Меню

Укажите единицу измерения разности потенциалов



Потенциал. Разность потенциалов. Напряжение.Эквипотенциальные поверхности

Потенциал. Разность потенциалов. Напряжение.

Потенциал электростатического поля — скалярная величина, равная отношению потен­циальной энергии заряда в поле к этому заряду:

— энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле.

Т.к. потенциальная энергия зависит от выбора системы координат, то и потенциал определяется с точностью до постоянной.

За точку отсчета потенциала выбирают в зависимости от задачи: а) потенциал Земли, б) потенциал бесконечно удаленной точки поля, в) потенциал отрицательной пластины конденсатора.

— следствие принци­па суперпозиции полей (потенциалы складываютсяалгебраически).

Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность.

В СИ потенциал измеряется в вольтах:

Разность потенциалов

Напряжение — разность значений потенциала в начальной и конечнойточках траектории.

Напряжение численно равно работе электростатического поля при перемещении единичного положительного заряда вдоль силовых линий этого поля.

Разность потенциалов (напряжение) не зависит от выбора

Единица разности потенциалов

Напряжение равно 1 В, если при перемещении положительного заряда в 1 Кл вдоль силовых линий поле совершает работу в 1 Дж.

Связь между напряженностью и напряжением.

Из доказанного выше:

напряженность равна градиенту потенциала (скорости изменения потенциала вдоль направления d).

Из этого соотношения видно:

  1. Вектор напряженности направлен в сторону уменьшения потенциала.
  2. Электрическое поле существует, если существует разность потенциалов.
  3. Единица напряженности: Напряженность поля равна1 В/м, если между двумя точками поля, находящимися на расстоянии 1 м друг от друга существует разность потенциалов 1 В.

Эквипотенциальные поверхности.

ЭПП — поверхности равного потенциала.

— работа при перемещении заряда вдоль эквипотенциальной поверхности не совершается;

— вектор напряженности перпендикулярен к ЭПП в каждой ее точке.

Измерение электрического напряжения (разности потенциалов)

Между стержнем и корпусом — электрическое поле. Измерение потенциала кондуктора Измерение напряжения на гальваническом элементе Электрометр дает большую точность, чем вольтметр.

Потенциальная энергия взаимодействия зарядов.

Потенциал поля точечного заряда

Потенциал заряженного шара

а) Внутри шара Е=0, следовательно, потенциалы во всех точках внутри заряженного металлического шара одинаковы (. ) и равны потенциалу на поверхности шара.

б) Снаружи поле шара убывает обратно пропорционально расстоянию от центра шара, как и в случае точечного заряда.

Перераспределение зарядов при контакте заряженных проводников.

Переход зарядов происходит до тех пор, пока потенциалы контактирующих тел не станут равными.

Источник

Разность потенциалов

Напряже́ние (падение потенциалов) между точками A и B — отношение работы электрического поля при переносе пробного электрического заряда из точки A в точку B к величине пробного заряда.

При этом считается, что перенос пробного заряда не изменяет распределения зарядов на источниках поля.

Альтернативное определение (для электростатического поля) —

— интеграл от проекции поля (напряженности поля ) на расстояние между точками A и B вдоль любой траектории, идущей из точки A в точку B.

Единицей измерения напряжения в системе СИ является Вольт.

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое «Разность потенциалов» в других словарях:

РАЗНОСТЬ ПОТЕНЦИАЛОВ — электрическая (для потенциального электрического поля то же, что напряжение электрическое) между двумя точками пространства (цепи); равна работе электрического поля по перемещению единичного положительного заряда из одной точки поля в другую. В… … Современная энциклопедия

Разность потенциалов — электрическая (для потенциального электрического поля то же, что напряжение электрическое) между двумя точками пространства (цепи); равна работе электрического поля по перемещению единичного положительного заряда из одной точки поля в другую. В… … Иллюстрированный энциклопедический словарь

разность потенциалов — Электрическое напряжение в безвихревом электрическом поле, характеризующееся независимостью от выбора пути интегрирования. [ГОСТ Р 52002 2003] Тематики электротехника, основные понятия Синонимы разность электрических потенциалов … Справочник технического переводчика

РАЗНОСТЬ ПОТЕНЦИАЛОВ — РАЗНОСТЬ ПОТЕНЦИАЛОВ, (электрическое напряжение), разность в НАПРЯЖЕНИИ (ЭЛЕКТРИЧЕСКОМ ПОТЕНЦИАЛЕ) между двумя точками в цепи или в электрическом поле. Обычно выражается в ВОЛЬТАХ. Равна работе по перемещению единичного электрического заряда из… … Научно-технический энциклопедический словарь

РАЗНОСТЬ ПОТЕНЦИАЛОВ — электрическая (электрическое напряжение) между двумя точками равна работе электрического поля по перемещению единичного положительного заряда из одной точки поля в другую … Большой Энциклопедический словарь

РАЗНОСТЬ ПОТЕНЦИАЛОВ — между двумя точками стационарного электрич. или гравитац. поля измеряется работой, совершаемой силами поля при перемещении единичного положит. заряда или, соответственно, единичной массы из точки с большим потенциалом в точку с меньшим… … Физическая энциклопедия

разность потенциалов — elektrinių potencialų skirtumas statusas T sritis Standartizacija ir metrologija apibrėžtis Apibrėžtį žr. priede. priedas( ai) Grafinis formatas atitikmenys: angl. electric potential difference; potential difference vok. elektrische… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

разность потенциалов — potencialų skirtumas statusas T sritis automatika atitikmenys: angl. potential difference; voltage difference vok. Potentialdifferenz, f; Potentialunterschied, m rus. разница потенциалов, f; разность потенциалов, f pranc. différence des… … Automatikos terminų žodynas

Читайте также:  Индуктивность это единица измерения индуктивности

разность потенциалов — между двумя точками электрического поля (электрическое напряжение), равна работе электрического поля по перемещению единичного положительного заряда из одной точки поля в другую. * * * РАЗНОСТЬ ПОТЕНЦИАЛОВ РАЗНОСТЬ ПОТЕНЦИАЛОВ электрическая… … Энциклопедический словарь

разность потенциалов — potencialų skirtumas statusas T sritis chemija apibrėžtis Dydis, lygus elektrinio lauko darbui, kurio reikia perkelti vienetinį teigiamą elektros krūvį iš vieno lauko taško į kitą. atitikmenys: angl. potential difference rus. разность потенциалов … Chemijos terminų aiškinamasis žodynas

разность потенциалов — potencialų skirtumas statusas T sritis fizika atitikmenys: angl. potential difference vok. Potentialdifferenz, f; Potentialunterschied, m rus. разность потенциалов, f pranc. différence de potentiel, f … Fizikos terminų žodynas

Источник

ЭДС, разность потенциалов и напряжение — что это и в чем разница

В материалах по электротехнике и электронике часто можно встретить три физические величины, имеющие одну и ту же единицу измерения — Вольт: разность электрических потенциалов, электрическое напряжение и ЭДС — электродвижущая сила.

Чтобы раз и навсегда избавиться от путаницы в терминах, давайте разберемся, в чем же заключаются различия между этими тремя понятиями. Для этого подробно рассмотрим каждое из них по отдельности.

Разность электрических потенциалов

На сегодняшний день физикам известно, что источниками электрических полей являются электрические заряды или изменяющиеся магнитные поля. Когда же мы рассматриваем определенные точки А и В в электростатическом поле известной напряженности E, то можем тут же говорить и о разности электростатических потенциалов между двумя данными точками в текущий момент времени.

Эта разность потенциалов находится как интеграл электрической напряженности между точками А и В, расположенными в данном электрическом поле на определенном расстоянии друг от друга:

Практически такая характеристика как потенциал относится к одному электрическому заряду, который теоретически может быть неподвижно установлен в данную точку электростатического поля, и тогда величина электрического потенциала для этого заряда q будет равна отношению потенциальной энергии W (взаимодействия данного заряда с данным полем) к величине этого заряда:

Отсюда следует, что разность потенциалов оказывается численно равна отношению работы A (работа по сути — изменение потенциальной энергии заряда), совершаемой данным электростатическим полем при переносе рассматриваемого заряда q из точки поля 1 в точку поля 2, к величине данного пробного заряда q:

В этом и заключается практический смысл термина «разность потенциалов», применительно к электротехнике, электронике, и вообще — к электрическим явлениям.

И если мы говорим о какой-нибудь электрической цепи, то можем судить и о разности потенциалов между двумя точками такой цепи, если в ней в данный момент действует электростатическое поле, причем как раз потому, что рассматриваемые точки цепи будут находится одновременно и в электростатическом поле определенной напряженности.

Как было сказано выше, разность электрических потенциалов измеряется в вольтах (1 вольт = 1 Дж/1Кл).

Электростатическое поле — электрическое поле, создаваемое неподвижными электрическими зарядами. Для того, чтобы электрические заряды были неподвижны, на них не должны действовать силы в тех местах, где эти заряды могли бы двигаться. Но внутри проводников заряды могут свободно двигаться, поэтому при наличии электрического поля внутри проводников в них возникло бы движение зарядов (электрический ток).

Следовательно, заряды могут оставаться неподвижными только в том случае, если они создают такое поле, которое везде внутри проводников равно нулю, а на поверхности проводников направлено перпендикулярно к поверхности (т. к. иначе заряды двигались бы вдоль поверхности).

Для этого неподвижные заряды должны располагаться только по поверхности проводников и при том именно таким образом, чтобы электрическое поле внутри проводников было равно нулю, а на поверхности перпендикулярно к ней.

Все сказанное относится к случаю неподвижных зарядов. В случае движения зарядов, т. е. наличия токов в проводниках, в них должно существовать электрическое поле (т. к. иначе не могли бы течь токи) и, следовательно, движущиеся заряды располагаются в проводниках, вообще говоря, не так, как неподвижные, и создают электрические поля, отличные по своей конфигурации от электростатического поля. Но по своим свойствам электростатическое поле ничем не отличается от электрического поля движущихся зарядов.

Электрическое напряжение U

Теперь рассмотрим такое понятие как электрическое напряжение U между точками А и В в электрическом поле или в электрической цепи. Электрическим напряжением называется скалярная физическая величина, численно равная работе эффективного электрического поля (включая и сторонние поля!), совершаемой при переносе единичного электрического заряда из точки А в точку В.

Электрическое напряжение измеряется в вольтах, как и разность электрических потенциалов. В случае с напряжением принято считать, что перенос заряда не изменит распределения зарядов, являющихся источниками эффективного электростатического поля. И напряжение в этом случае будет складываться из работы электрических сил и работы сторонних сил.

Читайте также:  Измерение потребления тока мультиметром

Если сторонние силы отсутствуют, то работу совершит лишь потенциальное электрическое поле, и в этом случае электрическое напряжение между точками А и В цепи будет численно в точности равно разности потенциалов между данными точками, то есть отношению работы по переносу заряда из точки А в точку В к величине заряда q:

Однако в общем случае напряжение между точками A и B отличается от разности потенциалов между этими точками на работу сторонних сил по перемещению единичного положительного заряда:

Эту работу сторонних сил как раз и называют электродвижущей силой на данном участке цепи, сокращенно — ЭДС:

Электродвижущая сила — ЭДС

Электродвижущая сила — ЭДС так же, как и напряжение, в Международной системе единиц (СИ) измеряется в вольтах.

ЭДС является скалярной физической величиной, характеризующей работу непосредственно действующих сторонних сил (любых сил за исключением электростатических) в цепях постоянного или переменного тока. В частности, в замкнутой проводящей цепи ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль всего контура.

Здесь при необходимости вводят в рассмотрение электрическую напряженность сторонних сил Еex, являющуюся векторной физической величиной, равной отношению величины действующей на пробный электрический заряд сторонней силы к величине данного заряда. Тогда в замкнутом контуре L ЭДС будет равна:

Можно говорить об электродвижущей силе на любом участке электрической цепи. Это будет, по сути, удельная работа сторонних сил лишь на рассматриваемом ее участке. ЭДС гальванического элемента, к примеру, есть ни что иное, как работа сторонних сил при перемещении единичного положительного заряда только внутри этого гальванического элемента, а именно — от одного его полюса к другому.

Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит (!) от формы траектории. Так, например, работа сторонних сил при перемещении заряда между клеммами источника тока за пределами данного источника равна нулю.

ЭДС может быть получена различными способами, из которых можно назвать следующие:

при помощи источников ЭДС, использующих химические процессы (гальванические элементы, аккумуляторы — химические источники тока);

при помощи источников ЭДС, в которых используются свойства магнитного поля (электрические машины — генераторы);

при помощи источников ЭДС, в которых тепловая энергия преобразуется в электрическую (термоэлектрические преобразователи);

при помощи источников ЭДС, преобразующих энергию светового излучения в электрическую (фотоприемники, солнечные батареи).

Источник

Разность потенциалов

Поскольку электрический ток является упорядоченным движением заряженных частиц, то для определения величины тока необходимо знать, как величину энергии частиц, так и силу стороннего воздействия на них.

Сущность понятия потенциальной разницы

Для изучения свойств заряженных частиц, помещенных в электростатическое поле, введено понятие потенциала. Оно означает отношение энергии заряда, помещенного в электростатическое поле, к его величине.

При переносе заряженной частицы в другую точку поля меняется его потенциальная энергия, а величина заряда остается неизменной. Для переноса требуется затратить некоторое количество энергии. Данная энергия по переносу единицы заряда получила название электрического напряжения. Соответственно, больший запас энергии будет ускорять перенос, то есть, чем больше напряжение, тем больше ток в цепи.

В данном случае разность потенциалов – это численное равенство напряжению между точками нахождения единичного заряда. Для общего случая здесь должна добавляться работа сторонних сил, которая называется электродвижущей силой (ЭДС). По своей сути, электричество – это работа стороннего источника (генератора) по поддержанию в электросхеме заданных уровней напряжения и тока.

Единица разности потенциалов

В честь ученого (Алессандро Вольта), впервые доказавшего существование разницы потенциалов, единица измерения названа Вольт. В международной системе единиц напряжение обозначается символами:

  • В – в русскоязычной литературе;
  • V – в англоязычной литературе.

Кроме этого, существуют кратные обозначения:

  • мВ – милливольт (0.001 В);
  • кВ – киловольт (1000 В);
  • МВ – мегавольт (1000 кВ).

Поток вектора магнитной индукции

Электростатическое поле характеризуется напряженностью, которая вместе с вектором электромагнитной индукции составляет электромагнитное поле.

Если заряженная частица движется в электромагнитном поле, то полную силу, которая воздействует на частицу, определяют по закону Лоренца:

где:

  • q – величина заряда;
  • v – скорость движения;
  • E – величина электрического поля;
  • В – вектор магнитной индукции.

Обратите внимание! В указанной формуле приведены векторные величины. Крестом обозначено векторное произведение.

Силу F воздействия на частицу принято называть силой Лоренца.

Данная формула является наиболее общей и может использоваться для вычисления при условии точечного заряда (в том числе единичного).

Теорема Гаусса для магнитного поля

Теорема Гаусса является одной из самых основных в электродинамике законов. Существуют теоремы Гаусса для электрического и магнитного полей, которые входят в состав уравнений Максвелла. При помощи данного закона устанавливается связь между напряженностью электрического поля и заряда в случае произвольной поверхности. Теорема (закон) Гаусса гласит, что в произвольной замкнутой поверхности поток вектора электрического поля пропорционален заряду, заключенному внутри поверхности. Для магнитного поля теорема Гаусса говорит о том, что поток вектора магнитной индукции через произвольную замкнутую поверхность равен нулю.

Читайте также:  Как найти площадь боковой поверхности параллелепипеда по трем его измерениям

Выражение для потенциала поля точечного заряда

Поскольку потенциал равен интегралу от напряженности поля, то можно подставить под знак интеграла выражение для напряженности поля единичного заряда. После интегрирования и преобразования выражение для поля точечного заряда принимает вид:

где:

  • ε0 – электрическая постоянная;
  • r – расстояние.

Приведенное выражение свидетельствует, что величина энергии растет пропорционально степени заряженности и падает пропорционально расстоянию.

Проводники в электростатическом поле

Размещение проводника в электростатическом поле приводит к тому, что поле начнет действовать на носители заряда внутри проводящего предмета. Носители начинают перемещаться до тех пор, пока электростатическое поле вне поверхности ни обратится в нуль.

Поскольку поле внутри вещества отсутствует, то во всех точках проводящего материала энергия будет постоянной, а поверхность эквипотенциальной. Векторы напряженности поля направлены под прямым углом в любой точке поверхности проводника.

Под действием поля заряды внутри проводника отсутствуют, поскольку они сосредоточены исключительно на поверхности. Этот факт используется при экранировке – защите тел от влияния внешних электромагнитных и электростатических полей. Для экранирования может использоваться не только сплошной проводящий материал, но и сетка, так называемая «клетка Фарадея».

Также свойство перемещения заряженных частиц (электронов) используется в электростатических генераторах для получения напряжения в несколько миллионов вольт.

Электроемкость уединенного проводника

Для связи величин заряда и напряжения введено понятие электрической емкости. Для уединенного проводника (такого, на который отсутствует влияние других заряженных тел) значение емкости – величина постоянная и равная отношению количества заряда к потенциалу. Другими словами, емкость показывает, какой заряд нужно сообщить проводнику, чтобы его потенциальная энергия увеличилась на единицу.

Электроемкость не зависит от степени заряженности. Роль играют только:

  • форма;
  • геометрические размеры;
  • диэлектрические свойства среды.

Так же, как и емкость электрического конденсатора, электроемкость проводника будет обозначаться в фарадах.

Обратите внимание! На практике электроемкость проводника составляет очень малую величину. Для увеличения значения, особенно при производстве конденсаторов, как элементов с нормированным значением емкости, разработаны особые технологии.

Падение потенциала вдоль проводника

На концах проводника, помещенного в электрическое поле, начинает наблюдаться разность потенциалов. Вследствие этого электроны начинают перемещаться в сторону увеличения разности. В проводнике возникает электрический ток. Свободные электроны продвигаются вдоль проводника до тех пор, пока разница ни будет равна нулю. На практике для поддержания заданной величины тока цепи запитываются от источников напряжения или тока. Разница заключается в следующем:

  • Источник тока поддерживает в цепи постоянный ток вне зависимости от сопротивления нагрузки;
  • Источник напряжения поддерживает на своих зажимах строго постоянную ЭДС, независимо от величины потребляемого тока.

Разница потенциалов (падение напряжения) пропорциональна расстоянию от концов проводника, то есть обладает линейной зависимостью.

Опыт Вольта

Первым доказал существование разности потенциалов Алессандро Вольта. Для опытов были взяты два диска, выполненных из меди и цинка и насаженных на стержень электроскопа. При соприкосновении меди и цинка листочки электроскопа расходятся, свидетельствуя о наличии электрического заряда.

На основании своих опытов ученый изготовил первый источник электрического напряжения – вольтов столб.

Измерение контактной разности потенциалов

Основная проблема заключатся в том, что контактная разность потенциалов не может быть измерена напрямую, вольтметром, хотя значение ЭДС в цепи с соединением двух различных проводников может составлять от долей до единиц вольт.

Контактная потенциальная разница существенно влияет на вольтамперную характеристику измеряемой цепи. Наглядным примером может служить полупроводниковый диод, где подобное явление возникает на границе соприкосновения полупроводников с разным типом проводимости.

Разность потенциалов на практике

С общепринятой точки зрения, разность потенциалов – это напряжение между двумя выбранными точками цепи. В то же время напряжение между каждой из этих точек и третьей точкой будет отличаться в полном соответствии с определением.

Наглядный пример:

  • Точка А в электрической схеме – напряжение 10 В относительно провода заземления;
  • В точке В напряжение составляет 25 В относительно того же провода.

Необходимо найти напряжение между точками А и В.

В данном случае искомая разность составляет:

UAB= ϕА-ϕВ=10-25=15 В.

Рассматриваемые понятия важны для минимального объема знаний в области электротехники и электроники, поскольку на них основываются все расчеты и практические решения. Без этих азов невозможно более углубленное изучение электрических дисциплин.

Видео

Источник