве касательно других точек.

Например, автомобиль движется по дороге и в нем находятся люди. Они осуществляют движение вместе с транспортом по трассе. То есть люди передвигаются в пространстве относительно дороги, но относительно самой машины люди не движутся.

Из этого примера видно, что, изначально необходимо определить тело, рассматриваемое в движении, которое в наук называют точкой отсчета. Система координат тесно взаимосвязана с методикой измерения времени, что в результате создают концепцию отсчета.

Готовые работы на аналогичную тему

В основном местоположение тела задается координатой. Проанализируем один пример: размеры станции, находящейся на орбите возле Земли, можно не принимать во внимание, а рассчитывать только траекторию перемещение космического корабля во время стыковки со станцией. Таким образом, размерами физических элементов возможно пренебречь, а иногда — тело считают материальной точкой. Линию, по которой перемещается данная величина, именуют траекторией, длину которой называют путем. Единица пути — метр (м). Механическое движение характеризуется тремя физиологическими величинами: скоростью, перемещением, и ускорением.

Понятие скорости механического движения

Скорость – физическая величина, которая равна перемещению тела к интервалу времени, в течение которого это взаимодействие произошло.

Механическое движение оценивается еще и тем, как быстро перемещается тело (точка). Это и есть скорость движения. Скорость представляет собой понятие векторной величины. Для того, чтобы в полном объеме задать ее, необходимо установить непосредственно направление и величину скорости, вдоль которых она была изначально замерена. Как правило скорость элементов рассматривают по траектории движения. В таком случае величина исследуемого объекта обусловливается как путь, пройденный за одну единицу времени. Другими словами, для нахождения правильного коэффициента траектории движения, путь тела надо разделить на время, в течение которого он был пройден.

Мгновенная скорость – это скорость точки в конкретный момент времени или в определенной точке траектории.

Это векторная физическая величина, численно равная пределу, к которому устремляется средняя скорость за очень малый промежуток времени. Указанная траектория является первой производной от вектора в соответствии с временем. Вектор моментальной скорости определяется по касательной к линии движения тела в сторону его дальнейшего перемещения.

Эта величина дает точное представление о движении объекта в данный момент времени.

Например, во время поездки в автомобиле в определенный момент времени водитель смотрит на спидометр и видит, что на табло 100 км/ч. Затем стрелка указывает на 90 км/ч, а спустя пару минут – 110 км/ч.

Значением мгновенной скорости транспорта в определенные моменты времени являются полученные показания прибора.

Имеется ли физический смысл в понятии «мгновенной скорости»? Данный термин характеризуется изменением перемещения элементов в пространстве. Но, чтобы узнать, как изменилось его расположение, следует наблюдать за движением в течение определенного периода времени.

Даже самые современные приборы для замера скорости измеряют движение за конкретный отрезок времени – конечный временной интервал. Определение «скорость тела на данный момент» не считается корректным с точки зрения физики. Однако, именно этот тезис очень удобен в математических расчетах, поэтому им пользуются постоянно.

Закон сложения скоростей

Скорость любого физического тела относительно неподвижной концепции отсчета всегда равна векторной сумме перемещения элементов относительно подвижной системы. Эта теория помогает точно определить расположение объекта в конкретный период времени.

Для понимания указанного закона необходимо рассмотреть две системы отсчета, одна из которых связана с неподвижной точкой отсчёта $O$. Обозначим данную концепцию $K$, которая будет называться неподвижной.

Вторая система, обозначаемая $K’$ и перемещающаяся относительно тела $O$ со скоростью $ \bar$ — будет считаться движущейся.

Необходимо понимать, что скорость является векторной величиной. По траектории движения возможно определить только направление скорости вектора. Вектор скорости направлен по касательной к траектории, по которой проходит тело, что движется на данный момент.

Отрицательная скорость

Скорость тела может быть отрицательной в случае, когда тело движется в противоположном направлении от оси координат в выбранной системе отсчета.

Ученый из Великобритании, Роберта Бойд смог присвоить пучку света «отрицательную» скорость, при которой пик импульса продвигался к источнику, а не от него. Интересно, если менять среду специальным образом и пропускать через нее через свет, возможно легко управлять скоростью светового импульса — «замораживая» или замедлять его в десятки тысяч раз, а то и вовсе останавливать.

В этом аспекте речь идет о групповой скорости, которая определяет скорость распространения одного пучка импульса света. Из-за рассеивания этот элемент может передвигаться на несколько порядков медленнее, чем каждый фотон в отдельности, и наоборот —стремительнее скорости света в вакууме.

В данном случае речь не идет о нарушении законов природы, потому как самые первые фотоны в импульсе добегают до конца, не «быстрее света». В случае же остановки светового пучка необходимо говорить о поглощении импульса подготовленной средой с повторным излучением. При этом сохраняются все важные параметры исходного объекта, «до последнего фотона».

Источник

Механическое движение и его характеристики

теория по физике 🧲 кинематика

Механика — раздел физики, который изучает механическое движение физических тел и взаимодействие между ними.

Основная задача механики — определение положение тела в пространстве в любой момент времени.

Механическое движение — изменение положения тела в пространстве относительно других тел с течением времени.

Механическое движение и его виды

По характеру движения точек тела выделяют три вида механического движения:

  • Поступательное. Это движение, при котором все точки тела движутся одинаково. Если через тело мысленно провести прямую, то после изменения положения этого тела в пространстве данная прямая останется параллельной самой себе.
  • Вращательное. Это движение, при котором все точки тела движутся, описывая окружности.
  • Колебательное. Это движение тела, которое повторяется точно или приблизительно через определенные интервалы времени. От вращательного движения его отличает то, что при колебаниях тело перемещается в двух взаимно противоположных направлениях.

По типу линии, вдоль которой движется тело, выделяют два вида движения:

  • Прямолинейное — тело движется по прямой линии.
  • Криволинейное — тело движется по кривой линии, в том числе замкнутой.

По скорости выделяют два вида движения:

  • Равномерное — скорость движущегося тела остается неизменной.
  • Неравномерное — скорость движущегося тела с течением времени меняется.

По ускорению выделяют три вида движения:

  • Равноускоренное — тело движется неравномерно с постоянным ускорением (положительным). Скорость увеличивается.
  • Равнозамедленное — тело движется неравномерно с постоянным замедлением (отрицательным ускорением). Скорость уменьшается.
  • Ускоренное — тело движется неравномерно с меняющимся ускорением. Скорость может, как увеличиваться, так и уменьшаться.

Что нужно для описания механического движения?

Для описания механического движения нужно выбрать, относительно какого тела оно будет рассматриваться. Движение одного и того же объекта относительно разных тел неодинаковое. К примеру, идущий человек относительно дерева движется с некоторой скоростью. Но относительно сумки, которую он держит в руках, он находится в состоянии покоя, так как расстояние между ними с течением времени не изменяется.

Решение основной задачи механики — определения положения тела в пространстве в любой момент времени — заключается в вычислении координат его точек. Чтобы вычислить координаты тела, нужно ввести систему координат и связать с ней тело отсчета. Также понадобится прибор для измерения времени. Все это вместе составляет систему отсчета.

Система отсчета — совокупность тела отсчета и связанных с ним системы координат и часов.

Тело отсчета — тело, относительно которого рассматривается движение.

Часы — прибор для отсчета времени. Время измеряется в секундах (с).

При описании движения тела важно учитывать его размеры, так как характер движения его отдельных точек может различаться. Но в рамках некоторых задач размер тела не влияет на результат решения. Тогда его можно считать пренебрежительно малым. Тогда тело рассматривают как движущуюся материальную точку.

Материальная точка — это тело, размерами которого можно пренебречь в условиях конкретной задачи. Допустимо принимать тело за точку, если оно движется поступательно или его размеры намного меньше расстояний, которые оно проходит.

Виды систем координат

В зависимости от характера движения тела для его описания выбирают одну из трех систем координат:

  • Одномерную. Используется, когда положение материальной точки можно задать только одной координатой x — M(x) . В этом случае тело движется прямолинейно.
  • Двумерную. Используется, когда положение материальной точки можно задать двумя координатами x и y — M(x,y). Тело в этом случае движения по плоскости.
  • Трехмерную. Используется, когда положение материальной точки можно задать тремя координатами x, y и z — M(x,y,z). Тело в этом случае изменяет положение в трехмерном пространстве.

Способы описания механического движения

Описать механическое движение можно двумя способами:

Координатный способ

Указать положение материальной точки в пространстве можно, используя трехмерную систему координат. Если эта точка движется, то ее координаты с течением времени меняются. Так как координаты точки зависят от времени, можно считать, что они являются функциями времени. Математически это записывается так:

Эти уравнения называют кинематическими уравнениями движения точки, записанными в координатной форме.

Векторный способ

Радиус-вектор точки — вектор, начало которого совпадает с началом системы координат, а конец — с положением этой точки.

Указать положение точки в трехмерном пространстве также можно с помощью радиус-вектора. При движении точки радиус-вектор со временем изменяется. Он может менять направление и длину. Это значит, что радиус-вектор тоже можно принять за функцию времени. Математически это записывается так:

Эта формула называется кинематическим уравнением движения точки, записанным в векторной форме.

Характеристики механического движения

Движение материальной точки характеризуют три физические величины:

Перемещение

Перемещение (вектор перемещения) — направленный отрезок, начало которого совпадает с начальным положением точки, а конец — с его конечным положением. Обозначается как S .

Перемещение точки определяется как изменение радиус-вектора. Это изменение обозначается как Δ r . С точки зрения геометрии вектор перемещения равен разности радиус-векторов, задающих конечное и начальное положение точки:

Траектория — линия, которую описывает тело во время движения.

Путь — длина траектории. Обозначается буквой s. Единица измерения — метры (м).

Путь есть функция времени:

Модуль перемещения — длина вектора перемещения. Обозначается как |Δ r |. Единица измерения — метры (м).

Модуль перемещения необязательно должен совпадать с длиной пути.

Пример №1. Человек обошел круглое поле диаметром 1 км. Чему равны пройденный путь и перемещение, которое он совершил.

Путь равен длине окружности. Поэтому:

Человек, обойдя круглое поле, вернулся в ту же точку. Поэтому его начальное положение совпадает с конечным. В этом случае человек совершил перемещение, равное нулю.

Пример №2. Точка движется по окружности радиусом 10 м. Чему равен путь, пройденный этой точкой, в момент, когда модуль перемещения равен диаметру окружности?

Диаметр — это отрезок, который соединяет две точки окружности и проходит через центр. Перемещение равно длине этого отрезка в случае, если один из концов этого отрезка является началом вектора перемещения, а другой — его концом. Траекторией движения в этом случае является дуга, равная половине окружности. А длина траектории есть путь:

Скорость

Скорость — векторная физическая величина, характеризующая быстроту перемещения тела. Численно она равна отношению перемещения за малый промежуток времени к величине этого промежутка.

В физике скорость обозначается V . Математически скорость определяется формулой:

Скорость характеризуется не только направлением вектора скорости, но и его модулем.

Модуль скорости — расстояние, пройденное точкой за единицу времени. Обозначается буквой V и измеряется в метрах в секунду (м/с).

Математическое определение модуля скорости:

Величина скорости тела в данный момент времени есть первая производная от пройденного пути по времени:

Ускорение

Ускорение — векторная физическая величина, которая характеризует быстроту изменения скорости тела. Численно она равна отношению изменения скорости за малый промежуток времени к величине этого промежутка.

В физике ускорение обозначается a . Математически оно определяется формулой:

Модуль ускорения — численное изменение скорости в единицу времени. Обозначается буквой a. Единица измерения — метры в секунду в квадрате (м/с 2 ).

Математическое определение модуля скорости:

v — скорость тела в данный момент времени, v0— его скорость в начальный момент времени, t — время, в течение которого эта скорость менялась.

Ускорение тела есть первая производная от скорости или вторая производная от пройденного пути по времени:

Проекция вектора перемещения на ось координат

Проекция вектора перемещения на ось — это скалярная величина, численно равная разности конечной и начальной координат.

Проекция вектора на ось OX:

Проекция вектора на ось OY:

Знаки проекций перемещения

  • Проекция является положительной, если движение от начала проекции вектора к проекции конца происходит сонаправленно оси координат.
  • Проекция является отрицательной, если движение от начала проекции вектора к проекции конца направлено в сторону, противоположную направлению координатной оси.

Внимание!

Проекция вектора перемещения на ось считается нулевой, если вектор расположен перпендикулярно этой оси.

Модуль перемещения — длина вектора перемещения:

Модуль перемещения измеряется в метрах (м).

Вместе с собственными проекциями модуль перемещения образует прямоугольный треугольник. Сам он является гипотенузой этого треугольника. Поэтому для его вычисления можно применить теорему Пифагора. Выглядит это так:

Выразив проекции вектора перемещения через координаты, эта формула примет вид:

Выражение проекций вектора перемещения через угол его наклона по отношению к координатным осям:

Общий вид уравнений координат:

Пример №3. Определить проекции вектора перемещения на ось OX, OY и вычислить его модуль.

Определяем координаты начальной точки вектора:

Определяем координаты конечной точки вектора:

Проекция вектора перемещения на ось OX:

Проекция вектора перемещения на ось OY:

Применяем формулу для вычисления модуля вектора перемещения:

Пример №4. Определить координаты конечной точки B вектора перемещения, если начальная точка A имеет координаты (–5;5). Учесть, что проекция перемещения на OX равна 10, а проекция перемещения на OY равна 5.

Извлекаем известные данные:

Для определения координаты точки В понадобятся формулы:

Выразим из них координаты конечного положения точки:

Точка В имеет координаты (5; 10).

Алгоритм решения

  1. Записать исходные данные в определенной системе отсчета.
  2. Записать формулу ускорения.
  3. Выразить из формулы ускорения скорость.
  4. Найти искомую величину.

Решение

Записываем исходные данные:

  • Тело начинает двигаться из состояния покоя. Поэтому его начальная скорость v0 = 0 м/с.
  • Ускорение, с которым тело начинает движение, равно: a = 4 м/с 2 .
  • Время движения согласно условию задачи равно: t = 2 c.

Записываем формулу ускорения:

Так как начальная скорость равна 0, эта формула принимает вид:

Отсюда скорость равна:

Подставляем имеющиеся данные и вычисляем:

pазбирался: Алиса Никитина | обсудить разбор | оценить

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector