Меню

Уравнение эйнштейна для фотоэффекта формула единицы измерения



VI. Квантовая физика

Тестирование онлайн

Фотоэлектрический эффект

Фотоэффектом называется явление взаимодействия электромагнитного излучения с веществом, в результате которого энергия излучения передается электронам вещества. Если фотоэффект сопровождается вылетом электронов с поверхности вещества, то его называют внешним фотоэффектом или фотоэлектронной эмиссией, а вылетающие электроны — фотоэлектронами. Если фотоэффект не сопровождается вылетом электронов с поверхности вещества, то его называют внутренним.

Уравнение Эйнштейна для фотоэффекта

На основе квантовых представлений Эйнштейн объяснил фотоэффект. Электрон внутри металла после поглощения одного фотона получает порцию энергии и стремится вылететь за пределы кристаллической решетки, т.е. покинуть поверхность твердого тела. При этом часть полученной энергии он израсходует на совершение работы по преодолению сил, удерживающих его внутри вещества. Остаток энергии будет равен кинетической энергии электрона:

Законы внешнего фотоэффекта

Столетовым Александром Григорьевичем (1839 — 1896) экспериментально были установлены законы внешнего фотоэффекта.

Первый закон фотоэффекта: фототок насыщения — максимальное число фотоэлектронов, вырываемых из вещества за единицу времени, — прямо пропорционален интенсивности падающего излучения.

Увеличение интенсивности света означает увеличение числа падающих фотонов, которые выбивают с поверхности металла больше электронов.

Второй закон фотоэффекта: максимальная кинетическая энергия фотоэлектронов не зависит от интенсивности падающего излучения и линейно возрастает с увеличением частоты падающего излучения.

Известно, что фототоком можно управлять, подавая на металлические пластины различные напряжения. Если на систему подать небольшое напряжение обратной полярности, «затрудняющее» вылет электронов, то ток уменьшится, так как фотоэлектронам, кроме работы выхода, придется совершать дополнительную работу против сил электрического поля. Максимальная кинетическая энергия электронов выражается через задерживающее напряжение:

Третий закон фотоэффекта: для каждого вещества существует граничная частота такая, что излучение меньшей частоты не вызывает фотоэффекта, какой бы ни была интенсивность падающего излучения. Эта минимальная частота излучения называется красной границей фотоэффекта.

Для большинства веществ фотоэффект возникает только под действием ультрафиолетового излучения. Однако некоторые металлы, например, литий, натрий и калий, испускают электроны и при облучении видимым светом.

Источник

Фотоэффект — уравнение и формула Эйнштейна, применение

Открытие эффекта

Открытие фотоэффекта позволило лучше понять природу света. Предпосылками для понимания световых процессов стала корпускулярная теория света, выдвинутая Исааком Ньютоном. Он сделал предположение, что свет представляет собой электромагнитное излучение, состоящее из корпускул — элементарных частиц. Теория объясняла способность светового луча отражаться и преломляться.

В первой половине XIX века учёный из Англии провёл ряд экспериментов с монохроматическим пучком, установив волновые свойства света. Это послужило фундаментом для формулировки теории магнетизма Джеймсом Максвеллом. В своих выкладках он объединил явления магнитного и электрического характера.

Открытие же эффекта началось с опытов Герца над открытым резонатором. В 1887 году зарядив два металлических шара с помощью катушки Румкорфа, он наблюдал между ними искровой разряд, создающий волну, способствующую новому пробою. Второй разряд был настолько слабым, что для его изучения Герц начал проводить эксперименты в тёмной комнате. В итоге им было обнаружен необъяснимый для него эффект: искра в темноте была слабее, чем при дополнительном освещении.

Разобраться в сути эффекта стало возможным лишь в 1905 году. Немецкий физик Альберт Энштейн, основываясь на идеях Макса Планка и Столетова, опубликовал статью под названием «Об эвристическом анализе зрения, касающегося возникновения и преобразования света», в которой дал исчерпывающее объяснение явлению и вывел уравнение фотоэффекта.

Общепринятые положения, описывающие фотоэлектрический эффект, состоят в следующем:

  • интенсивность света и вызванный фототок связаны прямой пропорциональностью;
  • если частота потока ниже определённого порогового значения, то эффект не наблюдается (красная граница);
  • кинетическая энергия освобождённого электрона, выбитого фотоном, зависит от частоты света;
  • при воздействии дополнительного источника излучения эффект усиливается.

Под фотоэффектом понимается явление испускания электронов при воздействии световой энергии, при этом процесс возникает сразу же после освещения. Другими словами, при поглощении веществом электромагнитного излучения в теле возникают свободные носители заряда.

Понятие и свойства фотона

Неотъемлемой частью эффекта является фотон. Это материальная частица, распространяющаяся в виде электромагнитного излучения. Её кинетическая энергия описывается уравнением:

  • m — масса фотона;
  • c — скорость света.

Импульс кванта совпадает с направлением светового потока и равен произведению массы на скорость. Открыть существование импульса стало возможным лишь после изучения светового давления (сила воздействия электромагнитного излучения). За импульс фотона была принята частица, способная существовать и иметь массу, только перемещаясь со скоростью света.

Исходя из этого, можно сделать вывод — остановить фотон нельзя. Он может существовать только в движении, иначе его попросту нет. Следовательно, масса покоя частицы равна нулю.

Уравнение Эйнштейна

Под лучистой энергией понимают электромагнитное излучение в широком диапазоне частот. Каждый фотон несёт определённую энергию, которую он может передать частице при столкновении, в частности, электронам. При ударе носители мгновенно приобретают кинетическую энергию. Предположения Планка о способности тела излучать часть поглощённой энергии и распространять его квантами единичной энергии было описано уравнением E = hv, где:

  • Е — энергия, переносимая единичным квантом;
  • h — постоянная Планка, рассчитанная экспериментально и равная 6,626 x 10 -34 Дж·с ;
  • v — частота излучения, определяемая отношением скорости света к длине волны.
Читайте также:  Экономические пропорции виды внп методы измерения внп

Эйнштейн, основываясь на идее Планка, доказал, что свет представляет собой дискретные пучки энергии, названные им впоследствии фотонами. При этом они обладают дуализмом. Кроме распространения подобно волнам, при столкновении с электронами фотон ведёт себя как частица, выбивающая его из кристаллической решётки.

На основании этих предположений физик изменил уравнение до вида:

где фи обозначает минимальную энергию, необходимую для выбивания электрона из атома.

Максимальная же кинетическая энергия фотоэлектрона определяется отношением (mu 2 )/2. При вылете электрона энергия частички уменьшается на определённое значение — работу выхода (Авых). То есть это энергия, которая затрачивается для эмиссии электрона. Поэтому формулу Планка можно переписать как hv = Aвых + (m*u 2 )/2. Это выражение и получило название уравнения Эйнштейна.

Если к телу приложить напряжение обратной полярности, препятствующее вылету электронов, то работа выхода увеличится, так как частицам придётся преодолевать ещё и силу электрического тока. Наибольшая же кинетическая энергия выражается формулой: Емах = e*U, где U — задерживающее напряжение, а e — элементарный заряд.

Наименьшую энергию назвали красной границей. Согласно определению эффекта, она зависит лишь от работы выхода. Из уравнения Эйнштейна можно получить предельное значение длины волны, которая прямо пропорциональна произведению c*h и обратно пропорциональна работе выхода. При длинах, расположенных возле красной границы, фотоэффект не возникает.

Виды явления

Использование формулы Эйнштейна для фотоэффекта позволило рассчитать и создать различные фотоэлектрические приборы — другими словами, устройства, способные преобразовывать свет. Формула учёного дала возможность объяснить внешний фотоэффект — испускание элементарной частицы с поверхности вещества при воздействии света.

Наблюдается явление не только в твёрдых телах, например, металлах, но и в газах (фотоионизация) на определённых молекулах. На этом эффекте построена работа электровакуумных приборов, электронных и газоразрядных элементов, фотоэлектронных умножителей.

Кроме внешнего фотоэффекта, существует ещё три его вида:

  1. Внутренний — наблюдаемый в диэлектриках или полупроводниках при воздействии на них электромагнитных излучений, не приводящих к выходу электронов наружу. В итоге концентрация свободных носителей увеличивается, повышается электропроводность или возникает электродвижущая сила (ЭДС).
  2. Вентильный — характеризуется возникновением ЭДС при попадании света на границу контакта двух разных материалов, например, полупроводников или металла и полупроводника. Энергия света преобразуется в электричество. Используется в основе построения солнечных батарей.
  3. Многофотонный — возникающий при большой интенсивности света, например, воздействии лазера. При этом электрон может поглотить энергию не от одного фотона, а сразу от нескольких.

Вольт-амперная характеристика

Зависимость тока от напряжения, пожалуй, самая важная характеристика для любого радиоэлемента. Не исключение и устройства, работающие на фотоэффекте. На графике изображается изменение тока насыщения от запирающего напряжения. То есть, глядя на него, можно легко проследить, как будет расти напряжение при увеличении фототока.

Увеличение тока, возникшего при воздействии света, связано с числом достигших анода электронов. Зависимость на этом участке обычно плавная, без резких скачков. В определённый момент наступает такое состояние, что ток становится постоянным, несмотря на увеличение напряжения. Точка перехода характеристики в пологое состояние называется фототоком насыщения.

Значение этой точки определяется таким напряжением, при котором все электроны, выбитые со своих мест, достигают анода. Это условие записывается в виде выражения: Iнас = e*n, где за n принято число частиц, выбитых из катода за единицу времени (одну секунду).

Изучая характеристику, можно отметить, что если напряжение начинает падать и в какой-то момент становится равным нулю, то фототок всё равно не исчезает. Значит, вылетевшие электроны имеют начальную скорость и могут достигнуть второго электрода даже без внешнего воздействия. В то же время, если приложить обратное напряжение (задерживающее), фототок не появится. Поэтому электрон, получивший даже наибольшую скорость, не сможет достигнуть анода.

Читайте также:  Как проводить измерения осциллографом

Используя уравнение Эйнштейна для фотоэффекта, можно будет записать уравнение:

m*v 2 /2 = e*U0, где: U0 — задерживающее напряжение. Исходя из этого можно сформулировать второй закон: на задерживающее напряжение не влияет величина освещения, но потенциал зависит от частоты светового потока, при увеличении которого он возрастает.

Полезность этого открытия будет заключаться в том, что, зная задерживающее напряжение, можно определить максимальную скорость кинетической энергии выбитых электронов. То есть в квантовой теории фотоэффекта просматривается ряд зависимостей:

  • фототок определяется интенсивностью;
  • запирающее напряжение зависит от кинетической энергии испускаемых частиц;
  • величина энергии связана с частотой света.

Применение фотоэффекта

На фотоэффекте основано действие фотоприборов, получивших разнообразное использование в науки и техники. Самым первым устройством был вакуумный фотоэлемент. Это стеклянный баллон с откачанным воздухом, покрытый слоем фоточувствительного элемента, кроме небольшого участка.

В центре баллона находится сетка, являющаяся анодом. При попадании света на свободный от фотоэлемента участок возникает ЭДС. В зависимости от вида регистрируемого света катод изготавливается из различных материалов. Так, для инфракрасного излучения используется кислородно-цезиевый катод, для ультрафиолетового — сурьмяно-цезиевый.

Элементы вакуумного типа безынерционные, поэтому для них характерна пропорциональность силы фототока от интенсивности светового потока. Эти свойства используются в фотометрии. С их помощью можно не только фиксировать возникновение излучения, но и измерять освещённость. Для увеличения чувствительности баллон наполняется инертным газом. Такие устройства называют газоразрядными фотоэлементами.

Чтобы регистрировать слабый ток, применяют фотоэлектронные умножители, использующие вторичную эмиссию электронов. Элементы с внутренним фотоэффектом называются фоторезисторы. Они более чувствительны, чем газоразрядные. При изготовлении применяются различные полупроводники, такие как PЬS, CdS, PbSе. Их использование позволяет регистрировать излучения даже в далёкой инфракрасной области и рентгеновского излучения. Фоторезисторы изготавливаются небольших размеров, но обладают инерционностью. Поэтому регистрировать быстроизменяющийся свет они не могут.

Вентильные фотоэлементы, работающие на одноимённом эффекте, используются при построении солнечных батарей, источников питания малой мощности. Они непосредственно преобразуют световую энергию в ток, а изготавливают их из германия, кремния, селена. Элемент, в котором преобразуется свет в электрический заряд на p-n переходе, называется фотодиодом. Работать он может как с подключением дополнительного источника питания, так и без него. Принцип действия элемента основан на лавинном пробое, возникающим за счёт ионизации носителей заряда.

Фотосопротивление применяется в охранных и телевизионных системах, радиовещании. На эффекте основана работа электронно-оптического преобразователя, усиливающего рентгеновское изображение. В радиоэлектроники элементы используются в обратных связях и при создании гальванической развязки.

Источник

Фотоэффект. Фотоны

В 1887 году Г. Герцем был открыт фотоэлектрический эффект, а продолжить его исследования довелось А.Г. Столетову. Ф. Леонард в 1900 году серьезно занялся данным проектом. К тому времени был открыт электрон. Это говорило о том, что фотоэффект состоял в вырывании электронов из вещества под действием падающего на него света.

Данное исследование законов Столетова изображено на рисунке 5 . 2 . 1 .

Рисунок 5 . 2 . 1 . Схема экспериментальной установки для изучения фотоэффекта.

В лабораторных условиях применили стеклянный вакуумный баллон с двумя металлическими электродами с очищенной поверхностью. К ним прикладывали напряжение U с возможностью изменения полярности с помощью ключа. Катод освещали монохроматическим светом с длиной волны λ через кварцевое окошко. Так как световой поток оставался неизменным, то зависимость силы тока I от напряжения ослабевала. Рисунок 5 . 2 . 2 . наглядно демонстрирует кривые зависимости при интенсивном свете, попадающем на катод.

Рисунок 5 . 2 . 2 . Зависимость силы фототока от приложенного напряжения. Кривая 2 соответствует большей интенсивности светового потока. I н 1 и I н 2 – токи насыщения, U з – запирающий потенциал.

По графику видно, что при подаче большого напряжения фототок анода А достигает насыщения, потому как при вырывании светом из катода они в состоянии достичь его.

Ток насыщения. Закономерности фотоэффекта

Ток насыщения I н прямо пропорционален интенсивности падающего света.

При наличии отрицательного напряжения на аноде, электрическое поле, находящееся между катодом и анодом, тормозится электронами. К аноду могут добраться электроны, у которых кинетическая энергия превышает значение | e U | . При наличии напряжения меньше, чем – U з , происходит прекращение фототока. После измерения – U з определяется максимальная кинетическая энергия фотоэлектронов:

m υ 2 2 m a x = e U 3 .

Из формулы видно, что оно не зависит от интенсивности падающего света. После глубоких исследований стало ясно, что при возрастании запирающего потенциала происходит линейное увеличение частоты света ν .

Рисунок 5 . 2 . 3 . Зависимость запирающего потенциала U з от частоты ν падающего света.

После многочисленных экспериментов были установлены закономерности формул фотоэффекта:

  1. При увеличении частоты света ν происходит возрастание кинетической энергии, независящей от ее интенсивности.
  2. Наименьшей частотой ν m i n с внешним фотоэффектом называют красную границу фотоэффекта каждого вещества.
  3. Количество фотоэлектронов за 1 с вырывания из катода прямо пропорционально интенсивности света.
  4. Фотоэффект возникает после освещения катода с условием, что ν > ν m i n .
Читайте также:  Длина линий геодезия измерение

Данные закономерности не соответствовали представлениям классической физики о взаимодействии света с веществом. Исходя из волновых представлений, взаимодействие световой волны с электроном должно действовать по принципу постепенного накапливания энергии. Чтобы он смог вылететь из катода, необходимо иметь достаточное количество энергии, накапливаемой за определенный промежуток времени, не зависящий от интенсивности света.

Появление фотоэлектронов происходит сразу после освещения катода. Данная модель не давала четкого представления нахождения красной границы фотоэффекта. Волновая теория света не могла дать объяснение независимости энергии фотоэлектронов от интенсивности светового потока и пропорциональности максимальной кинетической энергии частоты света. Поэтому электромагнитная теория была не способна объяснить эти изменения.

В 1905 году А. Эйнштейн дает теоретическое объяснение наблюдаемых закономерностей фотоэффекта, основываясь на гипотезе М. Планка.

Постоянная Планка. Уравнение Эйнштейна

Излучение и поглощение света происходит определенными порциями, где она определяется формулой E = h ν , h принято называть постоянной Планка.

Основной шаг в развитии квантовых представлений относится к Эйнштейну:

Свет обладает прерывистой структурой. Электромагнитная волна состоит из порций, называемых, кварками, спустя время которые зафиксировали как фотоны.

После взаимодействия с веществом фотон передает свою энергию h ν одному электрону, одна часть которой рассеивается при столкновениях с атомами, а другая затрачивается на преодоление потенциального барьера на границе металл-вакуум. Для этого ему необходимо совершить работу выхода А , зависящую от свойств материала катода.

Наибольшую кинетическую энергию, вылетевшую из катода фотоэлектроном, определяют законом сохранения энергии:

m ν 2 2 m a x = e U e = h ν — A .

Формула получила название уравнения Эйнштейна для фотоэффекта.

Благодаря ему, закономерности внешнего явления фотоэффекта могут быть объяснены.

Линейная зависимость максимальной кинетической энергии от частоты и независимость от интенсивности света, существование красной границы, безынерционность фотоэффекта следуют из данного выражения.

Общее количество фотоэлектронов, которые покидают поверхность катода в течение 1 с , пропорционально числу фотонов, падающих на поверхность. Можно сделать вывод, что ток насыщения должен быть прямо пропорционален интенсивности светового потока.

По уравнению фотоэффекта Эйнштейна тангенс угла наклона прямой, выражающий зависимость запирающего потенциала U з от частоты ν , равняется отношению постоянной Планка h к заряду электрона e :

Формула позволяет вычислить значение постоянной Планка.

Р. Милликенн проводил измерения в 1914 году, после чего смог определить работу выхода А :

A = h ν m i n = h c λ к р ,

где c – скорость света, λ к р – длина волны, которая соответствует красной границе фотоэффекта.

Большинство металлов имеет работу выхода А и составляет несколько электрон-вольт ( 1 э В = 1 , 602 · 10 – 19 Д ж ) .

Квантовая физика использует электрон-вольт как энергетическую единицу измерения. Тогда значение постоянной Планка равняется

h = 4 , 136 · 10 — 15 э В · с .

Наименьшая работа выхода наблюдается у щелочных элементов. Натрий при A = 1 , 9 э В соответствует красной границе фотоэффекта λ к р ≈ 680 н м . Такие соединения применяют для создания катодов в фотоэлементах, используемых для регистрации видимого света.

Законы фотоэффекта говорят о том, что при пропускании и поглощении свет ведет себя подобно потоку частиц, называемых фотонами или световыми квантами.

Энергия фотонов записывается в виде формулы E = h ν .

При движении в вакууме фотон обладает скоростью с , а его масса m = 0 . Общее соотношение теории относительности, связывающее энергию, импульс и массу любой частицы, записывается как E 2 = m 2 c 4 + p 2 c 2 .

Отсюда следует, что фотон обладает импульсом, значит:

Можно сделать вывод, что учение о свете вернулось к представлениям о световых частицах – корпускулах. Но это не расценивается как возврат к корпускулярной теории Ньютона. В XX было известно о двойственной природе света. Когда он распространялся, то проявлялись его волновые свойства (интерференция, дифракция, поляризация), при его взаимодействии с веществом – корпускулярные, то есть явление фотоэффекта. Это и получило название корпускулярно-волнового дуализма.

Спустя время, данная теория была подтверждена у других элементарных частиц. Классическая физика не дает наглядную модель сочетаний волновых и корпускулярных свойств микрообъектов. Их движениями управляют законы квантовой механики. В основе этой науки лежит теория абсолютно черного тела, доказанная М. Планком, и квантовая, предложенная Эйнштейном.

Рисунок 5 . 2 . 4 . Модель фотоэффекта

Источник