Меню

Уравнение менделеева клапейрона единицы измерения величин



Уравнение Менделеева Клапейрона

Уравнение Менделеева Клапейрона берет свое начало от французского инженера Клапейрона Б. жившего с 1799 по 1864 годы. Так как у параметров состояния идеального газа есть связь, он соединил имеющиеся экспериментальные законы газов и выявил связь в параметрах.

pW/T = const

А Менделеев Д.И. наш русский ученый живший с 1834 по 1907 года, соединил его с законом Авогадро. Из данного закона следует что, если Р и Т одинаковы то моль какого бы ни было газа занимает равный молярный объем. Wm=22.4л. Из чего и следует вывод Менделеева — постоянное значение в правой части уравнения, одинаково для любого газа. Обозначение пишется как R, а называется — универсальная газовая постоянная.

Цифровое выражение R вычисляем путем подстановки. Уравнение Менделеева Клапейрона выглядит как:

PW = nRT

в нем:
Р — газовое давление, W — литровый объем, T — температура, измеряется в кельвинах, n — число молей, R — УГП.

К примеру: Кислород находится в емкости на 2,6 литра, под давлением 2,3атм и 26 градусах С. Неизвестно сколько в емкости содержится молей О2?

По закону газа находим сколько молей n

n = PW/RT из чего : n = (2.3 атм*2,6л)/(0,0821 л*атм/моль*К*299К) = 0,24 моль О2

Температуру нужно обязательно переводить в кельвины (273 0 С + 26 0 С) = 299К. Во избежание ошибок при решении уравнений, надо обращать внимание на величины в которых даются данные для уравнения Менделеева-Клапейрона Давление может быть в мм рт.столба — переводим в атмосферы (1 атм = 760мм р/с). Если же в паскалях при переводе в атмосферы, важно помнить что 101325 Па = 1атм.

Если производить расчеты где единицы измерения в м 3 и Па. Здесь нужно использовать R = 8,314 Дж/К*моль (постоянная газовая).

Рассмотрим на примере:

Дано: Объем Гелия 16,5 литров, температура — 78 0 С, давление 45,6атм. Какой будет его объем в нормальных условиях? Количество молей? Мы можем быстро выяснить сколько молей n в нем содержится, с помощью Уравнения Менделеева-Клапейрона, но как быть если забылось значение R. В нормальных условиях 1 моль (1атм и 273К) заполняет 22,4 литра. То есть

PW = nRT, из этого следует, R = PW/nT = (1атм*22,4л)/(1 моль*273К) = 0,082

Если сделать так, что бы R сократилась. Получим следующий вариант решения.
Начальные данные: Р1 = 45,6атм, W1 = 16.5л, Т1 =351К.
Конечные данные: Р2 = 1атм, W2 = ?, Т2 =273К.

Мы видим что уравнение ровно справедливо и для исходных и для конечных данных
P1W1 = nRT1
P2W2 = nRT2

Для того чтобы узнать объем газа, поделим значения в уравнении
P1W1/P2W2 = T1/T2 ,
вставим известные нам значения
W2 = 45.6 * 16.5 * 273 / 351 = 585 литров

Значит в нормальных условиях объем гелия будет 585 литров. Делим 585 на молярный газовый объем в норм. условиях (22,4 л/*моль) получим сколько молей в гелии 585 / 22,4 = 26,1м.

Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

Источник

Уравнение Клапейрона-Менделеева. Связь между числом молей газа, его температурой, объемом и давлением.

Уравнение Клапейрона-Менделеева. Связь между числом молей газа, его температурой, объемом и давлением.

Калькулятор ниже предназначен для решения задач на использование уравнения Клапейрона-Менделеева, или уравнение состояния идеального газа. Некоторая теория изложена под калькулятором, ну а чтобы было понятно, о чем идет речь — пара примеров задач:

Примеры задач на уравнение Менделеева-Клапейрона

В колбе объемом 2,6 литра находится кислород при давлении 2,3 атмосфер и температуре 26 градусов Цельсия .
Вопрос: сколько молей кислорода содержится в колбе?

  • Некоторое количество гелия при 78 градусах Цельсия и давлении 45,6 атмосфер занимает объем 16,5 литров.
    Вопрос: Каков объем этого газа при нормальных условиях? (Напомню, что нормальными условиями для газов считается давление в 1 атмосферу и температура 0 градусов Цельсия)
  • В калькулятор вводим начальные условия, выбираем, что считать (число моль, новые объем, температуру или давление), заполняем при необходимости оставшиеся условия, и получаем результат.

    Уравнение Клапейрона-Менделеева. Связь между числом молей газа, его температурой, объемом и давлением.

    Теперь немного формул.

    где
    P — давление газа (например, в атмосферах)
    V — объем газа (в литрах);
    T — температура газа (в кельвинах);
    R — газовая постоянная (0,0821 л·атм/моль·K).
    Если используется СИ, то газовая постоянная равна 8,314 Дж/K·моль

    Так как m-масса газа в (кг) и M-молярная масса газа кг/моль, то m/M — число молей газа, и уравнение можно записать также

    где n — число молей газа

    И как нетрудно заметить, соотношение

    есть величина постоянная для одного и того же количества моль газа.

    И эту закономерность опытным путем установили еще до вывода уравнения. Это так называемые газовые законы — законы Бойля-Мариотта, Гей-Люссака, Шарля.

    Так, закон Бойля-Мариотта гласит (это два человека):
    Для данной массы газа m при неизменной температуре Т произведение давления на объем есть величина постоянная.

    Закон Гей-Люссака (а вот это один человек):
    Для данной массы m при постоянном давлении P объем газа линейно зависит от температуры

    Закон Шарля:
    Для данной массы m при постоянном объеме V давление газа линейно зависит от температуры

    Посмотрев на уравнение, нетрудно убедиться в справедливости этих законов.

    Читайте также:  Какие приборы для измерения давления хорошие

    Уравнение Менделеева-Клапейрона, также как и опытные законы Бойля-Мариотта, Гей-Люссака и Шарля справедливы для широкого интервала давлений, объемов и температур. То есть во многих случаях эти законы удобны для практического применения. Однако не стоит забывать, что когда давления превышают атмосферное в 300-400 раз, или температуры очень высоки, наблюдаются отклонения от этих законов.
    Собственно, идеальный газ потому и называют идеальным, что по определению это и есть газ, для которого не существует отклонений от этих законов.

    Источник

    Уравнение менделеева клапейрона единицы измерения величин

    Уравнение Менделеева-Клапейрона — уравнение состояния для идеального газа, отнесенное к 1 молю газа. В 1874 г. Д. И. Менделеев на основе уравнения Клапейрона объединив его с законом Авогадро, используя молярный объем Vm и отнеся его к 1 молю, вывел уравнение состояния для 1 моля идеального газа:

    pV = RT , где R — универсальная газовая постоянная,

    R = 8,31 Дж/(моль . К)

    Уравнение Клапейрона-Менделеева показывает, что для данной массы газа возможно одновременно изменение трех параметров, характеризующих состояние идеального газа. Для произвольной массы газа М, молярная масса которого m: pV = (М/m) . RT. или pV = NАkT,

    где NА — число Авогадро, k — постоянная Больцмана.

    С помощью уравнения состояния идеального газа можно исследовать процессы, в которых масса газа и один из параметров — давление, объем или температура — остается постоянным, а изменяются только остальные два и получить теоретически газовые законы для этих условий изменения состояния газа.

    Такие процессы называют изопроцессами. Законы, описывающие изопроцессы, были открыты задолго до теоретического вывода уравнения состояния идеального газа.

    Изотермический процесс — процесс изменения состояния системы при постоянной температуре. Для данной массы газа произведение давления газа на его объем постоянно, если температура газа не меняется. Это закон Бойля — Мариотта.

    Для того, чтобы температура газа оставалась в процессе неизменной, необходимо, чтобы газ мог обмениваться теплотой с внешней большой системой — термостатом. Роль термостата может играть внешняя среда (воздух атмосферы). Согласно закону Бойля-Мариотта, давление газа обратно пропорционально его объему: P1V1=P2V2=const. Графическая зависимость давления газа от объема изображается в виде кривой (гиперболы), которая носит название изотермы. Разным температурам соответствуют разные изотермы.

    Изобарный процесс — процесс изменения состояния системы при постоянном давлении. Для газа данной массы отношение объема газа к его температуре остается постоянным, если давление газа не меняется. Это закон Гей-Люссака. Согласно закону Гей-Люссака, объем газа прямо пропорционален его температуре: V/T=const. Графически эта зависимость в координатах V-T изображается в виде прямой, выходящей из точки Т=0. Эту прямую называют изобарой. Разным давлениям соответствуют разные изобары. Закон Гей-Люссака не соблюдается в области низких температур, близких к температуре сжижения (конденсации) газов.

    Изохорный процесс — процесс изменения состояния системы при постоянном объеме. Для данной массы газа отношение давления газа к его температуре остается постоянным, если объем газа не меняется. Этот газовый закон Шарля. Согласно закону Шарля, давление газа прямо пропорционально его температуре: P/T=const. Графически эта зависимость в координатах P-Т изображается в виде прямой, выходящей из точки Т=0. Эту прямую называют изохорой. Разным объемам соответствуют разные изохоры. Закон Шарля не соблюдается в области низких температур, близких и температуре сжижения (конденсации) газов.

    Итак, из закона pV = (М/m) . RT выводятся следующие законы:

    p = const => V/T = const — закон Гей — Люссака .

    V= const => p/T = const — закон Шарля

    Если идеальный газ является смесью нескольких газов, то согласно закону Дальтона, давление смеси идеальных газов равно сумме парциальных давлений входящих в нее газов. Парциальное давление — это такое давление, которое производил бы газ, если бы он один занимал весь объем, равный объему смеси.

    Некоторых, возможно, интересует вопрос, каким образом удалось определить постоянную Авогадро NA = 6,02·10 23 ? Значение числа Авогадро было экспериментально установлено только в конце XIX – начале XX века. Опишем один из таких экспериментов.

    В откачанный до глубокого вакуума сосуд объемом V = 30 мл поместили навеску элемента радия массой 0,5 г и выдержали там в течение одного года. Было известно, что за секунду 1 г радия испускает 3,7·10 10 альфа-частиц. Эти частицы представляют собой ядра гелия, которые тут же принимают электроны из стенок сосуда и превращаются в атомы гелия. За год давление в сосуде выросло до 7,95·10 -4 атм (при температуре 27 о С). Изменением массы радия за год можно пренебречь. Итак, чему равна NA?

    Читайте также:  Самостоятельная работа атмосферное давление измерение атмосферного давления 7 класс

    Сначала найдем, сколько альфа-частиц (то есть атомов гелия) образовалось за один год. Обозначим это число как N атомов:

    N = 3,7·10 10 · 0,5 г · 60 сек · 60 мин · 24 час · 365 дней = 5,83·10 17 атомов.

    Запишем уравнение Клапейрона-Менделеева PV = nRT и заметим, что число молей гелия n = N/NA. Отсюда:

    NA = NRT = 5,83 . 10 17 . 0,0821 . 300 = 6,02 . 10 23

    PV 7,95 . 10 -4 . 3 . 10 -2

    В начале XX века этот способ определения постоянной Авогадро был самым точным. Но почему так долго (в течение года) длился эксперимент? Дело в том, что радий добывается очень трудно. При его малом количестве (0,5 г) радиоактивный распад этого элемента дает очень мало гелия. А чем меньше газа в замкнутом сосуде, тем меньшее он создаст давление и тем большей будет ошибка измерения. Понятно, что ощутимое количество гелия может образоваться из радия только за достаточно долгое время.

    Источник

    Уравнение Клапейрона-Менделеева. Единицы измерения универсальной газовой постоянной. Пример задачи

    Термодинамика — это самостоятельный раздел физики, который изучает процессы перехода между состояниями системы, оперируя при этом макроскопическими характеристиками. Одним из важных объектов изучения термодинамики является идеальный газ. Данная статья посвящена рассмотрению концепции идеального газа и единицам измерения универсальной газовой постоянной.

    Идеальный газ

    Газовое агрегатное состояние материи характеризуется хаотичным расположением частиц, расстояние между которыми значительно больше их размеров. Эти частицы находятся в постоянном движении, поэтому газ не сохраняет свою форму и свой объем.

    Идеальным газом называется любое вещество, размерами частиц которого и взаимодействиями между которыми можно пренебречь. В рамках концепции идеального газа считают, что любые столкновения частиц со стенками сосуда носят абсолютно упругий характер. Средняя кинетическая энергия частиц однозначно определяет температуру идеального газа.

    Большинство реальных газов, которые находятся при не слишком высоких давлениях и не слишком низких температурах, можно считать с высокой точностью идеальными.

    Универсальное уравнение состояния

    Так называют уравнение, которое объединяет в рамках одного выражения все важные термодинамические параметры идеальной газовой системы. Запишем его:

    Здесь P и V — давление в паскалях и объем в метрах кубических, n и T — количество вещества в молях и температура системы в Кельвинах. Это равенство также называется уравнением или законом Клапейрона-Менделеева в честь французского физика и инженера и русского химика XIX века, которые вывели это уравнение из накопленного предыдущими поколениями ученых экспериментального опыта.

    Универсальное уравнение состояния системы позволяет получить любой газовый закон. Например, закон Гей-Люссака следует из него непосредственно, если положить постоянным объем во время термодинамического процесса.

    Мы выше расшифровали 4 из 5 обозначений, присутствующих в формуле. Пятым является коэффициент R. Он называется универсальной газовой постоянной. Единицей измерения в СИ для него является джоуль на моль-кельвин (Дж/(моль*К)). Что это за величина, рассмотрим подробнее дальше в статье.

    Постоянная R в физике

    Выше мы увидели, что это некоторый коэффициент пропорциональности между давлением, объемом, температурой и количеством вещества. Единицей измерения универсальной газовой постоянной в системе СИ является Дж/(моль*К). Ее значение с точностью до трех знаков после запятой равно 8,314. Это число означает, что один моль идеального газа, будучи нагретым на 1 кельвин, в процессе своего расширения совершит работу 8,314 джоуля.

    Постоянную R можно также интерпретировать несколько иначе: если затратить на нагрев одного моль газа энергию в 8,314 джоуля, то его температура возрастет на 1 кельвин. Иными словами, R характеризует связь между энергией и температурой для фиксированного количества вещества.

    Заметим, что величина R в физике не является базовой (фундаментальной) константой такой, как скорость света или постоянная Планка. Поэтому с помощью выбора соответствующей температурной шкалы и количества частиц в системе можно добиться того, что R будет равно 1.

    Впервые постоянную R в физику ввел Д. И. Менделеев, заменив ею в универсальном уравнении состояния Клапейрона ряд других констант. Отметим, что хотя величина R введена для газов, в современной физике она используется также в уравнениях Дюлонга и Пти, Клаузиуса-Моссотти, Нернста и в некоторых других.

    Постоянные kB и R

    Люди, которые знакомы с физикой, могли заметить, что существует еще одна постоянная величина, которая во всех физических уравнениях выступает в качестве переводного коэффициента между энергией и температурой. Эта величина называется постоянной Больцмана (kB). Она равна 1,38*10 -23 Дж/К. Очевидно, что должна существовать математическая связь между kB и R. Такая связь действительно существует, она имеет следующий вид:

    Здесь NA — это огромное число, которое называется числом Авогадро. Равно оно 6,02*10 23 . Если количество частиц системы равно NA, то говорят, что система содержит 1 моль вещества.

    Читайте также:  Как измерить кислотность жидкости ph метром

    Таким образом, постоянная Больцмана и универсальная газовая постоянная, по сути, это один и тот же переводной коэффициент между температурой и энергией с той лишь разницей, что kB используется для микроскопических процессов, а R — для макроскопических.

    Решение задачи

    После знакомства с единицами измерения универсальной газовой постоянной предлагается получить их из универсального уравнения для идеального газа, которое было приведено в статье. Ниже на рисунке изображено это уравнение.

    Выразим из него величину R, получаем:

    Теперь подставим для каждой физической величины соответствующую единицу измерения и упростим полученное выражение:

    Как видно, при получении единиц измерения для R мы упрощали только единицы измерения числителя. Сначала была использована формула для давления, а затем произведение единиц силы на единицы расстояния были преобразованы в единицы работы.

    Источник

    Уравнение состояния идеального газа

    теория по физике 🧲 молекулярная физика, МКТ, газовые законы

    Уравнение состояния идеального газа было открыто экспериментально. Оно носит название уравнения Клапейрона — Менделеева. Это уравнение устанавливает математическую зависимость между параметрами идеального газа, находящегося в одном состоянии. Математически его можно записать следующими способами:

    Уравнение состояния идеального газа

    Внимание! При решении задач важно все единицы измерения переводить в СИ.

    Пример №1. Кислород находится в сосуде вместимостью 0,4 м 3 под давлением 8,3∙10 5 Па и при температуре 320 К. Чему равна масса кислорода? Молярная масса кислорода равна 0,032 кг/моль.

    Из основного уравнения состояния идеального газа выразим массу:

    Уравнение состояния идеального газа следует использовать, если газ переходит из одного состояния в другое и при этом изменяется его масса (количество вещества, число молекул) или молярная масса. В этом случае необходимо составить уравнение Клапейрона — Менделеева отдельно для каждого состояния. Решая систему уравнений, легко найти недостающий параметр.

    Подсказки к задачам

    Важна только та масса, что осталась в сосуде. Поэтому:

    Давление возросло на 15% p2 = 1,15p1
    Объем увеличился на 2% V2 = 1,02V1
    Масса увеличилась в 3 раза m2 = 3m1
    Газ нагрелся до 25 о С T2 = 25 + 273 = 298 (К)
    Температура уменьшилась на 15 К (15 о С) T2 = T1 – 15
    Температура уменьшилась в 2 раза
    Масса уменьшилась на 20% m2 = 0,8m1
    Выпущено 0,7 начальной массы
    Какую массу следует удалить из баллона? Нужно найти разность начальной и конечной массы:

    Газ потерял половину молекул
    Молекулы двухатомного газа (например, водорода), диссоциируют на атомы
    Озон (трехатомный кислород) при нагревании превращается в кислород (двухатомный газ) M (O3) = 3Ar (O)∙10 –3 кг/моль M (O2) = 2Ar (O)∙10 –3 кг/моль
    Открытый сосуд Объем V и атмосферное давление pатм остаются постоянными
    Закрытый сосуд Масса m, молярная масса M, количество вещества ν, объем V, число N и концентрация n частиц, плотность ρ— постоянные величины
    Нормальные условия Температура T = 273 К Давление p = 10 5 Па
    Единицы измерения давления 1 атм = 10 5 Па

    Пример №2. В баллоне содержится газ под давлением 2,8 МПа при температуре 280 К. Удалив половину молекул, баллон перенесли в помещение с другой температурой. Определите конечную температуру газа, если давление уменьшилось до 1,5 МПа.

    2,8 МПа = 2,8∙10 6 Па

    1,5 МПа = 1,5∙10 6 Па

    Так как половина молекул была выпущена, m2 = 0,5m1. Объем остается постоянным, как и молярная масса. Учитывая это, запишем уравнение состояния идеального газа для начального и конечного случая:

    Преобразим уравнения и получим:

    Приравняем правые части и выразим искомую величину:

    На графике представлена зависимость объёма постоянного количества молей одноатомного идеального газа от средней кинетической энергии теплового движения молекул газа. Опишите, как изменяются температура и давление газа в процессах 1−2 и 2−3. Укажите, какие закономерности Вы использовали для объяснения.

    Алгоритм решения

    Решение

    График построен в координатах (V;Ek). Процесс 1–2 представляет собой прямую линию, исходящую из начала координат. Это значит, что при увеличении объема растет средняя кинетическая энергия молекул. Но из основного уравнения МКТ идеального газа следует, что мерой кинетической энергии молекул является температура:

    Следовательно, когда кинетическая энергия молекул растет, температура тоже растет.

    Запишем уравнение Менделеева — Клапейрона:

    Так как количество вещества одинаковое для обоих состояния 1 и 2, запишем:

    ν R = p 1 V 1 T 1 . . = p 2 V 2 T 2 . .

    Мы уже выяснили, что объем и температура увеличиваются пропорционально. Следовательно, давление в состояниях 1 и 2 равны. Поэтому процесс 1–2 является изобарным, давление во время него не меняется.

    Процесс 2–3 имеет график в виде прямой линии, перпендикулярной кинетической энергии. Так как температуры прямо пропорциональна кинетической энергии, она остается постоянной вместе с этой энергией. Следовательно, процесс 2–3 является изотермическим, температура во время него не меняется. Мы видим, что объем при этом процессе уменьшается. Но так как объем и давление — обратно пропорциональные величины, то давление на участке 2–3 увеличивается.

    Источник