Уровни измерения по шкалам номинальная

Шкала измерений

Высокое качество продукции любого предприятия напрямую зависит от точности и общего качества измерений. Мы не можем решить, соответствует ли конкретный образец продукции требованиям заказчика, если не выразим эти требования количественно или качественно. Для сравнения какого-либо параметра с его заданным значением служат шкалы измерений.

Виды шкал измерений

Суть измерения состоит в том, что текущему состоянию объекта ставится в соответствие некоторое число, порядковый номер или символ.

Что такое шкала

Совокупность таких чисел, номеров или символов и называется шкалой измерений

По своему типу выделяют следующие виды шкал:

  • номинальная (наименований);
  • порядковая;
  • интервальная;
  • отношений;
  • абсолютная.

Шкалы также относят к одной из двух групп:

  • качественные, для которых не существует единиц измерений;
    • номинальная;
    • порядковая;
  • количественные, выражающие значения в определенных единицах;.
    • интервалов;
    • отношений;
    • абсолютная .

Шкалы также делятся по их силе. Чем больше сведений об объекте измерений можно извлечь из результатов измерений по ней. Самыми сильными считаются абсолютные шкалы, самыми слабыми — номинальные. Иногда исследователи усиливают шкалу, характерным примером является «оцифровка» номинальных шкал. Качественным признакам присваивают некое их числовое выражение. Это облегчает обработку результатов, особенно компьютерную. Важно помнить, что оцифровка не придает качественным признакам всех свойств, которыми обладают числа. К такой шкале можно применять операции сравнения, но нельзя — сложения, вычитания и т.п.

Шкалы измерения по Стивенсу

Шкалы измерений

Рассмотрим шкалы измерений подробнее.

Номинальная

Самые простые измерительные шкалы – номинальные. Они относятся к качественным и отражают те или иные свойства объекта, выраженные словесно. Их элементы могут только совпадать или не совпадать друг другом, Их нельзя сопоставлять по принципу «больше-меньше». Недопустимы также и арифметические действия.

Характерным примером может служить группа крови. Первая группа не больше третьей и не может быть сложена с четвертой. У человека может быть только одна группа крови, и измерение

Порядковая

По ней можно ранжировать и сравнивать объекты, по какому — либо признаку, например, расположить людей в строю по росту. Иванов больше Сидорова, а Сидоров больше Кузнецова.

Из этих данных можно сделать вывод о том, что Иванов выше Кузнецова, но нельзя определить, насколько именно.

Интервалов

Она состоит из заранее определенных и равных между собой интервалов. И является намного более информативной. Свойство объекта соотносится с одним из таких интервалов.

Характерным примером такой шкалы измерений может служить принятое у людей исчисление времени. Период оборота Земли вокруг Солнца делится на 365 дней, дни делятся на часы, далее на минуты и секунды. Мы можем соотнести событие с одним из таких интервалов: «эта статья была написана в 2018 году» или «Дождь начнется в 14 часов»

Значения в этом случае можно сравнивать друг с другом не только качественно, но и количественно, становятся доступны операции сложения и вычитания. «Заход солнца произойдет на 12 часов позже восхода». «Фильм А длиннее фильма В на 25 минут»

Однако поскольку начало отсчета не установлено, невозможно определить, во сколько раз одно значение больше другого.

Отношений

Точкой начала отсчета является точка, в которой значение параметра равно нулю. Появляется возможность отсчитывать от нее абсолютное значение параметра, определять разницы значений и во сколько раз одно больше другого. Характерный пример — температурная шкала Кельвина. За начало отчета взята точка «абсолютного нуля», при которой прекращается тепловое движение материи. Второй опорной точкой выбрана температура таяния льда при нормальном давлении. Разница между этими точками по Цельсию составляет 273 °C, и один градус Кельвина равен одному градусу Цельсия. Таким образом, можно сказать, что лед тает при 273К.

Отношений – наиболее информативная. На ней возможны все арифметические операции-

Деление, умножение сложение и вычитание значений параметра будет иметь физический смысл. Мы можем вычислить не только насколько одно значение больше другого, но и во сколько раз.

Разностей

Представляет собой частный случай интервальных. Для них значение не меняется при произвольном числе сдвигов на определенный параметр. Другими характерными признаками являются

  • единицы измерений и точка отсчета определяется по соглашению;
  • существует понятие размерности;
  • доступны операции линейных преобразований;
  • осуществляется путем создания системы эталонов.

В качестве примера можно привести циферблат часов – каждые сутки значение времени будет, например, «7 часов», хотя это разные дни.

Другим примером может служить компас, показывающий направление из одной точки. Сама эта точка может иметь различные координаты.

Важно помнить, что в этом случае при измерении мы можем вычислять разницу между двумя значениями, но должны все время помнить о том, что начальное значении задано произвольно. Например, при переходе на летнее время придется задать новое начальное значение.

Абсолютная

Абсолютная шкала занимает высшую ступень в шкальной иерархии. Единицы их естественные и не основаны на соглашениях и допущениях. Кроме того, эти единицы не имеют размерности, не служат производными системы СИ или какой-либо другой. Они всегда безразмерны:

Абсолютные подразделяют на

  • ограниченные. Диапазон от 0 до 1. Сюда относятся КПД, оптические коэффициенты поглощения т.д.
  • неограниченные – предел упругости, коэффициент усиления в радиотехнике и т.д. Все они нелинейные и не имеют единиц измерений.

Иерархия шкал измерений

Условная иерархия составляется по признаку силы.

  • Количественные:
    • абсолютная;
    • разностей;
    • отношений;
    • интервалов;
  • Качественные:
    • порядковая;
    • наименований.

По мере возрастания силы увеличивается конкретность информации об объекте.

Источник

Управленческая теория измерений.

Шкалы и накладываемые ими ограничения

Управленческая теория измерений.

Шкалы и накладываемые ими ограничения

К. э. н., доцент кафедры финансового менеджмента, управленческого учёта и международных стандартов финансовой деятельности факультета ВШФМ РАНХиГС при Президенте РФ, руководитель консультационного бюро Института экономических стратегий, преподаватель школ бизнеса РАНХиГС, НИУ ВШЭ, МГУ, РСПП, ИНЭС и др.

Шкалы и их классификации

Шкалы используются как для первичных измерений, так и для перевода разных измерений (в нашем случае — различных показателей) в единую шкалу. Как выбрать единую шкалу? Начнём с трёх определений.

Шкалой называют систему чисел или иных элементов и отношений между ними, принятых для измерения или оценки каких-либо величин (объектов, качеств и т. д.).

Шкалирование — это:

  • выбор шкалы для первичных измерений;
  • перевод измерения из одной шкалы в другую.

Нормирование (или единообразное шкалирование) — это перевод всех переменных, показателей, отражающих разные объекты измерений, в одну шкалу.

Первая классификация шкал была предложена С. Стивенсом в 1946 г. и от современной общепринятой классификации принципиально не отличается.
Шкалы, как правило, объединяют в три основные группы:

  • номинальные — для качественных измерений;
  • порядковые — для отражения отношения порядка (больше, лучше, важнее, проще, правильнее и т. п.);
  • количественные — оперируют с числами так, как мы привыкли со школьных времен (например, 10 в 2 раза больше, чем 5).

Иногда все шкалы измерения делят на два класса:

  • шкалы качественных признаков (порядковая шкала и шкала наименований);
  • шкалы количественных признаков (количественные шкалы).

Далее мы последовательно разберём все типы шкал.

Как считать очки в десятиборье?

Сегодня в мужском легкоатлетическом десятиборье за удачное выступление в каждом виде спорта участнику начисляется около 1000 очков. Но какой результат, по вашему мнению, берётся за 1000? Первое, что приходит на ум, — взять за 1000 очков мировой рекорд для женщин. Но какой именно? Текущий не годится, так как он меняется, а хотелось бы иметь возможность сравнений во времени и измерять рекорды. Но допустим, мы зафиксируем раз и навсегда, за что дается 1000 очков: в прыжках в длину, например, за 7,90 м, в беге на 100 метров — за 11 секунд. Далее возникает другой вопрос: какой шаг указать? Результат 8,00 м в прыжках в длину — это 1050 или 1010 очков? И как справедливо сравнивать разные виды соревнований? Думается, у каждого специалиста будут на этот счёт своё мнение и своя шкала.

Номинальные шкалы

Номинальная шкала (nominal scale), или шкала наименований 1 , сопоставляет каждый объект с определённым признаком. В результате объект либо обладает этим признаком, либо нет. Номинальная шкала состоит из названий — это самое простое и в то же время верное понимание номинальной шкалы.
Пример. Красное или чёрное — это измерение в некой цветовой гамме. Многие классификации, ответы на вопросы анкеты — всё это примеры номинальных измерений. С них начинается работа создателей сбалансированной системы показателей, а закончиться она должна цифрами. Но здесь важно не переборщить и оставить номинальные измерения только там, где они предпочтительнее формальной оцифровки.

Допустимые преобразования. В номинальной шкале допустимыми преобразованиями (см. врезку) являются все взаимно-однозначные преобразования 2 . Например, red — это «красный». Никаких отношений, кроме «равно» и «неравно», здесь нет. В этой шкале числа используются лишь как метки (как, например, при сдаче белья в прачечную), то есть лишь для различения объектов.

Допустимые преобразования

Этим понятием математики строго описывают шкалы. Тип шкалы задаётся группой её допустимых преобразований.
Допустимые преобразования — это такие преобразования, которые не меняют соотношения между объектами измерения и, соответственно, выводы, сделанные по результатам измерений. Например, при измерении длины переход от аршинов к метрам не меняет соотношений между длинами рассматриваемых объектов: если первый объект длиннее второго в пять раз, то это будет установлено при измерении как в аршинах, так и в метрах. Обратите внимание, что при этом численное значение длины в аршинах отличается от длины в метрах — не меняется лишь результат сравнения длин двух объектов.
Аналогично денежные суммы можно сопоставлять как в рублях, так и в иностранной валюте. Особенность, связанная с изменяющимися курсами валют: результат сопоставления денежных сумм в разных валютах меняется во времени. С аршинами и метрами ситуация иная: их соотношение вечно. Вот вам и проблема курсовых разниц в экономике. О ней сейчас не место говорить, но запомните её.

Порядковые шкалы

Порядковая шкала отражает более высокий уровень измерений, учитывающий, к какой категории принадлежит объект и в каком отношении он находится с другими объектами. В порядковой шкале числа используются не только для различения объектов, но и для установления порядка между ними.
Пример. Простейшим примером порядковой шкалы служат оценки знаний учащихся. Символично, что в средней школе применяются оценки 2, 3, 4, 5, а в высшей школе тот же смысл выражается словесно — «неудовлетворительно», «удовлетворительно», «хорошо», «отлично». Этим подчёркивается «нечисловой» характер оценок знаний студентов.
Фактически измерение по порядковой шкале представляет собой операцию упорядочения. Предполагаются сравнения «больше — меньше» или «лучше — хуже». Например, мнения экспертов часто выражаются в порядковой шкале, то есть эксперт может сказать (и обосновать), что один показатель качества продукции важнее, чем другой; первый технологический объект опаснее, чем второй, и т. д. Но он не в состоянии сказать, во сколько раз или насколько он более важен, или, соответственно, более опасен.
Допустимые преобразования. Порядковая шкала допускает любое возрастающее преобразование, то есть такое, которое не меняет порядок шкалы.
Типы порядковых шкал. Используют два типа порядковых шкал, которые различны с практической точки зрения:

  • ранговая шкала, которая предполагает присвоение объектам рангов (ранжирование);
  • балльная шкала, в которой применяются баллы.

Обдумывание измерений некоторых показателей следует начать с выбора между ранговым и балльным типами шкал.

Ранговые порядковые шкалы

Ранговые шкалы — это шкалы, где числа служат только для присвоения мест. Экспертов часто просят ранжировать (упорядочить) объекты экспертизы, то есть расположить их в порядке возрастания (или убывания) интенсивности исследуемой характеристики. Ранг — это номер объекта экспертизы в упорядоченном ряду значений характеристики у различных объектов. Формально ранги выражаются числами 1, 2, 3. Важно помнить, что измерения 1, 2, 3 и 6, 10, 50 означают одно и то же: первая альтернатива заняла первое место, вторая — второе место и т. д. В ранговых шкалах нет информации о величине различий между оцениваемыми объектами. Такие шкалы используются тогда, когда объект трудно описать несколькими характеристиками, которые потом оцениваются качественно (баллами, например) или количественно. В практике менеджмента рейтинги часто основаны на ранговых шкалах.

Ранговые измерения (процедуры ранжирования). Различают несколько основных типов алгоритмов ранжирования:

  1. процедура непосредственного ранжирования, когда эксперт должен просто упорядочить объекты. При ранжировании он располагает объекты в порядке предпочтения, руководствуясь знаниями, собственными соображениями и пр. — по сути, расставляет объекты в определённом порядке, пользуясь своим собственным алгоритмом и не объсняя, почему он выбрал именно этот вариант;
  2. процедура опосредованного ранжирования, когда эксперт должен упорядочить объекты и дать пояснения;
  3. процедура последовательного непосредственного ранжирования, когда эксперт сначала должен отнести объекты к одному из нескольких классов, которым заранее присвоил ранги, а затем упорядочить объекты внутри каждого класса. Метод используется при большом количестве объектов ранжирования;
  4. «метод пузырька» взят из программирования, где он применятется для сортировок. Эксперт должен найти место (N+1)-ого объекта в ряду уже упорядоченных N-объектов. Такая процедура весьма экономна и точна;
  5. процедура парных сравнений заключается в том, что эксперт устанавливает порядок объектов путём сравнения всех возможных их пар. Это самый точный, но и самый трудоёмкий метод. Перевод результатов таких парных сравнений в ранги не так прост, пример неверного перевода результатов парных сравнений в ранги приведен во врезке.

Простейший (и неверный) перевод результатов парных сравнений в ранги и в весовые коэффициенты

Заманчива идея получить весовые коэффициенты, то есть количественную меру, из порядковых измерений. Однако, как правило, такое действие некорректно — оно многозначно и потому единственный и корректный вывод для задач менеджмента невозможен. Вместе с тем оно популярно, особенно среди людей, плохо знающих математику.
Приведём пример наиболее простой и популярной модификации метода парных сравнений. Допустим, эксперт проводит оценку четырёх методов, которые связаны с решением кадровых вопросов в корпоративном проекте:
Z1 — повышение квалификации в процессе выполнения проекта;
Z2 — привлечение кадров со стороны;
Z3 — подготовка кадров в своём корпоративном университете;
Z4 — разовое повышение квалификации.

Zi/Zj Z1 Z2 Z3 Z4
Z1 1 1 1
Z2 0 0 0
Z3 0 1 1
Z4 0 1 0

Составим матрицу бинарных предпочтений эксперта, где 1 означает, что один метод „предпочтительнее”, чем другой, с которым он сравнивается. Определим оценку каждого метода (складываем по строкам): C1 = 3; C2 = 0; C3 = 2; C4 = 1. Получаем порядок предпочтения методов: Z1, Z3, Z4, Z2. Пока всё это корректные действия. Затем наступает черед „творчества”.
Простейший (и неверный) перевод результатов парных сравнений в весовые коэффициенты. Если нужны „веса” указанных четырёх альтернатив, то можно нормировать числа <С>и получить „веса” делением каждого значения С на сумму всех Сi, равную шести: v1 = 3/6 = 0,5; v2 = 0; v3 = 0,33; v4 = 0,17. Проверка: сумма весов должна быть равна 1.
Однако анализ корректности метода даёт отрицательный результат. Дело в том, что объектам могут быть присвоены и другие веса (см. подобный пример ниже). Почему некорректно? Потому что в результате его применений вес v1 оказывается в три раза больше, чем v4, а этого эксперт, который проводил парное сравнение, не утверждал! Подделка очевидна, так как в результате обработки мы добавили весомую толику информации от себя к тому, что говорили эксперты.

Корректные методы перевода результатов парных сравнений в шкалу интервалов. Они существуют. Считая предпочтение некоторой случайной величиной, отражающей истинное соотношение характеристик объектов сравнения, можно решить задачу определения вероятности истинного соотношения сравниваемых объектов (модели Брэдли-Терри, Терстоуна-Мостеллера, Льюса и др.). Пример такого корректного перевода дан во врезке. Большого практического значения он не имеет, и чтобы понять его суть, надо хорошо знать математическую статистику 3 . Но важно понимать, что такие методы существуют и у них есть обоснование, пусть и небесспорное. В результате метод парных сравнений позволяет определить значимость различий положения тех или иных объектов в иерархии, а также решать другие сходные задачи.

Корректный перевод результатов парных сравнений в интервальную шкалу

При опросе экспертов в августе 2001 г. попарно сравнивалось качество бензина в четырех компаниях: «ТНК», «Лукойл», «Юкос» и «Татнефть». При сравнениях четырёх компаний получается 6 пар для сравнения:

Таблица 1. Сравнение компаний по качеству бензина

Пары Частота выбора первого элемента пары Частота выбора второго элемента пары
«ТНК» — «Лукойл» π(1,2) = 0,508 π(2,1) = 0,492
«ТНК» — «Юкос» π(1,3) = 0,331 π(3,1) = 0,669
«ТНК» — «Татнефть» π(1,4) = 0,990 π(4,1) = 0,010
«Лукойл» — «Юкос» π(2,3) = 0,338 π(3,2) = 0,662
«Лукойл» — «Татнефть» π(2,4) = 0,990 π(4,2) = 0,010
«Юкос» — «Татнефть» π(3,4) = 0,997 π(4,3) = 0,003

По результатам парных сравнений удалось выразить „качество бензина” V1, V2, V3, V4 в шкале интервалов (см. ниже). Легко заметить, что „ценности” V1, V2, V3, V4 измерены в шкале интервалов. Начало координат можно выбрать произвольно, поскольку вероятности результатов сравнения зависят только от попарных разностей „ценностей” V1, V2, V3, V4. Например, примем, что V4 = 0.
Для оценки использовалась модель Терстоуна-Мостеллера, согласно которой погрешности мнений экспертов являются независимыми, нормально распределёнными случайными величинами с нулевым математическим ожиданием и дисперсией σ 2 . Поскольку дисперсия разности наших условных случайных величин V1, V2, V3, V4 равна 2σ 2 , единицу измерения удобно выбрать так, чтобы 2σ 2 = 1. В результате получим следующие значения:
V1(«ТНК») = V2(«Лукойл») = 2,326348, V3(«Юкос») = 2,747781, V4(«Татнефть») = 0.
Таким образом, самый качественный бензин у «Юкоса»; несколько хуже у «ТНК» и «Лукойла», одинаковых по данному показателю, а у «Татнефти» значительно хуже тройки лидеров.

Балльные порядковые шкалы

Балльные шкалы используются очень часто, примеры мы уже приводили. Однако важно понимать, что каждому баллу необходимо присвоить качественную характеристику, в противном случае может пострадать корректность. Приведу пример: в конце 1990-х гг. я был назначен ответственным преподавателем (качество, контроль, апелляции) на устном экзамене по экономике для абитуриентов НИУ ВШЭ. Только что на ректорате ввели 10-балльную шкалу. Экспромт не удался — первый блин, как обычно, вышел комом. Моя работа заключалась, в том числе, и в „обеспечении справедливости”, то есть чтобы за примерно одни и те же ответы преподаватели в разных комиссиях ставили одинаковые баллы. Разброс в оценках оказался ужасающим — от 4 до 7 за похожие ответы. Буквально на следующий день ошибка в дефиниции шкалы была исправлена, а получившаяся шкала (см. таблица 2) успешно работает до сих пор (с небольшим изменением). Многие вузы взяли её на вооружение. Обращаю внимание читателей, что в соответствии со спецификой каждого предмета преподаватель конкретизирует шкалу.

Таблица 2. Пример 10-балльной шкалы для оценки успеваемости студентов.

Балл Качественная характеристика
10 Пять с плюсом — исключительные знания (кое-что из ответа студента даже преподаватель не знал)
9 Отлично, твёрдая пятёрка
8 Пять с минусом
7 Четыре с плюсом
6 Четыре, твёрдая четвёрка
5 Четыре с минусом
4 Три с плюсом
3 Три, твёрдая оценка «удовлетворительно»
2 Три с минусом
1 Неудовлетворительно

Важный вопрос: какова идеальная размерность балльной шкалы? Ответ: сколько качеств, столько и баллов. Баллы обозначают упорядоченные качества, и каждому качеству присваивают свой балл. Обратное неверно: если взять за основу 10-балльную шкалу и каждому баллу попытаться „присвоить” определённое качество, то можно столкнуться с ситуацией, что качеств может оказаться не 10, а всего 7. Поэтому следует отталкиваться именно от количества качеств, которые вы можете выделить.

Балльные измерения. Балльные измерения формально просты, но коварны возможностью допустить необоснованные оценки и тем самым всё испортить. Существует два подхода к выставлению балльных оценок:

  1. непосредственная балльная оценка представляет собой приписывание объектам баллов на основании субъективного представления. Такая оценка используется в социологии, но в управлении компанией применяться не должна (за исключением, пожалуй, начальной стадии разработки системы показателей). Причина проста — слишком произвольно баллы приписываются объектам, трудно объяснить, почему мы по 10-балльной шкале ставим 5, а не 6, например;
  2. балльная оценка с обоснованием — это процедура приписывания объектам баллов на основании степени близости к описанным баллами качествам. На мой взгляд, это необходимо для корректного выставления балльных оценок. Примем следующее правило если нет обоснования логики присвоения баллов, будем считать измерение некорректным.

Перевод результатов балльных оценок в весовые коэффициенты. Если такой перевод делается одним экспертом — это операция сомнительная, но популярная. Во врезке приведён один из популярных методов — метод последовательных сравнений.

Перевод рангов в весовые коэффициенты одним экспертом. Метод последовательных сравнений

Количественные шкалы

Количественные шкалы отражают более высокий уровень измерений, учитывающий не только то, в каком отношении измеряемый объект находится с другими объектами, но и степень их различия. Примеры использования количественных шкал мы видим повсюду.
Допустимые преобразования. Количественные шкалы определены с точностью до преобразований, которые не меняют единицы измерения (линейных или иных функциональных преобразований).
Типы количественных шкал. Различают количественные шкалы:

  • интервалов;
  • степеней;
  • отношений;
  • разностей;
  • абсолютную шкалу.

Расположение шкал в этом списке не случайно. Первая (шкала интервалов) — самая слабая по информативности и самая сильная в плане надёжности оценок, последняя (абсолютная шкала) — наиболее информативная (измерения могут быть очень надёжными), но при этом допускающая наименее надёжные оценки. Оценка степени соответствия некоторому идеалу максимально затруднена — помните разницу между оценкой и измерением?
Шкала интервалов (интервальная шкала) точно определяет величину интервала между точками на шкале. Для проведения измерений необходимо задать интервал (2 точки). Допустимыми преобразованиями в шкале интервалов являются линейные возрастающие преобразования вида: F(Х) = а · Х + b, где а > 0.

Шкала степенная. Шкала степеней (степенная) допускает степенное преобразование (F(Х) = АХВ). В области техники она вполне адекватна — у неё тоже две степени свободы, как у шкалы интервалов. В экономике она, напротив, является исключением, поэтому подробно рассматривать её не будем.

Шкала отношений. Из количественных шкал в науке и практике наиболее распространены шкалы отношений. В них есть естественное начало отсчёта — ноль (то есть отсутствие величины), но нет естественной единицы измерения.
Примеры использования шкалы отношений:

  • измерение большинства физических единиц: массы тела, длины, а также цены в экономике;
  • любое процентное соотношение — это измерение в шкале отношений;
  • простые индексы типа Выручка текущего года/Выручка прошлого года также представляют собой измерение в шкале отношений.

Шкала отношений допускает преобразования, изменяющие только масштаб, то есть преобразования подобия: F(Х) = аХ, где а > 0 (линейные возрастающие преобразования без свободного члена).
Примеры преобразования шкалы отношений:

  • пересчёт цен из одной валюты в другую по фиксированному курсу;
  • перевод массы из килограмм в фунты.

Базовая точка в шкале отношений одна — «единица». Эта условная «единица» может быть, например, 100 (проценты) или 1 (доли). Таким образом, измерения в долях и процентах эквивалентны, что очевидно и без всякой теории.
Однако выводы, которые делаются по результатам процентных измерений, могут быть ошибочными (см. врезку). Возникают сопутствующие вопросы:

  • встречаются ли в практике управления подобные сравнения?
  • какие проценты можно сравнивать друг с другом и для чего?
  • какие действия с процентами можно производить?
  • какие действия можно производить с индексами?

Корректность процентных измерений. Рейтинг Путина vs стоимость свинины

  • Рейтинг Путина: в январе 2014 — 60,6%, в июне 2014 — 87,4%.
  • Цена свинины: в январе — 116 руб/кг, в июне — 195 руб/кг.

Вывод: по темпам роста (в научной терминологии «прироста») свинина побеждает Путина: 44% vs 68%.
Корректны ли эти измерения? Решите сами и объясните (что гораздо сложнее). Точно сформулировать, насколько такие сравнения корректны, удается лишь 10% слушателей программ МВА. Это ещё один довод в пользу изучения шкал. Хотя бы на уровне знакомства.

Шкала разностей допускает преобразование сдвига: F(Х) = Х + в. В такой шкале есть естественная единица измерения, но нет естественного начала отсчета. Базовая точка в шкале разностей тоже одна — условный „ноль”, своеобразная точка отсчёта. Пример: по шкале разностей измеряется время, если естественной единицей измерения принимаем год (или сутки — от полудня до полудня). На современном уровне знаний естественное начало отсчёта указать нельзя. Даже дату сотворения мира различные авторы рассчитывают по-разному, как и дату рождения Иисуса Христа.
Абсолютная шкала — это шкала, которая запрещает преобразования 5 . Только для абсолютной шкалы результаты измерений (числа) используются в привычном смысле именно как числовые значения. В качестве примера измерений по абсолютной шкале можно привести число работников компании или выручку. При этом оценка выручки может отличаться от самой выручки (допустим, 20 млн руб. — „хорошо”, 24,5 млн руб. — „отлично”).
Кроме перечисленных шести основных типов количественных шкал, иногда используют и иные шкалы.

Степени свободы шкал

Для проведения измерений в шкалах отношений и разностей мы должны задавать одну точку. В шкале отношений она „играет роль единицы”, то есть соответствует переводу базового эмпирического элемента в единицу действительной оси. Для шкалы разностей это „нулевая точка”, то есть нужно задать отношение таким образом, чтобы „точка отсчёта” эмпирической системы превращалась в числовой ноль.
В этой связи математики различают шкалы по степеням свободы:

  • 2 степени свободы имеют шкалы интервалов, степеней;
  • 1 степень — шкалы отношений и разностей;
  • 0 степеней — абсолютная шкала.

Иерархия шкал измерений

Напомним, что все шкалы делят на две большие группы: качественные и количественные. Наиболее распространённая классификация шкал — континуальная (рис. 3). В ней шкалы упорядочены по мере повышения их способности удовлетворять требованиям информативности и надёжности проведения оценок. Слева — самая слабая по информативности и самая надёжная, справа — наиболее информативная и наименее надёжная.

Рис. 3. Иерархия шкал измерений

В следующей части мы поговорим о том, как собственно выставлять оценки чему-либо. Хорошая обработка результатов измерений — это достоверная система оценок. А какими математическими свойствами она должна обладать? Есть ли научный ответ на этот вопрос?

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector